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Abstract

In the context of large-scale linear algebra, random sketching has emerged as a powerful technique
to reduce computational costs and memory requirements. As data dimensions grow, traditional
methods often become impractical. Random sketching provides a way to approximate large matrices
and datasets by projecting them onto lower-dimensional subspaces using randomized linear maps,
which capture essential properties of the original data –such as norms of vectors– but at a fraction
of the size.
In this talk, we present the application of random sketching to Gram-Schmidt process for orthonor-
malizing a set of vectors. One [1] can provide a set of vectors, which are not l2 orthogonal but their
low dimensional images through random sketching are orthonormal. Using this method, called
randomized Gram-Schmidt (RGS) algorithm, for QR factorization of a matrix W ∈ Rn×m (with
m ≤ n), we obtain W = QR, where Q is not orthonormal, but ΘQ becomes orthonormal with a
random sketching matrix Θ ∈ Rt×n for t ≪ n. Furthermore, inspired by the reorthogonalization
techniques in classical Gram-Schmidt (CGS) and modified Gram-Schmidt (MGS) (namely CGS2
and MGS2, respectively), we develop the RGS2 algorithm [2]. The RGS2 algorithm combines RGS
with CGS/MGS to result improved numerical stability and l2 orthonormal Q.
By employing fast computation techniques for sketching, such as fast Walsh Hadamard transforma-
tion, our RGS algorithms bring significant computational cost reductions. RGS has half the com-
plexity of CGS/MGS, and RGS2 reduces computational costs by 25% compared to CGS2/MGS2.
Furthermore, with the probabilistic rounding model, we analyze rounding errors and show that
RGS exhibits better numerical stability than CGS and comparable stability to MGS. Additionally,
under a numerical non-singularity condition, the loss of orthogonality in RGS2 is independent of
the condition number of W . Thus, the randomized orthogonalization process offers both reduced
computational cost and enhanced numerical stability.
When solving linear systems with GMRES, the quality of Krylov basis vectors is crucial; poor
quality can deteriorate GMRES convergence. To accelerate the convergence of GMRES, a defla-
tion strategy is combined together. However, in GMRES with deflated restarting (GMRES-DR),
where the previous Krylov subspace is reused, loss of orthogonality may accumulate over iterations,
potentially leading to stagnation or divergence. Hence, the orthogonalizing process is particularly
important in GMRES-DR. Here, RGS-based Arnoldi iterations can ensure numerical stability in
generating Krylov basis vectors rather than other GS algorithms. Consequently, the randomized
GMRES and the randomized GMRES-DR exhibit better numerical performance [3].
In this presentation, we introduce the randomized variants of FGMRES-DR, FGCRO-DR, SVD
based deflation, and augmentation, (e.g., please refer to [4, 5, 6, 7] and the references therein for
the GMRES methods with deflation and augmentation). To validate the stability and conver-
gence improvements, we present numerical examples that solve ill-conditioned systems arising from
compressible turbulent CFD simulations.
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