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Abstract

Consider the matrix-valued function Ã(t) ∈ CN×N analytic over the bounded interval I = [a, b], the
vector v ∈ CN , and let ũ(t) ∈ CN×N be the solution of the non-autonomous ordinary differential
equation

∂

∂t
ũ(t) = Ã(t)ũ(t), ũ(a) = v, t ∈ I = [a, b]. (1)

When Ã(t) commutes with itself at different times, i.e., Ã(t1)Ã(t2) = Ã(t2)Ã(t1), the solution is
given through the matrix exponential as ũ(t) = exp(

∫ t
a Ã(τ)dτ)v, t ∈ [a, b]. However, in the general

case, there is no explicit formula for Ũ(t) in terms of usual matrix functions. In quantum chemistry,
spin dynamics are often modeled by Eq. (1) where the time-dependent matrix takes the form

Ã(t) = A1f1(t) + . . . Akfk(t),

with A1, . . . , Ak (constant) large and sparse matrices, f1(t), . . . , fk(t) scalar analytic functions, and
k a small integer; see, e.g., [11]
In [16,17], we introduced a new spectral approach for this kind of ODEs, that gives the solution in
terms of the coefficients of the expansion ũ(t) =

∑∞
j=0 ujpj(t), t ∈ [−1, 1], with p0(t), p1(t), p2(t), . . .

the orthonormal Legendre polynomials, and uj ∈ CN . For a large enough integer m, it is possible to
approximate the coefficients u0, . . . , um of the truncated expansion ũ(t) ≈

∑m−1
j=0 ujpj(t) by solving

the matrix equation
X − F1XAT

1 − · · · − FkXAT
k = ϕvT , (2)

for a certain vector ϕ, where the m×m matrices F1, . . . , Fk represents the functions f1(t), . . . , fk(t)
in the so-called ⋆-algebra [18]. We named the described strategy ⋆-approach. The matrix equation
(2) enjoys many properties: (i) the matrices F1, . . . , Fk are banded; (ii) in the applications of
interest, the matrices A1, . . . , Ak have a Kronecker structure; (iii) the equation has a rank 1 right-
hand side. We can solve the matrix equation by iterative methods exploiting properties (i) and (ii)
to reduce the cost of matrix-vector multiplication. Moreover, the rank 1 right-hand side suggests
that the solution X might be numerically low-rank. Indeed, this is the case in all the applications
we treated (e.g., [16]). Hence, property (iii) allows for the use of low-rank approximation.
This novel numerical approach has proved highly competitive in the solution of ODEs related to
a specific model, the generalized Rosen-Zener model. In [2], with Christian Bonhomme (Sorbonne
University) and Niel Van Buggenhout (Universidad Carlos III), we introduced a new algorithm,
named ⋆-method, that exploits properties (i)–(iii). Its computational cost scales linearly with the
model size (Fig 2, [2]) and is also highly competitive for increasing interval sizes (Fig 4, [2]). These
first results might open the way to more general efficient methods for spin simulations. However,
the spectral properties and structure of other, more complex, quantum problems can make the
solution of Eq. (2) challenging. For instance, we are working on the solution of an ODE system
that considers dipolar interactions in a Nuclear Magnetic Resonance application [12]. In this case,
the strategies used in [2] are not efficient enough. This is why we are currently testing randomized
approaches (joint work with Lorenzo Lazzarino, University of Oxford) and tensor methods, with
promising results.
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A closer look into the ⋆-approach

The difficulties emerging in the numerical solution of Eq. (1) are linked with the lack of a general
analytic expression of ũ(t). Analytic approaches are typically based on Floquet formalism [10,19],
Magnus series [1, 13], or hybrids of these with ad-hoc approximate/numerical methods [3, 14, 20].
These analytic approaches rarely provide exact solutions in a finite number of steps, might suffer
from convergence issues [1], and be intractable [4]. There is a perception in the physics community
that no exact solutions are achievable [7]. This also influences the development of numerical solvers
since the most advanced numerical methods are typically built on analytical approaches [1, 9, 10].
As noted by M. Grifoni and P. Hänggi in [8]: “Solving the time-dependent Schrödinger equation
necessitates the development of novel analytic and computational schemes [...] in a nonperturbative
manner” – a remark still relevant today. The ⋆-approach follows this suggestion as it is based on a
new nonperturbative expression for ũ(t), obtained through the so-called ⋆-product.
Let us define the set A(I) of the bivariate distributions for which there exists a finite k so that

f(t, s) = f̃−1(t, s)Θ(t− s) + f̃0(t, s)δ(t− s) + · · ·+ f̃k(t, s)δ
(k)(t− s),

where Θ(t − s) is the Heaviside function (Θ(t − s) = 1 for t ≥ s, and 0 otherwise), and δ(t −
s), δ′(t− s), δ(2)(t− s), . . . are the Dirac delta and its derivatives. The ⋆-product of f, g ∈ A(I) is
the non-commutative product defined as

(f ⋆ g)(t, s) :=

∫
I
f(t, τ)g(τ, s) dτ ∈ A(I);

see [18]. The ⋆-product straightforwardly extends to a scalar-matrix ⋆-product and to a matrix-
matrix (matrix-vector) ⋆-product for matrices with compatible sizes composed of elements from
A(I). We denote with AN×M (I) the space of the N ×M matrices with elements from A(I). Note
that I⋆ = Iδ(t − s) is the identity matrix in AN×N (I). As shown in [5], the solution ũ(t) of the
Eq. (1) can then be expressed as

ũ(t) = u(t, a), u(t, s) = Θ(t− s) ⋆ x(t, s), (3)(
I⋆ − Ã(t)Θ(t− s)

)
⋆ x(t, s) = ṽδ(t− s), t ∈ [a, b], (4)

with x(t, s) ∈ AN (I). Therefore, solving a system of non-autonomous linear ODEs is equivalent
to solving a linear system in the ⋆-algebra. Note that, for m = ∞, the matrix equation (2) is the
matrix algebra counterpart of the ⋆-linear system (4); see [15,16,17]. As a consequence, numerical
methods for the solution of Eq. (2) can be interpreted as algorithms in the ⋆-algebra. Vice versa,
it is possible to devise new techniques (such as preconditioners) and numerical methods (e.g., the
⋆-Lanczos algorithm [6]) in the ⋆-algebra and then map them in the usual algebra of matrices [15]
where they can be implemented.
In conclusion, the ⋆-approach has proved extremely fast in certain quantum applications [2]. Its
success is based, on the one hand, on advanced linear algebra techniques and, on the other, on
applying ⋆-algebra results in numerical linear algebra.
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