
Parallel Incomplete Factorization Preconditioners

Erik G Boman1, Marc A. Tunnell2

Abstract

Incomplete factorizations are popular preconditioners and are well known to be effective for a wide
range of problems. Additionally, these preconditioners can be used as a “black box” and do not rely
on any a priori knowledge of the problem. However, traditional algorithms for computing these
incomplete factorizations are based on Gaussian elimination and do not parallelize well. Recently,
a more parallel incomplete factorization algorithm was proposed by Chow and Patel [4], where
the factors are computed iteratively. Here we propose a new iterative approach that is based on
alternating triangular solves of L and U . We develop two versions: ATS-ILU for a static sparsity
pattern, and ATS-ILUT for a dynamic pattern (using thresholding). We show that this new method
is similar to the fine-grained iterative ILU method by Chow but has the added advantage that it
allows greater reuse of memory and is fully deterministic in parallel, meaning the results do not
depend on scheduling. We evaluate the new method on several test matrices from the SuiteSparse
collection and show that it is competitive with current ILU methods. When short setup time is
important, it is typically better than other methods.

1 Introduction

Preconditioning is well known to be essential for improving the speed of convergence of Krylov
methods such as Conjugate Gradient (CG) and Generalized Minimal Residual (GMRES) [8]. In-
complete Lower-Upper (ILU) factorizations are a popular class of preconditioners as they can be
used as a “black box” on a wide range of problems. There are two main types of ILU factorizations,
level-based ILU(k) [3, 6, 7] and threshold-based ILUT [9]. However, these methods are inherently
sequential and do not parallelize well.
There has been interest in the parallelization of these more classical interpretations of ILU, largely
through graph partitioning schemes. These graph partition-based methods, such as [5], offer a
promising approach to parallelizing classical ILU methods. By decomposing the graph correspond-
ing to the matrix and determining variables that can be eliminated in parallel, these methods aim to
distribute the computational load more evenly across processors. While these strategies have shown
effectiveness for certain types of problems [3], their implementation can be highly complex. Ad-
ditionally, their performance can be problem-dependent, requiring consideration of the underlying
graph structure when choosing a parallelization strategy.
More recently, there have been strides into methods of computing ILU factors iteratively, poten-
tially giving up some of the robustness of the classical methods for better parallel properties [4].
Iterative ILU methods, such as those introduced by Chow [4], offer significant advantages in terms
of scalability on modern parallel architectures. For the remainder of this paper, we refer to the
method introduced by Chow as ParILU and its thresholded counterpart as ParILUT [1, 4]. These
methods approximate the ILU factors through a series of iterative updates, which can be more
easily distributed across multiple processors or offloaded to accelerators.

1Sandia National Labs, egboman@sandia.gov
2Purdue University, mtunnell@purdue.edu

1



By breaking down each iterative update into smaller approximate subproblems and solving them
independently, different parts of the factorization can be computed in parallel without the need for
complex graph-partitioning algorithms. This approach allows for the use of iterative ILU methods
on a wide range of problems, including those with complex or irregular graph structures that may
preclude high levels of parallelism in the graph-partitioned classical ILU methods.
Furthermore, iterative ILU methods are adaptable to various hardware accelerators such as graphics
processing units (GPUs) [2], which are increasingly important for high-performance computing.
By leveraging the parallel processing capability of these accelerators, iterative ILU methods can
significantly reduce the real-world time required to compute the ILU factors for large-scale problems,
thereby speeding up the overall solution process.
In this paper, we propose a new class of iteratively-computed ILU preconditioners, which we call
Alternating triangular Solves ILU (ATS-ILU). This method builds upon the strengths of existing
iterative ILU approaches while leveraging improved memory reuse and determinism in parallel. We
provide an analysis of the method and evaluate its performance compared to the state of the art
on a variety of test matrices. We show that our method is competitive with current ILU methods
and has the potential to be a powerful tool for solving large-scale problems on modern parallel
architectures.

2 Alternating Triangular Solves Method

In this section, we introduce our new method for computing ILU factors, ATS-ILU. This method
is based on the idea of alternating iterative updates to the L and U factors of the matrix A. The
basic idea is the same as before, where we iteratively update the factors L and U until convergence,
but where the updates are performed in an alternating manner. This general process is a common
method for solving bilinear systems and is outlined in 1.

Algorithm 1 Alternating ILU
U (0) ← triu(A)
k ← 0
while not converged do

Solve L(k)U (k) ≈ A for L(k)

Solve L(k)U (k+1) ≈ A for U (k+1)

Check convergence
k ← k + 1

end while

One way to perform this procedure would be to perform a triangular solve with the entirety of
U (k) and let A be the right-hand side vector to solve for L(k+1), and similar to solve for U (k+1).
This entire process can largely be performed in parallel as each row of L and column of U can
be solved independently. Despite the potential for high levels of parallelism, it is still extremely
computationally expensive and likely suffers from significant levels of fill-in during intermediate
steps. The computational cost could be reduced by using an approximation.
Additionally, the algorithm as stated above does not guarantee that L and U remain lower and
upper triangular, respectively. One method to address this issue would be to solve for L only in
the lower triangular part of A and for U only in the upper triangular part of A. This would ensure
that the factors remain lower and upper triangular, respectively, but would still leave the problem

2



of significant levels of fill-in. Instead, we suggest a more practical approach where we impose a
sparsity pattern on L and U , namely L and U , respectively. This sparsity pattern can be chosen
to be the same as the sparsity pattern of A, which is the choice we make in this paper.
In order to get around the issue of fill-in, we propose a method where we approximately solve for
L and U along their given sparsity patterns, which we discuss next.

