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Abstract

The efficient solution of huge-scale sparse systems of linear or linearized equations poses a pivotal
question in many applications of optimization and, with that, in numerical linear algebra. In
particular, the design of bespoke iterative solvers is often invaluable, in order to mitigate the
large storage requirements that may be required by off-the-shelf methods for systems of very high
dimensions. In order to make a numerical solver feasible and effective, information about the linear
system and the structure of the optimization problem from which it is obtained must frequently be
taken into account when designing the solver.
A broad class of optimization problems with numerous applications involves sparsely-connected
optimization problems. These consist of a series of constrained subproblems linked through a
relatively small subset of variables. A general form of such problems can be written as

min
ζ1,...,ζN

N∑
i=1

ϕi (ζi)

s.t. C+
i,jζi + C−

i,jζj = 0 for all (i, j) ∈ A,

ci (ζi) = 0 for all i ∈ V,

(1)

where V = {1, . . . , N} with N ∈ N is an index set for the subproblems, and A ⊆ V × V represent
the connecting graph. The functions ϕi denote the optimization functionals, ci the constraint for
each subproblem, and the vectors ζi ∈ Rni are to be determined. These problems play a crucial role
in engineering applications, including stochastic programming, robust nonlinear model predictive
control, and optimal control of networks (e.g., gas pipelines). They are also relevant in domain
decomposition methods for partial differential equations (PDEs) and parallel-in-time approaches.
Upon discretization and linearization, problem (1) reduces to a large-scale sparse linear system of
saddle-point structure of which the efficient solution is desirable.
In this talk, we derive a suite of direct and (in particular) iterative solvers for saddle-point sys-
tems with a tree-coupled structure [2], corresponding to a special case of a linearization of (1).
Specifically, we extend well-studied structure-exploiting approaches for saddle-point systems [1] by
incorporating the graph-based coupling structure, where interactions between the individual and
otherwise isolated subsystems are expressed via generic coupling constraints. This allows us to
make use of the special, sparse structure of the resulting Schur complement. We develop a range
of structured preconditioners which may be embedded within suitable Krylov subspace methods,
including block preconditioners, recursive preconditioners, and multi-level approaches. The major-
ity of these methods are vastly parallelizable, allowing them to be applied in a real-time fashion.
We prove a range of results relating to the convergence, complexity, and spectral properties of our
algorithms. The performance of the preconditioners is showcased by applying them to an array
of model problems. This includes model predictive control, multiple shooting for optimal control,
and domain decomposition for PDEs. The numerical experiments validate our theoretical results
and show improved performance over direct methods. Additionally, the experiments show that our
methods are capable of coping with very large regimes of N .
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We, furthermore, outline future work on the analysis of coupled systems with an even more general
graph-based structure, including cyclic dependencies and the derivation of methods to automatically
detect this exploitable structure within given linear systems. There is also the potential to combine
this with parallel-in-time methodologies derived by the author for fluid flow control problems [3].
Moreover, we discuss the potential of this method to be embedded within the sequential homotopy
method [4], which leads to global convergence for a number of nonlinear optimization problems.
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