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Abstract

Rational approximation is a powerful tool for capturing the behavior of functions which have
singularities on or near a domain of interest. This circumstance makes rational functions ubiquitous
in fields such as signal processing, model reduction, and partial differential equations. In recent
years the adaptive Antoulas-Anderson (AAA) algorithm [2] has established itself as a successful
method for computing rational approximations from a set of sampled data. Our recent work [3]
introduced the p-AAA algorithm, extending the original AAA framework to multivariate functions.
In order to allow for a clear presentation, we first discuss the two variable case, where the goal is
to approximate a function f : C2 → C. In this case, p-AAA is given a set of samples

F = {f(x1, x2) | x1 ∈ X1, x2 ∈ X2} ⊂ C

with the corresponding sampling points

X1 = {X11, . . . , X1N1} ⊂ C and X2 = {X21, . . . , X2N2} ⊂ C,

where Xij denotes the j-th sampling point of the i-th variable. Then the goal is to approximate
this data via a rational function represented as a multivariate barycentric form, i.e.,

r(x1, x2) =
n(x1, x2)

d(x1, x2)
=

n1∑
i1=1

n2∑
i2=1

αi1i2f(ξ1i1 , ξ2i2)

(x1 − ξ1i1)(x2 − ξ2i2)

/
n1∑

i1=1

n2∑
i2=1

αi1i2

(x1 − ξ1i1)(x2 − ξ2i2)
(1)

where αi1i2 ̸= 0. We note that r is interpolatory in the sense that

r(x1, x2) = f(x1, x2) for x1 ∈ ξ1 and x2 ∈ ξ2,

where
ξ1 = {ξ11, . . . , ξ1n1} ⊂ X1 and ξ2 = {ξ21, . . . , ξ2n2} ⊂ X2

are the respective sets of interpolation nodes. Similar to before, ξij denotes the j-th interpolation
node of the i-th variable. The p-AAA algorithm follows an iterative procedure to choose the
interpolation nodes as well as the matrix of barycentric coefficients

α ∈ Cn1×n2 , i.e., α(i1, i2) = αi1i2 .

Each iteration consists of first performing a greedy selection where we determine

(x∗1, x
∗
2) = argmax

(x1,x2)∈X1×X2

|r(x1, x2)− f(x1, x2)| (2)

and update the interpolation sets via

ξ1 ← ξ1 ∪ {x∗1} and ξ ← ξ ∪ {x∗2}.

As a second step, the barycentric coefficients are computed by solving a linear least-squares (LS)
problem of the form

min
∥α∥F=1

∥L2 vec(α)∥22, (3)
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where L2 ∈ CN1N2×n1n2 is the 2D Loewner matrix. The LS problem above arises as the minimization
of the approximation error

N1∑
i1=1

N2∑
i2=1

|f(X1i1 , X2i2)− r(X1i1 , X2i2)|
2 =

N1∑
i1=1

N2∑
i2=1

∣∣∣∣ 1

d(X1i1 , X2i2)
(d(X1i1 , X2i2)f(X1i1 , X2i2)− n(X1i1 , X2i2))

∣∣∣∣2 ,
which is linearized by dropping the 1/d(X1i1 , X2i2) terms. In other words, the linearizd LS problem
minimizes the expression

∥L2 vec(α)∥22 =
N1∑
i1=1

N2∑
i2=1

|(d(X1i1 , X2i2)f(X1i1 , X2i2)− n(X1i1 , X2i2))|
2 .

This procedure is repeated until the approximation error indicated in (2) drops below a desired
error tolerance. Solving the LS problem in (3) is the dominant cost of p-AAA and is done via a
singular value decomposition of L2. More precisely, (3) has a closed form solution which is given
in terms of the right singular vector of L2 which corresponds to the smallest singular value.
While we only outlined the two variable case so far, the algorithm can easily be formulated as an
approximation procedure for functions f : Cd → C that depend on d > 2 variables. The key adjust-
ments that need to be taken into account are that the multivariate approximant r(x1, x2, . . . , xd)
will depend on a tensor

α ∈ Cn1×···×nd (4)

of barycentric coefficients (rather than a matrix) and the p-AAA LS problem will be based on the
higher-order Loewner matrix Ld ∈ CN1···Nd×n1···nd . In this case solving this dense LS problem via
SVD requires O(N1 · · ·Ndn

2
1 · · ·n2

d) operations and thus computing α or even forming Ld may be-
come an infeasible task. We note that this growth in complexity is a common issue in multivariate
approximation algorithms and is typically referred to as the “curse of dimensionality”. While there
exist approaches to overcome these obstacles in multivariate function approximation (e.g., sparse
grids, radial basis schemes), we focus here on a method that leverages a separable representation
of the denominator d of the rational approximant r. As we will point out in the following, such a
representation is directly connected to low-rank representations of higher-order tensors and allows
for partially overcoming the curse of dimensionality associated with the p-AAA LS problem.