2.1 Alternating Triangular Solves ILU Algorithm

The ATS-ILU algorithm is based on the idea of approximately solving for L and U in an alternating
fashion along only their given sparsity patterns. Again, the rows of L and the columns of U can
be solved independently, allowing for a high level of parallelism. The algorithm is shown in 2. We
present the algorithm for a general pattern S but in practice, this will correspond to the pattern
of Ak for some small power k.

Algorithm 2 ATS-ILU
1: Input: Sparse matrix A, sparsity pattern S, starting factors L and U
2: while not converged do
3: for i ∈ {1 2 . . . n} do
4: idx← {j ∈ N | (i, j) ∈ S, j ≤ i}
5: ℓi,idx ← ai,idx (Uidx,idx)

−1

6: end for
7: for j ∈ {1 2 . . . n} do
8: idx← {i ∈ N | (i, j) ∈ S, i ≥ j}
9: uidx,j ← (Lidx,idx)

−1 aidx,j
10: end for
11: end while

In this algorithm, we solve for each row of L and each column of U independently. Recall that the
notation ai,idx refers to the ith row of A restricted to the indices in idx, and similarly for Uidx,idx
and Lidx,idx. These submatrices can be viewed as the (dense) non-contiguous submatrices of L and
U that correspond to the sparsity pattern S along the given row or column.
Our method can be extended to do thresholding to maintain a certain fill level. We call this
extension ATS-ILUT, and defer the details to the full paper.

3 Results

We implemented the ATS-ILUT algorithm in C++ with Kokkos for parallel performance portability.
We show some preliminary results in Table 3.

4 Conclusions

We have developed a new parallel iterative ILU algorithm ATS-ILU and a thresholded version ATS-
ILUT. Experiments show it performs similarly to the ParILU(T) method, but it often provides a
better quality preconditioner after just one or two steps (updates) of the setup. This is an advantage

3



Table 1: Comparison of ATS-ILU Variants with PAR-ILUT across Different Matrices, Fill Levels,
and Iterations. The best at each iteration is bolded.

Matrices: abnormal_sandia af_shell3 G3_circuit parabolic_fem

Method Fill
Iterations

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ATS-ILUT
(a)

1.0 54 44 42 42 42 905 723 594 605 568 1169 1140 1148 1133 1131 1183 1089 1090 1083 1071

2.0 51 33 25 24 23 872 564 395 334 299 860 639 467 426 396 765 561 464 492 444

3.0 51 31 22 18 17 872 559 378 308 258 860 638 448 373 318 765 551 422 434 381

ATS-ILUT
(b)

1.0 50 45 45 46 45 797 657 638 625 631 1153 1186 1189 1187 1183 1261 1192 1224 1220 1201

2.0 42 29 27 27 27 651 402 319 289 274 690 520 408 424 414 729 719 505 547 446

3.0 42 24 20 20 20 651 397 290 226 204 690 520 357 326 305 729 715 681 525 378

ParILUT
1.0 54 45 45 45 45 822 597 581 616 592 1188 1170 1180 1215 1217 1232 1168 1190 1201 1197

2.0 49 32 26 25 25 752 415 311 279 268 758 531 390 365 360 864 482 379 353 354

3.0 49 30 21 18 17 752 415 293 234 204 758 531 379 295 269 864 479 320 219 191

if setup time is important, e.g., when solving a sequence of linear systems. Also, it is naturally
deterministic (though an asynchronous version is also possible).

Acknowledgments

Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell
International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration
under contract DE-NA-0003525.

References
[1] Hartwig Anzt, Edmond Chow, and Jack Dongarra. Parilut—a new parallel threshold ILU factorization.

SIAM Journal on Scientific Computing, 40(4):C503–C519, 2018.
[2] Hartwig Anzt, Tobias Ribizel, Goran Flegar, Edmond Chow, and Jack Dongarra. Parilut - a parallel

threshold ILU for GPUs. In 2019 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). IEEE, May 2019.

[3] Michele Benzi. Preconditioning techniques for large linear systems: A survey. Journal of Computational
Physics, 182(2):418–477, November 2002.

[4] Edmond Chow and Aftab Patel. ”A fine-grained parallel ILU factorization”. SIAM Journal on Scientific
Computing, 37(2):C169–C197, 2015.

[5] David Hysom and Alex Pothen. Efficient parallel computation of ILU(k) preconditioners. In Proceedings
of the 1999 ACM/IEEE conference on Supercomputing, SC ’99. ACM, January 1999.

[6] Na Li, Yousef Saad, and Edmond Chow. Crout versions of ilu for general sparse matrices. SIAM Journal
on Scientific Computing, 25(2):716–728, January 2003.

[7] Y Saad. Iterative methods for sparse linear systems. SIAM, Philadelphia, MS, 2 edition, 2003.
[8] Youcef Saad and Martin H. Schultz. GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems. SIAM Journal on Scientific and Statistical Computing, 7(3):856–869,
July 1986.

[9] Yousef Saad. ILUT: A dual threshold incomplete lu factorization. Numerical Linear Algebra with
Applications, 1(4):387–402, July 1994.

4


