
Adaptive data-driven reduced-order models of port-Hamiltonian dynamical
systems for nonlinear inverse scattering applications

Mikhail Zaslavskiy, Vladimir Druskin, Shari Moskow

Abstract

1 Problem formulation

The inverse scattering problem formulated for the Schrödinger operators arises in various fields,
including quantum mechanics, radars, viscoelasticity, Biot problems, remote sensing, geophysical,
and medical imaging. The goal of imaging is to find medium properties in the domain using near-
field measured data. The model based nonlinear optimization which is the method of choice for the
solution of the inverse problems can be unreliable and particularly expensive for such problems.
Data driven nonlinear transforms can be an opening, however it was recently shown that the
ReLU networks are intractable for reliable solution of the inverse problems in continuum using
conventional digital computers. In the present work, following the success of data-driven reduced-
order models (ROMs) developed in recent years, we propose a robust direct method for solving
inverse scattering problems for the Schrödinger equation. Our approach is based on a Lippmann-
Schwinger algorithm with a crucial component composed of adaptive data-driven ROMs in the
frequency domain and efficient learning the internal solutions. Below we discuss the details of the
algorithms as well as some bottlenecks.
We consider first-order formulation of frequency-domain wave problem in lossy medium

∇ · v + 1

2
∇(ln(σ)) · v + ru+ iωu = f (1)

∇u− 1

2
∇(ln(σ)))u+ iωv = 0 (2)

in a bounded domain Ω for m sources f ∈ R∞×m. Here u, v ∈ C∞×m with columns being solutions
for the corresponding sources. We assume that the measured data is given by fTu where columns
of f and u are multiplied with respect to L2 nner product (g;h)L2 =

∫
Ω ghdV . After spatial dis-

cretization we obtain MIMO port-Hamiltonian LTI dynamical system [2] in the frequency-domain

(A+ P )w + iωw = F (3)

with skew-symmetric matrix A = −AT ∈ RN×N , symmetric matrix P = P T ∈ RN×N , F ∈ RN×m.
The measured data is given by D(ω) = F Tw. We note that the obtained system (3) is symmetric
with respect to indefinite (pseudo-)inner product (x; y)J = xHJx where H denotes Hermitian
conjugate and

J =

(
I 0
0 −I

)
(4)

In the inverse scattering problem in lossy medium the goal is to recover unknown damping term r
and reflectivity ln(σ) under known data D(ω)). In the LTI system (3) the discrete counterparts of
both unknowns compose matrix P .
Lippmann-Schwinger approach has been proven to be a powerful tool for solving inverse scattering
problem [3]. It can be formulated in terms of integral equation involving solution (u; v) for unknown
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medium as well as solution (u0; v0) for background with some a priori known parameters (say,
r = ln(σ) = 0):

∇ · v0 + iωu0 = f (5)
∇u0 + iωv0 = 0. (6)

After spatial discretization we obtain

Aw0 + iωw0 = F (7)

with background data given by D0(ω) = F Tw0. The discrete counterpart of Lippmann-Schwinger
equation can be formulated then as

(w0)H(ω)JPw(ω) = D0(ω)−D(ω). (8)

This is a system of nonlinear equations with respect to unknown parameter matrix P because w(ω)
itself depends on P . Tradional way to linearize this problem is so-called Born approximation, i.e.
w(ω) ≈ w0(ω), however it is known to work for small P only. Below we will show how to exploit
the measured data D(ω) to construct a better approximant of w(ω) for further linearizarion of
Lippmann-Schwinger equation (8).