In order to introduce our proposed approach, we consider a canonical (CP) [1] decomposition of
the tensor α in (4) which we write in its vectorized form as

vec(α) =
r∑

ℓ=1

β1ℓ ⊗ · · · ⊗ βdℓ ∈ Cn1···nd ,

where βiℓ ∈ Cni for ℓ = 1, . . . , r. The matrices β1 = [β11, . . . , β1r] ∈ Cn1×r, ..., βd = [βd1, . . . , βdr] ∈
Cnd×r are called CP factors and the smallest r for which such a decomposition exists defines
the tensor rank of α. The CP decomposition is particularly useful if it is able to represent (or
approximate) α with a small number of terms r ≪ n1, . . . , nd. In this case the storage requirement
for the CP factors is merely O(r(n1 + · · · + nd)) rather than O(n1 · · ·nd) for the full tensor. We
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propose to take advantage of this reduction in the degrees of freedom in the representation of α
within the p-AAA algorithm.
To make this idea more clear, we revisit the two variable case. There the CP decomposition is
analogous to a rank-r outer product representation given by

α = β1β
⊤
2 , (5)

Plugging this representation for α into the denominator in (1) gives the separable representation

d(x1, x2) =

r∑
ℓ=1

(
n1∑

i1=1

(β1ℓ)i1
x1 − ξ1i1

)(
n2∑

i2=1

(β2ℓ)i2
x2 − ξ2i2

)
,

where (β1ℓ)i1 ∈ C is the i1-th entry of the vector β1ℓ ∈ Cn1 and (β2ℓ)i2 ∈ C is the i2-th entry
of the vector β2ℓ ∈ Cn2 . Our main idea for incorporating such separable representations and the
associated low-rank decomposition for the barycentric coefficients into the p-AAA algorithm is to
add the decomposition introduced in (5) as a constraint to the LS problem in (3). In this case we
obtain the LS problem

min
β1,β2

∥∥∥∥∥L2

r∑
ℓ=1

β1ℓ ⊗ β2ℓ

∥∥∥∥∥
2

2

s.t.
∥∥∥∥∥

r∑
ℓ=1

β1ℓ ⊗ β2ℓ

∥∥∥∥∥
2

= 1. (6)

We introduce the matrices

Kβ1 := [β11 ⊗ In2 , . . . , β1r ⊗ In2 ] ∈ Cn1n2×n2r and Kβ2 = [In1 ⊗ β21, . . . , In1 ⊗ β2r] ∈ Cn1n2×n1r,

as well as the contracted Loewner matrices

Lβ1 := L2Kβ1 ∈ CN1N2×n2r and Lβ2 := L2Kβ2 ∈ CN1N2×n1r,

which allow for writing the constrained LS problem in two distinct ways

min
β1,β2

∥Lβ2 vec(β1)∥
2
2 s.t. ∥Kβ2 vec(β1)∥2 = 1, (7)

min
β1,β2

∥Lβ1 vec(β2)∥
2
2 s.t. ∥Kβ1 vec(β2)∥2 = 1. (8)

We note that if one of the factors β1 or β2 is fixed, the other one can be obtained by solving an
equality constrained LS problem based on the formulation above. In this case, these linear LS prob-
lems have a closed form solution in terms of the generalized SVD [4] of the matrix tuple (Lβ2 ,Kβ2)
or (Lβ1 ,Kβ1), respectively. Hence, the constrained LS problem in (6) has a separable structure
which can be tackled via an alternating least-squares (ALS) procedure. In this procedure, we start
with an initial guess for β1 and β2, then repeatedly solve the problem in (7) while keeping β2 fixed,
and the problem in (8) while keeping β1 fixed. This ALS approach requires O(N1N2r

2(n2
1 + n2

2))
operations which corresponds to the cost of computing the generalized SVDs. While this change in
complexity may only have a small impact in the two variable case, it can be critical when moving
to d > 2 variables where ALS requires O(N1 · · ·Ndr

2(n2
1 + · · · + n2

d)) operations. Additionally, we
note that the contracted Loewner matrices can be assembled efficiently by exploiting the Kronecker
structure present in Ld. These facts make it appealing to combine p-AAA with a separable repre-
sentation for the denominator d.
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We conclude this abstract by considering a simple example where our proposed low-rank version
of the p-AAA algorithm yields a high-fidelity rational approximant, while the standard p-AAA
algorithm runs out of memory on our machine during the construction of the Loewner matrix Ld.
Specifically, we consider approximating the function

f(x1, x2, x3, x4, x5) =
x1 + x2 + x3 + x4 + x5

10 + sin(x1) + sin(x2) + sin(x3) + sin(x4) + sin(x5)

on the domain [−3, 3]5. For each variable we choose the same sampling points corresponding to
20 linearly spaced values in the interval [−3, 3]. We run the proposed low-rank version of p-AAA
and enforce a rank r = 1 constraint on the coefficient tensor α. After 6 iterations the relative
maximum approximation error over the sampled data is approximately 8.514 × 10−3 and p-AAA
chose 6 interpolation nodes for each variable. The standard p-AAA algorithm does not make it
past the third iteration on our machine, due to running out of memory. Note that in this example
the memory requirement for L5 is around 24.4 GB in double precision once 4 interpolation nodes
are chosen for each variable. In order to evaluate the quality of the computed approximation for
unsampled data, we validate r on a set of samples obtained by sampling 50 linearly spaced points
in [−3, 3] for each variable. The maximum relative error on this validation set is approximately
8.704× 10−3, which closely matches the maximum error on the training data set.
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