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Abstract

Gaussian elimination (GE) remains the most used approach to solve dense linear systems in modern
applications. For instance, GE with partial pivoting (GEPP) is the default solver in MATLAB
when using the backslash operator with a general input matrix. Additionally, GE is a staple of
introductory linear algebra courses (although, based on anecdotal evidence, it may not be a favorite
among all students).
GE iteratively uses elimination updates below the diagonal on an initial input matrix A ∈ Rn×n to
transform A into an upper triangular linear system, which eventually builds the matrix factorization
A = LU , where L is a unit lower triangular matrix and U is upper triangular. General nonsingular
A will not have a LU factorization if any leading minors are singular, i.e., if det(Aij)

k
i,j=1 = 0

for some k ≤ n − 1. Moreover, numerical stability of GE when using floating-point arithmetic is
sensitive to any elimination steps that involve division by numbers close to 0. Hence, combining GE
with certain pivoting schemes is preferable even if not necessary. A pivoting strategy results instead
in the factorization PAQ = LU where P and Q are permutation matrices (see [10, 13] for studies of
random permutations generated using GEPP). I will focus on the two particular pivoting strategies
GEPP and GE with complete pivoting (GECP), as well as the standard GE with no alternative
pivoting strategy (GENP). I am interested in studying how GEPP and GECP behave on the same
linear systems as well as studying large growth (see below) on particular subclasses of matrices,
including orthogonal matrices. Moreover, as a means to better address the question of why large
growth is rarely encountered, I further study matrices with a large difference in growth between
using GEPP and GECP, and I explore how the smaller growth strategy dominates behavior in a
small neighborhood of the initial matrix. This is a summary overview for my recently published
results in [11].
Understanding the behavior of GE under floating-point arithmetic has been an ongoing focus of
numerical analysis for over 60 years. Early work by Wilkinson in [17], which led to the start of
modern error analysis, considered studying the relative errors of computed solutions x̂ to Ax = b
through the bound

∥x− x̂∥∞
∥x∥∞

≤ 4n2ϵmachineκ∞(A)ρ(A), where ρ(A) =
maxi,j,k |A

(k)
ij |

maxi,j |Aij |

is the growth factor, κ∞(A) = ∥A∥∞∥A−1∥∞ is the ∞-condition number, and A(k) is the interme-
diate form of A after k − 1 GE steps, with A(1) = A and A(n) = U . The growth factor returns the
relative largest entry ever encountered running through the entire GE process. Using GECP, ρ(A)
takes the simpler form ρ(A) = maxk |Ukk|/|U11| while in general the largest entry is not necessarily
captured by U . In well-conditioned systems, error analysis of GE can then be reduced to analysis
of the growth factor.
Understanding worst-case bounds on ρ (i.e., the growth problem) using different pivoting strategies
has been a continued area of research since Wilkinson’s initial analysis in the early 1960s. Wilkinson
resolved the worst-case behavior of GEPP, showing the bound ρGEPP(A) ≤ 2n−1 for A ∈ Rn×n is
sharp [17, 18]. For GECP, however, Wilkinson in the same work only provided an upper bound of

ρGECP(A) ≤ (n · 2 · 31/2 · · ·n1/(n−1))1/2 ≤ 2 · n0.25 lnn+0.5,
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which is believed to be very pessimistic. For a long time a conjecture (of apocryphal origins;
cf. [5]) ventured the bound ρGECP ≤ n (for real matrices). This conjecture survived for almost
three decades, until Gould [6] found a “counterexample” for n = 13 by producing a matrix using
floating-point arithmetic with GECP growth of 13.0205 in 1991. Edelman [4] confirmed a true
counterexample in exact arithmetic one year later. No substantial progress on the GECP growth
problem was made for another 30 years later until 2023. Edelman and Urschel [5] establish a linear
lower bound on ρGECP at least 1.0045n for n > 10, by upgrading Edelman’s computational tech-
nique to upgrade Gould’s floating-point “counterexample” into an exact arithmetic counterexample
(by updating one entry by 10−7) into a theorem establishing floating-point and exact arithmetic
growth factors cannot be too far from one another (cf. Theorem 4.2). Moreover, later that same
year, Edelman and Urschel along with now Bisain [3] provide the first substantial improvement to
Wilkinson’s upper bound for ρGECP, where (using a modified Hadamard inequality) they provide
a bound of nc logn+0.91 using c ≈ 0.20781, which beats Wilkinson’s original exponential log n coef-
ficient of 0.25. The huge gulf between these lower and upper bounds leaves much on the table for
future improvements.
More recent analysis of matrix algorithm efficiency and accuracy has shifted away from worst-case
analysis to more modern approaches, such as smoothed analysis (cf. [15] and references therein),
which studies behavior under random perturbations. A full smoothed analysis using Gaussian
(additive) perturbations has been successfully implemented in the case of GENP growth factors by
Sankar, Spielman, and Teng [14], but has remained out of reach for both the GEPP and GECP
growth problem. The closest such result for GEPP was the recent average-case analysis work of
Huang and Tikhomirov [8], which established high probability polynomial growth bounds using
input matrices with independent and identically distributed (iid) standard normal entries, but
their proof strategy cannot be upgraded to a smoothed analysis approach (i.e., they only establish
bounds on Gaussian perturbations of the zero matrix). No such (non-empirical) result for GECP has
come close to smoothed analysis nor a full average-case analysis (other than with very particular
structured random matrices in [9]). So worst-case analysis remains relevant for these pivoting
strategies.
Our focus will be on studying the growth behavior of using both GEPP and GECP on the same
linear system, and on how each strategy can inform growth behavior about the other. In particular,
I am interested in local growth behavior around a system with large differences in growth behavior
between both strategies. For instance, I am interested in the question of whether small pertur-
bations on an initial system with a large discrepancy in growth behavior between both strategies
concentrates toward the smaller growth for both strategies? For example, if A has large GEPP
growth and small GECP growth, and if G is an iid Gaussian matrix, I am interested in how often
ρGEPP(A + εG) ≈ ρGECP(A) for sufficiently small ε. To move toward addressing this question, I
will establish bounds on how far apart differences in growth between both strategies can be when
used on the same input matrix.
I will further focus on large growth for particularly structured matrices, including orthogonal ma-
trices. This will include a refinement to the largest possible GEPP growth on orthogonal matrices,
while also establishing a rich set of matrices for further study with large growth difference be-
havior. Growth for structured systems has proven fruitful in recent studies. For instance, growth
using GENP, GEPP and GE with rook pivoting (GERP) for matrices formed using the Kronecker
products of rotation matrices (i.e.,

⊗n SO(2)) is now completely understood [12], with even a full
picture understood using GECP on a further subclass of these Kronecker product matrices [9].
Although GE should not be a first choice for solving orthogonal linear systems (viz., Qx = b has
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the solution x = QTb when Q is orthogonal), there are situations when applying GE to orthogonal
matrices makes sense. For example, Barlow needed to understand the effect of GEPP on orthogonal
matrices to carry out error analysis of bidiagonal reduction [1]; this led to Barlow and Zha’s analysis
in [2] using GEPP on orthogonal matrices, which they showed maximized a different L2-growth
factor. Additionally, while original studies of random growth factors tended to focus on ensembles
with iid entries (cf. [16]), many authors noted and explored the potential that orthogonal matrices
can produce large growth [7, 16]. Hence, orthogonal matrices remain a rich source of study for
potential large growth factors.
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