Randomized orthogonalization in GMRES with deflation and augmentation

Yongseok Jang, Laura Grigori
Abstract

In the context of large-scale linear algebra, random sketching has emerged as a powerful technique
to reduce computational costs and memory requirements. As data dimensions grow, traditional
methods often become impractical. Random sketching provides a way to approximate large matrices
and datasets by projecting them onto lower-dimensional subspaces using randomized linear maps,
which capture essential properties of the original data —such as norms of vectors— but at a fraction
of the size.

In this talk, we present the application of random sketching to Gram-Schmidt process for orthonor-
malizing a set of vectors. One [1] can provide a set of vectors, which are not [y orthogonal but their
low dimensional images through random sketching are orthonormal. Using this method, called
randomized Gram-Schmidt (RGS) algorithm, for QR factorization of a matrix W € R™™ (with
m < n), we obtain W = QR, where @ is not orthonormal, but ©Q becomes orthonormal with a
random sketching matrix © € R**" for t < n. Furthermore, inspired by the reorthogonalization
techniques in classical Gram-Schmidt (CGS) and modified Gram-Schmidt (MGS) (namely CGS2
and MGS2, respectively), we develop the RGS2 algorithm [2]. The RGS2 algorithm combines RGS
with CGS/MGS to result improved numerical stability and [ orthonormal Q.

By employing fast computation techniques for sketching, such as fast Walsh Hadamard transforma-
tion, our RGS algorithms bring significant computational cost reductions. RGS has half the com-
plexity of CGS/MGS, and RGS2 reduces computational costs by 25% compared to CGS2/MGS2.
Furthermore, with the probabilistic rounding model, we analyze rounding errors and show that
RGS exhibits better numerical stability than CGS and comparable stability to MGS. Additionally,
under a numerical non-singularity condition, the loss of orthogonality in RGS2 is independent of
the condition number of W. Thus, the randomized orthogonalization process offers both reduced
computational cost and enhanced numerical stability.

When solving linear systems with GMRES, the quality of Krylov basis vectors is crucial; poor
quality can deteriorate GMRES convergence. To accelerate the convergence of GMRES, a defla-
tion strategy is combined together. However, in GMRES with deflated restarting (GMRES-DR),
where the previous Krylov subspace is reused, loss of orthogonality may accumulate over iterations,
potentially leading to stagnation or divergence. Hence, the orthogonalizing process is particularly
important in GMRES-DR. Here, RGS-based Arnoldi iterations can ensure numerical stability in
generating Krylov basis vectors rather than other GS algorithms. Consequently, the randomized
GMRES and the randomized GMRES-DR exhibit better numerical performance [3].

In this presentation, we introduce the randomized variants of FGMRES-DR, FGCRO-DR, SVD
based deflation, and augmentation, (e.g., please refer to [4, 5, 6, 7] and the references therein for
the GMRES methods with deflation and augmentation). To validate the stability and conver-
gence improvements, we present numerical examples that solve ill-conditioned systems arising from
compressible turbulent CFD simulations.
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