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Abstract

We introduce an efficient classical-quantum algorithm for encoding arbitrary dense Hermitian
matrices as Block Encoding circuits (UA ∈ BEα,θ (A)). Our work is motivated by Block Encoding’s
fundamental role as the leading paradigm for quantum linear algebra, providing a unified framework
for leveraging quantum computing to accelerate numerical linear algebra operations. Our algorithms,
accepts four distinct input representations: (1) classical matrix description A ∈ Cn×n, (2) an
4 × 4 × · · · × 4 (log n times) Pauli coefficients tensor AP , (3) matrix state preparation circuit
UA, or (4) matrix state preparation circuit for the Pauli tensor UAP

. This flexibility optimizes
performance across different data availability scenarios, with the classical matrix input achieving
O(n2 log n) run-time complexity in the worst case. Moreover, the third input model demonstrates
a significant breakthrough: the first known method to construct a Block Encoding circuit directly
from a matrix state preparation circuit without requiring additional classical information (such as
row norms) or additional quantum hardware (such as QRAM). This establishes a new bidirectional
equivalence between block encoding and matrix state preparation input models, providing a unified
framework for matrix encoding in quantum algorithms.

1 Introduction

1.1 Motivation and problem statement

Quantum computers hold hope for significant speedups in scientific computing and machine learning
due to their ability to handle matrix operations efficiently [3]. However, unlocking this potential
hinges the algorithm’s ability to efficiently access classical data within the quantum system. The
mechanism in which classical input is fed into a quantum algorithm is known as the algorithm’s
input model.
Leveraging breakthroughs in quantum linear algebra, researchers have proposed many quantum
algorithms for scientific computing and machine learning. However, the feasibility of their input
model assumptions remains critical to their effectiveness. As shown by Chakraborty et al. [4], these
assumptions often significantly impact the performance and efficiency of such algorithms. Prime
examples of quantum linear algebra algorithms include the HHL algorithm [8], and others [5, 7, 14,
2, 11].
Given the essential role of the input model in defining how classical data interacts with the quantum
system, researchers have explored various approaches. Two noteworthy examples include the sparse-
data access model [1, 5] and various quantum data structure based models [9, 10].
In this work, we study the use of Pauli decomposition in developing efficient algorithms to encode
arbitrary dense or sparse Hermitian matrices into Block Encoding circuits, either provided as
classical data or as quantum circuits, into Block Encoding circuits.

1



1.2 Brief overview of Block Encoding and State preparation

Chakraborty et al. [4] showed that a variety of the aforementioned widely used input models can
be reduced to an input model in which matrices are inputed using block encodings and vectors are
inputed as state preparation circuits:

Definition 1 (State preparation Circuit). We say that a log2 n-qubit circuit U is a state preparation
circuit for a vector x ∈ Cn if applying U to the state |0⟩log2 n results in the state |x⟩log2 n.

Definition 2 (Block encoding of a matrix). For α ≥ 0 and θ ∈ [0, 2π), a circuit U is a (α, θ)-Block
Encoding of A ∈ Cm×n, denoted as U ∈ BEα,θ (A), if

αeiθM(U) =
[
A ∗
∗ ∗

]
where ∗ denotes arbitrary entries, and M(U) denote the unique unitary matrix of the circuit U .
We refer to α as the scale and θ as the phase.

We refer to the input model in which matrices are accessed using block encodings and vectors
are accessed as state preparation circuits as the block encoding input model. There are powerful
algorithms that operate under the block encoding model. In particular, in the block encoding model
we can perform Quantum Singular Value Transformation [7], a powerful technique that leads to
efficient algorithms for solving linear equations, amplitude amplification, quantum simulation, and
more [12].
Another relevant input model is the state preparation input model. In this model, matrices accessed
via matrix state preparation circuit and vectors are accessed via state preparation circuits. Mor-
Yosef et al. [15] recently introduced an algorithm for multivariate trace estimation and spectral
sums estimation under this model.

Definition 3 (Matrix state preparation circuit). We say that a (log2 n + log2m)-qubit circuit U
is a matrix state preparation circuit for a matrix A ∈ Cm×n if applying U to the state |0⟩log2 mn

results in the state ||A⟩⟩ := |vec (A)⟩. Equivalently, the first column of M(U) is vec (A).
For convenience, where appropriate, we add the matrix as sub-index when denoting state preparation
circuits, e.g. UA. In such cases, with an abuse of notation, the number of gates in UA is denoted
by gA, and the depth by dA.

