
A MATLAB Toolbox for Toeplitz-Like Matrix Computations

Robert Luce

Abstract

A Toeplitz matrix T ∈ Cn,n is defined by 2n− 1 parameters t−n+1, . . . , tn−1 ∈ C by

T =
[
t|i−j|

]
i,j

=


t0 t1 . . . tn−1

t−1 t0
.

... t1
t−n+1 . . . t−1 t0

 .

Such matrices arise in many applications from signal processing to finance, and the design and
analysis of algorithms for computations with Toeplitz matrices that take advantage of the matrix
structure is an ever-continuing quest. In this work we present a MATLAB toolbox for convenient
and efficient computations with Toeplitz matrices and ”Toeplitz-like“ matrices, which we will define
in the following, based on displacement structure. This more general class of structured matrices
enables fast algorithms not only for Toeplitz matrices themselves, but all matrices that satisfy a
certain low-rank property, which includes products, polynomials and rational functions of Toeplitz
matrices.
We will now discuss the crucial low-rank property that enables fast algorithms in more detail. In
the following we need notation for the two unit circulant matrices

Z±1 := [e2, e3, . . . , en,±e1] =


±1

1
. . .

1

 ,

and for a vector x ∈ Cn we denote Z±1(x) :=
∑n

k=1 xiZ
k−1
±1 .

For a matrix A ∈ Cn,n the displacement of A is defined as

∇(A) := ∇Z1,Z−1(A) := Z1A−AZ−1 ∈ Cn,n.

The displacement rank of A is the rank of ∇(A), and when we have a decomposition

∇(A) = GB∗, G,B ∈ Cn,d,

we call the pair (G,B) a generator of A. It is easily seen that the displacement rank of a Toeplitz
matrix cannot exceed 2, and whenever rank(∇(A)) ≪ n we will say that A is Toeplitz-like. The
overall mechanics of displacement structure are much more general than what we need for our
purpose here; we refer to the classic volume of Kailath et. al. [4] for a broader presentation.
The property of ∇(A) having low rank has several important algorithmic consequences for compu-
tations involving Toeplitz-like matrices, which we take advantage of in our toolbox. For example,
from a generator (G,B) of A, having columns g1, . . . , gd and b1, . . . , bd, respectively, one obtains
the representation (e.g., [6])

A =
d∑

k=1

Z1(gk)Z−1(Jbk), (J is the anti-identity),

1

enabling fast multiplication with A via the FFT without ever forming A explicitly.
Another important property is that Schur complements of displacement structured matrices inherit
the displacement rank [4]. A compact and constructive way to state this property is as follows.

Theorem. Let M =
[
M11 M12
M21 M22

]
∈ C2n×2n with each block being an n×n matrix. If M satisfies the

displacement equation

(Z1 ⊕ Z1)M −M(Z−1 ⊕ Z−1) =

[
G1

G2

] [
B∗

1 B∗
2

]
=: GMB∗

M ,

where GM , BM ∈ C2n×d are conformally partitioned with M , then the Schur complement S :=
M22 −M21M

−1
11 M12 of M11 in M satisfies the displacement equation ∇(S) = GSB

∗
S with

GS = G2 −M21M
−1
11 G1, BS = B2 −M∗

12M
−∗
11 B1.

In particular S has displacement rank at most d.

The preceding theorem actually applies to other displacement operators, and forms the basis of
the famous GKO algorithm [3], which allows solving linear systems with A via an implicit LU
factorization in O(dn2) (after transformation to a Cauchy-like matrix). A more immediate conse-
quence though is that one can derive generator formulas for the result of algebraic operations with
Toeplitz-like matrices directly from their generators. The case of a product of two Toeplitz-like
matrices is an instructive example.

Example. Let A1, A2 ∈ Cn×n two Toeplitz-like matrices of displacement ranks d1, d2 and with
generators (G1, B1) and (G2, B2), respectively. Then a generator for the product A1A2 can be
obtained by using the preceding theorem on the embedding

M =

[
−In A2

A1 0

]
which is seen to have displacement rank at most d1 + d2 + 1, and a possible generator for M is

G =

[
e1 G2 0
0 0 G1

]
, B =

[
−2en 0 B1

0 B2 0

]
.

Hence the preceding theorem asserts that S = A1A2 has displacement rank at most d1 + d2 + 1 and
a generator for A1A2 is

GS =
[
A1e1 A1G2 G1

]
, BS =

[
−2A∗

2en B2 A∗
2B1

]
.

