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Abstract

We present a novel multi-stage tensor reduction (MSTR) framework for tensorial data arising from
experimental measurements or high-fidelity simulations of physical systems. The order p of the
tensor under consideration can be arbitrarily large. At the heart of the framework are a series
of strategic tensor factorizations and compressions, ultimately leading to a final order-preserving
reduced representation of the original tensor. We also augment the MSTR framework by per-
forming efficient kernel-based interpolation/regression over certain reduced tensor representations,
amounting to a new non-intrusive model reduction approach capable of handling dynamical, para-
metric steady, and parametric dynamical systems. Furthermore, to efficiently build the parametric
reduced-order model in the offline stage, we develop a tensor empirical interpolation method (t-
EIM). We formalize our ideas using the tensor t-product algebra [7, 3, 6] and provide a rigorous
upper bound for the error of the tensor approximation from the MSTR strategy.
The idea to factor any order-3 tensor in two orthogonal tensors of order-3 and an f -diagonal
tensor of order-3 first appeared in [7]. The notion of orthogonal tensors and such a factorization
strategy, analogous to matrix factorization—rendered by the singular value decomposition (SVD)—
is possible due to the tensor multiplication, referred to as the t-product [7]. An extension for order-p
tensors of the t-product and t-SVD is proposed in [8], which is used in our work. Moreover, by
following the approach taken in [9] for order-3 tensors, we develop a randomized variant of t-SVD
for order-p tensors, which is utilized to accelerate the tensor factorizations in our MSTR framework.
To aid our discussion, let us define the t-SVD for an order-p tensor T :

T = L ∗M ∗R⊤, (1)

where T ∈ Rn1×n2×n3×···×np , L ∈ Rn1×n1×n3×···×np , R ∈ Rn2×n2×n3×···×np , and M ∈ Rn1×n2×n3×···×np .
Here, L and R are orthogonal, and M has entries Mi1i2i3···ip such that Mi1i2i3···ip = 0 unless i1 = i2.
When p = 3, authors in [7] refer to M as an f -diagonal tensor. The symbol ∗ in (1) refers to the
t-product, and R⊤ is the t-transpose of R.
We are concerned with data arising from high-fidelity simulations or physical measurements. In
the most general setting, the solution tensor S can have the following form:

S ∈ RNx×Ny×Nz×m1×m2×···×mNµ×Nt , (2)

where Nx, Ny, and Nz refer to the size of each spatial dimension; Nµ refers to the parameter space
dimensions, with m1,m2, · · · ,mNµ corresponding to the size of each dimension of the parameter
space; Nt refers to the total number of time steps or the frequency of measurements. We seek to
efficiently reduce this high-dimensional tensorial data, obtaining its reduced tensor representation,
which describes the original tensor with reasonable accuracy.
The MSTR strategy begins by identifying the target variable of interest, along which we do not seek
to perform a tensor compression. For physical systems, it is typical to either collect measurements
or high-fidelity solution values across the spatial domain, corresponding to various time instances
and/or parameter configurations. As a result, the target variable could be either time or parameter.
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We seek to compress the solution tensor along all remaining dimensions. For instance, consider
an order-5 tensor S ∈ RNx×Ny×Nz×m×Nt , where m =