2 Adaptive data-driven ROMs

Consider Galerkin projection of (3) onto the rational Krylov subspace spanned on columns of
V = {w1 = w(ω1), . . . , wn = w(ωn)} with respect to (; )J inner product. Here w(ωi), i = 1, . . . , n
are solutions of (3) for ω = ω1, . . . , ωn, respectively. The projected system (3) has a form

SW + iωMW = B (9)

where w ≈ VW, S is Hermitian indefinite stiffness matrix with block elements

Spq = wH
q J(A+ P )wp ∈ Cm×m, q, p = 1, . . . , n (10)

, M is Hermitian indefinite mass matrix with block elements

Mpq = wH
q Jwp ∈ Cm×m, q, p = 1, . . . , n (11)

and blocks of B are given by

Bq = wH
q F = D̄q = D̄(ωq) ∈ Cm×m q = 1, . . . , n. (12)

The measured data in Galerkin formulation is given by

F = BHW (13)

We note that although internal solutions wp, p = 1, . . . n are not accessible because P in (3) is
unknown, blocks of mass and stiffness matrices can still be obtained directly from the data via
Loewner framework:

wH
q Jwp =

Dp − D̄q

iωq + iωp
(14)
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and
wH
q J(A+ P )wp =

ωqD̄q +Dpωp

ωq + ωp
(15)

(with derivatives of the data D and ωD for mass and stiffness matrices when ωp = −ωq, respec-
tively).
To improve the efficiency of the constructed ROM we employ greedy algorithms for adaptive choice
of interpolation frequencies ω1, . . . , ωn which is similar to AAA algorithm [4]:

Algorithm 1 1. For the given frequency range of interest ω ∈ [ωmin, ωmax] set ω1 =
√
ωminωmax,

n = 1

2. Compute matrix pencil (S;M) via Loewner approach (14) and (15) for interpolation points
ω1, . . . , ωn

3. Compute ROM data F for ω ∈ [ωmin, ωmax] via (9) and (13)

4. Evaluate error F −D and set ωn+1 = argmax(∥F −D∥) If there are several frequencies for
which the maximum is attained, it suffices to select any one of the corresponding frequencies.

5. Set n = n+ 1.

6. Repeat steps 2–5 until convergence to the desired accuracy.

We note that the obtained ROM is not structure-preserving, i.e. it may not inherit passivity and
even stability of the original full-scale system (3).

3 Lippmann-Schwinger-Lanczos approach

In this section we show how to exploit the constructed data-driven ROMs to construct an approxi-
mant of internal solution w in (8). Similar to the unknown medium, we can construct background
matrix pencil (S0;M0) for the selected set of frequencies ω1, . . . , ωn. Note that it can be performed
in model-driven way because all the internal solutions for known background P = 0 are accessible.
Background counterpart of ROM (9) has a form

S0W0 + iωM0W0 = B0 (16)

where w0 ≈ V 0W0 and V 0 = {w0
1 = w0(ω1), . . . , w

0
n = w0(ωn)}. Let’s perform Lanczos orthog-

onalization for matrix (M)−1S with respect to indefinite inner product (; )M and starting vector
(M)−1B/∥(M)−1B∥M and do the same for background part (M0)−1S0 with respect to (; )M0 and
starting vector (M0)−1B0/∥(M0)−1B0∥:

(M)−1SQ = QT, QHMQ = I (17)
(M0)−1S0Q0 = Q0T 0, (Q0)hM0Q0 = I. (18)

As has been noted in [1], although V is totally different from V0, we have V Q ≈ V0Q0. It has been
explained in that paper for lossless case via drawing an analogy with causal time-domain solutions,
however similar reasoning is applicable for lossy scenario and ROM we developed. Therefore, we
can construct an approximant of internal solution as

w ≈ V (S + iωM)−1B = V Q(T + iωI)−1E1|(M)−1B∥M ≈ V 0Q0(T + iωI)−1E1|(M)−1B∥M = w
(19)
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Once plugged in into the Lippmann-Schwinger equation (8), we obtain a linear equation with
respect to P :

(w0)H(ω)JPw(ω) = D0(ω)−D(ω). (20)

We call this algorithm Lippmann–Schwinger–Lanczos to emphasize the crucial component of con-
structing internal solution that is based Lanczos orthogonalization. There are multiple parts of our
approach that need to be addressed to improve its performance:

• Efficient handling of overfitting that results in rank-deficient matrix M and may breakdown
Lanczos algorithm

• Fast and robust solution of (20) that is typically underdetermined

• Data completion approach to handle missing data in square MIMO transfer function D(ω)

• Construction of passive ROMs

• Convergence estimates
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