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Abstract

The column subset selection problem (CSSP) appears in a remarkably wide range of applications.
For example, point selection problems that arise in model order reduction [5], computational chem-
istry [7], spectral clustering [8], low-rank approximation [6, 13], and Gaussian process regression [15]
can all be treated as instances of CSSP. Given a matrix A ∈ Rm×n and a target rank k ≤ min{m, n},
CSSP seeks to find a set of k columns from A that are “highly linearly independent.” A more formal
statement, using the framework of rank-revealing QR factorizations [4, 11, 12], is that algorithms
for CSSP produce an index set S ∈ [n]k satisfying

σmin(A(:, S)) ≥
maxJ∈[n]k σmin(A(:, J))

q(n, k)
(1)

for some low-degree bivariate polynomial q. The Golub-Businger algorithm [3], which uses al-
ternating column pivots and Householder reflections to compute a column-pivoted QR (CPQR)
factorization AΠ = QR, is widely used for this problem. After running this algorithm, choosing
A(:, S) = AΠ(:, 1 : k) results in an S which does not provably satisfy (1), but which nearly always
brings σmin(A(:, S)) reasonably close to its maximum.
We seek to address a computational bottleneck in the Golub-Businger algorithm that results from
sequential application of Householder reflections with level-2 BLAS. Most existing solutions to this
problem involve reducing the number of rows manipulated with BLAS-2. For example, the CPQR
factorization routine in LAPACK reflects only as many rows as are needed to determine a small
block of pivot columns, deferring the full Householder reflection to a later application with BLAS-3
[16]. There also exists a large class of randomized algorithms that apply standard CPQR routines
to sketched matrices with far fewer rows [6, 10, 14, 17]. We, however, are interested in problems
where the difficulty arises not from the number of rows, but from the number of columns. For
example, spectral clustering generates instances of CSSP where each row represents a cluster and
each column represents a data point [8], meaning m may be several orders of magnitude smaller
than n. In these applications, reducing the number of rows being manipulated with BLAS-2 does
not address the main bottleneck.
We will demonstrate a new CPQR-based column selection algorithm that effectively mitigates the
BLAS-2 bottleneck for matrices with far more columns than rows. Our algorithm divides columns
into a “tracked” set, where residual column norms are recorded, and an “untracked” set, where
only overall norms are recorded. Pivot columns are selected in blocks, and each block is selected
using a three-step strategy:

1. A “collect” step assembles a small number of candidate columns from the tracked set, and
forms a conventional CPQR factorization of the candidates.

2. A “commit” step uses the CPQR factors to identify a set of provably “safe” pivots from among
the candidates, and updates only the tracked columns according to the new pivots.

3. An “expand” step moves a small number of columns from “untracked” to “tracked,” setting
up for a new round of candidates to be chosen in the next block.

We call this algorithm CCEQR (“Collect-Commit-Expand QR”).
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n GEQP3 Runtime (s) CCEQR Runtime (s)
102 1.9× 10−5 8.1× 10−5

103 2.7× 10−4 3.7× 10−4

104 1.8× 10−3 7.5× 10−4

105 1.8× 10−2 3.7× 10−3

106 4.0× 10−1 4.5× 10−2

Figure 1: Average runtimes of GEQP3 and CCEQR (over 20 trials) on matrices of size 20× n, for
increasing n. Test matrices were generated from a spectral clustering problem, and correspond to
Laplacian embeddings of n data points drawn from a 20-component Gaussian mixture model.

CCEQR is fully deterministic, and unlike CPQR-based column selection algorithms which dis-
tribute the column load across several parallel processors [1, 2, 9], it provably selects the same
basis columns as the Golub-Businger algorithm (assuming no ties between residual column norms).
Using test problems from domains such as computational chemistry, model order reduction, and
spectral clustering, we will demonstrate that CCEQR can run several times faster than the stan-
dard LAPACK routine (GEQP3) for matrices with an unbalanced column norm distribution. For
example, Figure 1 shows that CCEQR can run as much as 10 times faster than GEQP3 for certain
spectral clustering problems. We will also show that CCEQR and GEQP3 have essentially the
same runtime for large unstructured problems, such as Gaussian random test matrices.
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