∏
j={1,2,...,Nµ}mj . If the target variable is

the parameter, then the reduced representation we aim for lies in Rr1×r2×r3×m×r5 , whereas if the
target variable is time, then the reduced representation we aim for lies in Rr1×r2×r3×r4×Nt . Here,
r1 ≪ Nx, r2 ≪ Ny, r3 ≪ Nz, r4 ≪ m, and r5 ≪ Nt.
Based on the t-SVD in (1), we can seek a compression of any tensor T ∈ Rn1×n2×n3×···×np by
truncating L ∈ Rn1×n1×n3×···×np along the second dimension, obtaining L̃ ∈ Rn1×r×n3×···×np , where
r ≪ n1, projecting T on L̃, and producing A ∈ Rr×n2×n3×···×np . Note that A provides a reduced
representation of T , where information along the first dimension is compressed.
The central idea pertaining to the MSTR strategy is to recursively perform a tensor factorization for
obtaining a truncated orthogonal tensor, onto which the parent unfactored tensor can be projected,
leading to compression along one tensor dimension at every stage. The tensor factorizations are
performed sequentially over subsequent intermediate reduced representations of the original tensor
S, ultimately leading to the final reduced tensor representation where all dimensions except the
one corresponding to the target variable are compressed. While employing t-SVD to undertake the
multi-stage tensor factorizations, it is imperative to appropriately permute the dimensions of the
intermediate reduced tensor representations, allowing us to attack all relevant dimensions, leading
to a compression of information along them. Moreover, for S and all subsequent intermediate
reduced tensor representations, it is important to maintain a specific tensor orientation. We will
provide further details about these intricacies in our talk.
We demonstrate an application of the MSTR strategy in the context of reduced-order modeling
by using it to extract the final reduced tensor representation Ans for any given S, along with
the truncated orthogonal tensors {L̃i}ns

i=1 from ns tensor reduction stages. The primary motiva-
tion is to utilize the order-preserving compressed version of S, enabling efficient operations within
our reduced-order model, which can then deliver reliable predictions during the online phase at
previously unseen parameter and/or time locations. After carrying out the MSTR procedure, we
interpolate/regress between specific slices of Ans , generating a map Mtv capable of accurately ren-
dering the final reduced tensor representation corresponding to new locations of the target variable,
i.e., either parameter or time. We denote this approximation as Âns , which is obtained in the online
phase. Note that the subscript tv in Mtv refers to the target variable. Using the truncated orthog-
onal tensors {L̃i}ns

i=1 and Âns , we obtain an approximation of the solution tensor at new locations
of the target variable. Mtv is built using a kernel-based shallow neural network (KSNN) with train-
able kernel activation functions, where the parameters—kernel widths and center locations—are
automatically determined via an alternating dual-staged iterative training procedure from our prior
work [4].
In the final reduced tensor representation, the variable staying uncompressed is viewed as the target
variable, whereas the variable compressed in the final stage of the MSTR procedure is referred to
as the secondary target variable. To build a reduced-order model capable of providing predictions
at new locations of both the parameter and time, it is necessary to ensure that they correspond to
either the target variable or the secondary target variable. Upon ascertaining this, another inter-
polation/regression map Mbasis is created, which can provide an approximation of the truncated
orthogonal tensor appearing in the second-last stage of the MSTR procedure, i.e., L̃ns−1, at new
locations of the secondary target variable. The approximation from Mbasis is denoted as ˆ̃Lns−1.
For this variant of our reduced-order model, the online phase involves querying Mtv to obtain Âns .
This is then used, along with L̃ns , to construct Âns−1. Later, yet another map Mstv is constructed
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by interpolation/regression between specific slices of Âns−1, capable of providing an approximation
of the intermediate reduced tensor representation from the second-last stage, corresponding to new
locations of the secondary target variable. We denote this approximation by ˆ̂Ans−1. Next, ˆ̃Lns−1 is
obtained by querying Mbasis, and in conjugation with ˆ̂Ans−1, an approximation of the intermediate
reduced tensor representation from the third-last stage is constructed. By using this approximation
in conjugation with the truncated orthogonal tensors {L̃i}ns−2

