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Abstract

Jacobi’s method iteratively computes the eigenvalues and eigenvectors of a symmetric matrix.
Remarkably simple to implement, Jacobi’s method is a compelling candidate for use on large-scale
applications. On the other hand, matrix multiplication is fundamental in numerical linear algebra,
often regarded as a building block for other matrix computations.
With these in mind, we establish theoretical bounds on the asymptotic complexity of Jacobi’s
method in both arithmetic and communication, aiming for efficiency comparable to matrix multi-
plication.
We not only analyze the complexity of sequential and parallel Jacobi using classical O(n3) matrix
multiplication, but also introduce recursive Jacobi’s methods that leverage Strassen-like O(nω0)
matrix multiplication to achieve optimal arithmetic and communication lower bounds. We also
offer rigorous proofs of convergence for the recursive algorithms. The main contributions are as
follows:

1. Starting from a dense real symmetric matrix A ∈ Mn(R) (without loss of generality, we
only consider the real case), the Classical Jacobi’s method sequentially rotates all off-
diagonal entries of A in some given ordering. We denote one sweep as rotating through all
off-diagonal entries of A once. Since Classical Jacobi almost always converges, we assume
that the algorithm converges in O(1) sweeps and the corresponding total arithmetic cost is
O(1) ·Θ(n3) = Θ(n3).
For estimating the lower bound on the communication cost, assume for now that we could
only change the ordering of rotations. We denote the size of fast memory by M . Then when
M1/2 < n < M , we can attain a lower bound of Ω(n4/M) reads and writes to slow memory,
asymptotically exceeding the O(n3/

√
M) cost of classical matrix multiplication. To attain

the cost of matrix multiplication requires more changes to the algorithm.

2. Allowing ourselves more freedom than just choosing the ordering of to-be-rotated entries, we
next consider the Block Jacobi’s method, in which we rotate 2b-by-2b blocks instead of one
off-diagonal entry each time. We still assume O(1) sweeps for the algorithm to converge and
choose b to be able to fit three 2b-by-2b sub-matrices into the fast memory, i.e. b = Θ(

√
M).

In this case, the algorithm attains the communication lower bound Ω(n3/
√
M) with O(n3)

matrix multiplication.

3. The highlight of this paper is the Recursive Jacobi’s method we introduce, along with a
series of its variations. To the best of our knowledge, this is the first work which can asymptot-
ically attain the arithmetic and communication costs of Strassen-like matrix multiplication,
including a convergence proof.
We first propose a “vanilla” recursive algorithm, in which we apply a divide-and-conquer
strategy, where the algorithm recursively partitions the input n-by-n matrix into smaller 2b-
by-2b blocks, until the size of the to-be-rotated sub-matrices reach a certain threshold, where
b = nf and 0 < f < 1 is the block parameter. We show that under the assumption that the
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outermost sweep is executed O(1) times, the arithmetic complexity is F (n) = O(n3(1−f)+ω0f ),
which asymptotically approaches O(nω0) as f approaches 1.
Convergence analysis for Jacobi’s methods has been widely discussed, taking into account
various pivoting strategies (such as rotation orderings and the choice between block and cyclic)
as well as processing architectures (sequential or parallel). We refer readers to [7, 8, 10, 14] for
further details. A key ingredient in [7] towards convergence of Classical Jacobi is to restrict
the rotation angles of off-diagonal entries in a proper open subset of (−π

2 ,
π
2 ). An analog of

this for block Jacobi is the uniformly bounded cosine transformations [6]. By reordering the
columns of the orthogonal rotation matrix Q via applying QR decomposition with column
pivoting (QRCP for short) to the first-half leading rows of Q, [6] successfully addressed
convergence proof for the block cyclic Jacobi. We leverage this idea and introduce our first
variant of the recursive Jacobi method with a convergence guarantee, the Recursive Jacobi
with QRCP. This approach achieves convergence at the expense of a slight trade-off between
the optimal arithmetic complexity lower bound and the added cost of QRCP, which has an
O(n3) computational cost.
The key of ensuring convergence in [6, 7] is to bound the cosines of rotation angles away
from zero, which could also be done by applying LU decomposition with partial pivoting
(LUPP for short). Unlike QRCP, LU decomposition can be implemented recursively with
complexity of O(nω0) [2, Section 4.2], and adding partial pivoting to the algorithm won’t
harm the arithmetic complexity. By applying LUPP to the transpose of the first-half leading
columns of Q, we introduce the Recursive Jacobi with LUPP, which enjoys both optimal
O(n3(1−f)+ω0f ) arithmetic complexity and convergence.
In the sequential case, for 2 < ω0 ≤ 3, the recursive Jacobi is shown to analogously get close to
attaining the expected communication lower bound Ω(nω0/Mω0/2−1) [13]. In practical terms,
recursive Jacobi should be considered as a “galactic algorithm” since the size n where the
algorithm shows benefits grows rapidly as f approaches 1.

4. In addition to the sequential cases, we also studied parallel block Jacobi with O(n3) matrix
multiplication, in which the algorithm simultaneously rotates off-diagonal blocks in different
columns and rows [1, 9, 12]. We store the n-by-n matrix A on a

√
P ×

√
P grid of P

processors, with block sizes b = n/
√
P , which we assume to be an integer for simplicity.

Under this scenario, the arithmetic complexity is O(n3/P ), which demonstrates the optimal
linear speedup, and the communication complexity is O(n2/

√
P ) words and O(

√
P logP )

messages, which attains the communication lower bound (except for the logP factor) for
classical matrix multiplication using the minimum amount of memory.

One remark is that the above studies and estimates readily extend to the SVD due to its strong
connection with Jacobi’s method [4, 5]. Furthermore, by not restricting ourselves to Jacobi-like
methods, our recursive algorithm technique can also benefit non-Jacobi methods, for example com-
bined with QDWH (QR-based dynamically weighted Halley algorithm) [11].
Additionally, since all our recursive algorithms follow a divide-and-conquer paradigm utilizing
O(nω0) matrix multiplication, it follows from the analysis in [2, 3] that all the proposed algorithms
are backward stable.
In conclusion:

1. We have demonstrated an asymptotic approach to make the Jacobi’s eigenvalue method and
SVD nearly as fast as matrix multiplication, in terms of both arithmetic and communication
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complexity, across several scenarios. For O(n3) matrix multiplication, we analyzed both
sequential and parallel Jacobi’s methods.
A remaining open question is whether the (better) lower bound and communication complexity
for matrix multiplication using more than the minimum memory is attainable for Jacobi.

2. For O(nω0) matrix multiplication, we introduced a series of recursive Jacobi’s methods, fo-
cusing on minimizing arithmetic cost while also ensuring the convergence of the proposed
algorithms.
Another remaining open question is whether these asymptotically faster recursive Jacobi’s
methods can be parallelized and attain both the arithmetic and communication complexity
lower bounds of matrix multiplication.
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