The preceding example is typical in the sense that the generator formulas provide a recipe for
implementing matrix operations solely on the basis of the generators of the operands and resultant.
Further important examples are integer powers, polynomials and rational functions.
Our toolbox TLComp implements algorithms for arithmetic and other computations with Toeplitz-
like matrices, typically based either on the FFT or by delegation to unstructured, dense computa-
tions on their generators. Toeplitz and Toeplitz-like matrices are never stored as full matrices, but
instead a generator representation is maintained throughout. Table 1 lists a few examples of the
supported operations and their computational complexity.

2

operation O-complexity dominant operation
A1 +A2 n(d1 + d2)

2 generator (re-)compression
A1b d1n log n FFT
A1A2 d1d2n log n FFT

full(A1) d1n
2 None

mpower(T, s) sn log n FFT
polyvalm(p, T) sn log n FFT
polyvalm(p,A1) d1sn log n FFT

T\b n2 GKO
A1\b d1n

2 GKO

Table 1: Selected operations in TLComp. Here T is a Toeplitz matrix, A1 and A2 are Toeplitz-like
matrices of displacement rank d1 and d2, respectively, b ∈ Cn and p is a polynomial of degree s.

In order to maintain the generator representation throughout, an underlying generator (G,B), say,
comprising d columns, will be compressed to the numerical rank of the displacement, or sharp rank
bounds (if available). In our toolbox this is achieved by thin QR factorizations of both G and B,
followed by an SVD of a smaller d-by-d matrix to determine the rank. The overall complexity of
this recompression procedure is only in O(d2n) and is typically dominated by other computational
costs.
Our workhorse for solving linear systems of equations with Toeplitz-like matrices is the GKO algo-
rithm [3] as implemented in the excellent MATLAB toolbox “drsolve” by Aricò and Rodriguez [1].
It may be interesting to add an option for using super-fast solvers in applicable cases (e.g., [5]),
but in our experience the GKO approach is highly competitive in practice up to very large matrix
dimensions despite having a worse complexity.
In order to give an idea on how TLComp can be used, we will show a few simple command prompts
that involve our toolbox. Toeplitz matrices are represented by a ToepMat class. When possible,
arithmetic with Toeplitz matrices yield Toeplitz matrices again:

% Generate data for two random Toeplitz matrices
[c1, r1] = random_toeplitz(1000, 1000);
[c2, r2] = random_toeplitz(1000, 1000);

% We provide a class |ToepMat|
TM1 = ToepMat(c1, r1);
TM2 = ToepMat(c2, r2);

% Addition, scalar multiplication yield a ToepMat object
disp(TM1 + TM2)
disp(TM1 - TM2)
disp(2i*pi * TM1)

1000x1000 ToepMat
1000x1000 ToepMat
1000x1000 ToepMat

If the result of an operation cannot be represented as a Toeplitz matrix, it will be type-promoted
to a Toeplitz-like matrix, represented by the TLMat class:

3

disp(TM1 * TM2)
disp(TM1 \ TM2)

1000x1000 TLMat, displacement rank 4
1000x1000 TLMat, displacement rank 3

Evaluate Taylor polynomial of degree six for the exponential function:

p = 1./factorial(6:-1:0);
E = polyvalm(p, TM1); % No "full" arithmetic here!
disp(E); % Result is a TLMat

1000x1000 TLMat, displacement rank 12

EE = polyvalm(p, full(TM1)); % Compare with result from "full" computation
disp(norm(E - EE, 'fro') / norm(EE, 'fro'));

6.8215e-15

A preliminary version of this toolbox with some fewer features has been used to facilitate the
numerical experiments in [2]. This preliminary version is already available on GitHub at

https://github.com/rluce/tlcomp

and we hope that it will aid our community and beyond to embrace structured matrix computations
in research and applications.

References

[1] A. Aricò and G. Rodriguez, A fast solver for linear systems with displacement structure,
Numer. Algorithms, 55 (2010), pp. 529–556.

[2] B. Beckermann, J. Bisch, and R. Luce, On the rational approximation of Markov functions,
with applications to the computation of Markov functions of Toeplitz matrices, Numer. Algor.,
91 (2022), pp. 109–-144.

[3] I. Gohberg, T. Kailath, and V. Olshevsky, Fast Gaussian elimination with partial piv-
oting for matrices with displacement structure, Math. Comp., 64 (1995), pp. 1557–1576.

[4] T. Kailath and A. H. Sayed, eds., Fast reliable algorithms for matrices with structure,
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1999.

[5] S. Massei, L. Robol, and D. Kressner, hm-toolbox: MATLAB Software for HODLR and
HSS Matrices, SIAM Journal on Sci. Comp., 42(2) (2020), pp. C43–C68.

[6] V. Y. Pan, Structured matrices and polynomials, Birkhäuser Boston, Inc., Boston, MA;
Springer-Verlag, New York, 2001.

4