1.3 Statement of main results

While existing block encoding methods typically exploit specific matrix properties like structure,
sparsity, or rank, we introduces an efficient general-purpose technique for arbitrary matrices (dense
and sparse) through Pauli decomposition. These techniques will utilize the principles of Pauli
decomposition, and the use of a quantum multiplexer.
The Pauli decomposition represents matrices as a sum of tensor products of Pauli matrices. Formally,
let Σ = {I = 0,X = 1,Y = 2,Z = 3} represent a set of indices corresponding to the four
2 × 2 Pauli matrices: σI , σX , σY , σZ . Assume that n = 2q. Given a word (i.e., sequence) W =
(w1, w2, . . . , wq) ∈ Σq, we define the corresponding q-wise Pauli matrix as σW := σw1 ⊗ σw2 ⊗ · · · ⊗
σwq . Then, the Pauli decomposition of matrix A can be expressed mathematically as:

A =
∑

W∈Σq

αWσW
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where αW ∈ R are real coefficients.
The quantum multiplexer [13] acts like a switch within a quantum circuit. It uses control qubits
to selectively apply different unitary operations to a target qubit. Given a set of quantum circuits
U0, . . . ,Uk−1 the log k-qubit multiplexer is defined as:

MX log k :=
k−1∑
i=0

|i⟩ ⟨i| ⊗ Ui.

Importantly, MX log k acts as a multiplexer. In other words:

MX log k( |i⟩︸︷︷︸
control

|ψ⟩︸︷︷︸
input

) = |i⟩︸︷︷︸
control

Ui |ψ⟩︸ ︷︷ ︸
output

.

The matrix that represents the multiplexer is a block diagonal matrix of the corresponding operators:

M(MX log k) = diag (M(U0), . . . ,M(Uk−1))

Once we have obtained the Pauli coefficients of the matrix, we can utilize a multiplexer to construct
a block-diagonal matrix composed of the corresponding q-wise Pauli matrices. By employing a
state preparation circuit for the coefficients, we can efficiently implement linear combinations of
coefficients multiplied by matrices, effectively creating a block encoding of the matrix A.
To efficiently determine the Pauli coefficients classically, we require some theoretical groundwork.

1.4 Contribution

This work makes three key contributions: (a) the first bidirectional equivalence between block
encoding and matrix state preparation input models, (b) a novel classical Pauli decomposition
algorithm withO(n2 log n) run-time complexity, and (c) an efficient quantum circuit implementation
for multiplexed Pauli tensor products with O(n2) gate complexity. This general-purpose approach
improves upon existing techniques for arbitrary matrix encoding, achieving particular efficiency
when the Pauli decomposition is sparse.

2 Block encoding equivalence

Given a matrix state preparation circuit for A and a state preparation circuit for a vector w whose
entries are the row norms of A, it is possible to construct a block encoding of A [6, Section I.D].
We are unaware of any efficient algorithm that given only a matrix state preparation circuit for A
constructs a block encoding of A. In this section we will show a way to create block encoding from
state preparation circuits and vise versa.

2.1 Block encoding → matrix state preparation circuit

Mor-Yosef et al. [15] show that given a circuit U we can construct a matrix state preparation of
M(U). Thus, given a block encoding of A we can immediately construct a matrix state preparation
circuit for a matrix that contains A.
The following provides a proof for creating a state preparation circuit, including auxiliary (garbage)
quantum states, from Block Encoding.
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Proposition 4. Suppose that U ∈ BEα,θ (A). Applying the ′qml.matrix′ results UM(U) s.t UM(U) ∈
MSα,θ (A)

Proof. We have that,

UM(U) =
[
vec (M(U)) ∗

]
= α−1e−iθ

[
vec

([
A ∗
∗ ∗

])
∗
]

= α−1e−iθ

[
vec (A) ∗

ψ ∗

]

2.2 Matrix state preparation circuit → block encoding

We introduce a method to create block encoding solely from a matrix state preparation circuit.
Preliminary examples are provided to illustrate this approach, with the full methodology detailed
in the paper. At a high level, we construct UAp from UA, and then apply the technique from the
previous section to block encode A.
In high level, we construct UAp from UA, then use the technique from the previous section to block
encode A. We will now demonstrate how to compute UAp in the following section.

2.2.1 Construct UAp from UA( Warm-up: q = 1 and Real A)

As a warm-up, let us first consider the case of q = 1, i.e. the A ∈ Rn×n a 2 by 2 real and Hermitian
matrices. To keep notation simple, we use the 1 base index, i.e.

A =

[
a11 a12
a21 a22

]
a12 = a21

Note that we can write A as a linear combination of the following matrices,

E11 =

[
1 0
0 0

]
, E12 =

[
0 1
0 0

]
, E21 =

[
0 0
1 0

]
, E22 =

[
0 0
0 1

]
Indeed we have that

A =
∑
i,j

aijEi,j = a11E11 + a12E12 + a21E21 + a22E22

From linearity of (·)pwe have that

Ap =

∑
i,j

aijEij


p

= A =
∑
i,j

aij (Eij)p

Note that we can create state preparation circuits {U(Eij)p
}i,j , using the standard state prepartion

operation ([13]). Now we can create the UAp as follow:
This observation can easily be used to implement, via qMSLA operations, an algorithm that takes
UA and outputs UAp .
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