i=1 , we obtain the approximation of
the high-dimensional solution tensor at new locations of the target variable and secondary target
variable, i.e., parameter and time. We create Mbasis and Mstv using KSNNs, which is especially
useful for efficiently constructing Mstv during the online phase. Moreover, an accurate construction
of Mbasis is non-trivial, requiring interpolation over a Grassmann manifold. We investigate several
approaches to accomplish this.
To train the MSTR-based reduced-order model, we need the solution tensor S ∈ RNx×Ny×Nz×m×Nt ,
which requires data from either physical measurements or high-fidelity simulations across Nt time
instances and m parameter configurations. This can be challenging if obtaining spatio-temporal
solution fields for many parameters is infeasible or computationally expensive. To address this, we
develop a method to progressively expand the solution tensor S along the parameter dimension from
a small initial value m0 to a moderate final value mfinal. This incremental-learning procedure in-
volves iterative applications of the MSTR strategy to create a surrogate Ŝ ∈ RNx×Ny×Nz×mfine×Nt ,
where the growth of S is guided by iteratively applying our t-EIM [5] over cheaply computable Ŝ to
extract critical parameter locations from a fine candidate set with cardinality mfine. Moreover, em-
ploying randomized t-SVD for all factorizations in the MSTR procedure further enhances efficiency
during the offline phase. Related to our t-EIM are the recently proposed tensor discrete empirical
interpolation methods [1, 2] that use t-SVD to get the interpolation basis. In [1], a greedy proce-
dure is used to pick the interpolation indices, while [2] uses the pivoted t-QR decomposition [3]. In
contrast, t-EIM employs a greedy procedure to select both the interpolation indices and the basis.
We have observed excellent performance of the proposed framework over numerous high-dimensional
tensor-valued datasets, comprising climate measurements as well as various parametric spatio-
temporal flow phenomena exhibiting rich dynamics, including convection-dominated behavior. In
the talk, we primarily intend to highlight the theoretical and algorithmic contributions of our work.
Furthermore, we will illustrate the robustness of the MSTR strategy and the reduced-order model
based on it over an appropriately selected numerical example.
Numerical results: Table 1 provides the configurations of selected order-3 and order-4 tensor
datasets, detailing the training set dimensions, representing about half of the parameter samples
and time steps; the rest form the test sets. Table 3 lists the average relative errors for tensor approx-
imations using the MSTR procedure and the MSTR-based reduced-order model. To demonstrate
the MSTR procedure’s advantage, Table 3 also includes average relative errors when the tensor is
matricized to S ∈ RNxNy×mNt , thereby obtaining the truncated left singular matrix in RNxNy×r via

Tensor datasets Spatial dimension(s) # parameter samples # time steps
Wave equation N = 10201 m = 19 Nt = 401

Burgers’ equation Nx = 161, Ny = 161 m = 34 Nt = 101
Navier-Stokes equations N = 37514 m = 18 Nt = 201

Table 1: Details about the dimensions of selected order-3 and order-4 tensor datasets. All the
examples have a 2D spatial domain with N denoting the total number of unstructured grid nodes.
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Tensor datasets SVD MSTR % drop
Matricized Compressed Original Compressed

Wave equation R10201×7619 R10×7619 R10201×19×401 R10×19×10 97.51%
Burgers’ equation R25921×3434 R60×3434 R161×34×161×101 R10×34×10×10 83.49%

Navier-Stokes equations R37514×3618 R10×3618 R37514×18×201 R10×18×10 95.02%

Table 2: Details about the achieved level of compression for SVD and MSTR. The last column
highlights % reduction in the entries of the final reduced tensor representation from MSTR in com-
parison with the compression achieved via SVD. The corresponding errors are reported in Table 3.

Tensor datasets SVD SVD-based ROM MSTR MSTR-based ROM
Wave equation 3.91× 10−3 4.08× 10−3 6.98× 10−4 1.21× 10−3

Burgers’ equation 1.14× 10−2 8.61× 10−2 5.45× 10−3 6.14× 10−3

Navier-Stokes equations 2.25× 10−2 2.26× 10−2 4.29× 10−4 6.38× 10−4

Table 3: An illustrative comparison between average relative errors of the SVD, MSTR, and their
respective reduced-order model (ROM) approximations over the test sets for selected datasets.

its SVD, projecting the matricized tensor on it, and producing the compressed representation in
Rr×mNt , where r ≪ mNt. The comparison between the results from SVD and MSTR is for equiv-
alent compressions of the spatial dimensions. Table 2 details the compression levels, showing that
the representation from MSTR possesses fewer total entries than the representation from SVD.
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