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Abstract

We consider the flow of dense suspensions of rigid bodies in a Stokesian fluid. Such flows are
difficult to compute numerically due to the presence of close-to-touching interactions, which may
require a large number of unknowns to resolve sharply peaked surface forces, a large number of
GMRES iterations to solve the discretized PDE, and an extremely small time step. A common
way of dealing with these difficulties is to introduce a repulsion force between particles to prevent
them from getting too close. However, this additional repulsion force is non-physical and may
fundamentally alter the results of a simulation.
For suspensions of identical discs in 2D, we present a fast and accurate boundary integral method
that mitigates these challenges without introducing artificial forces. Through precomputation, com-
pression and interpolation of the close-to-touching part of the interaction operator, our method—
termed interpolated compressed inverse preconditioning—efficiently handles close-to-touching inter-
actions down to distances of 10−10 with only a coarse discretization of the boundary. Additionally,
we present a preconditioner that significantly reduces the number of GMRES iterations required
to solve the Stokes mobility problem at each time step by effectively reusing the Krylov subspace
from previous time steps. Coupled with high-order, adaptive time-stepping using spectral deferred
correction, we are able to take larger time steps, mitigating the temporal stiffness resulting from
close-to-touching interactions.
For a graphical description of this work, see: https://danfortunato.com/talks/ICIP-poster.pdf.

1 Stokes mobility problem

We consider NΩ rigid discs Ω = {Ω1, · · · ,ΩNΩ
} embedded in a Stokesian fluid. The fluid velocity

in the exterior of Ω is governed by the Stokes equations,

−∆u+∇p = 0 in R2 \ Ω, (1)
∇ · u = 0 in R2 \ Ω, (2)

where u is the fluid velocity and p is the fluid pressure. Equations (1) and (2) denote the momentum
balance and incompressibility constraints, respectively. In addition, we also assume that the fluid
velocity at infinity decays to zero,

u(x) → 0 as |x| → ∞.

Each disc has a net force Fk and a net torque Tk acting about a point xc
k. The discs undergo rigid

body motion with the velocity V given by,

V (x) = vk + ωk(x− xc
k)

⊥ for all x ∈ Ωk,

where vk is the translational velocity and ωk is the angular velocity of Ωk about the point xc
k. A

slip velocity boundary condition us between the rigid bodies and the fluid is prescribed. Therefore,
the fluid velocity on the boundary ∂Ω is given by,

u = V + us on ∂Ω.
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In the mobility problem, we are given us, Fk, and Tk about xc
k for each Ωk. The rigid body motion

V (i.e., vk and ωk for each Ωk) is not known and must be determined.
Using the Stokes single- and double-layer potentials to represent the fluid velocity u in terms of an
unknown surface density σ, a boundary integral equation (BIE) for the Stokes mobility problem
can be formulated as given in [1]:

Kσ = g on ∂Ω, (3)

where K is a second-kind boundary integral operator and g encodes the given slip velocity, net
force, and net torque.

2 Close-to-touching interactions

Consider the model problem of two discs separated by a distance d, with each disc discretized into
a set of high-order Gauss–Legendre panels. The two disc problem serves as an effective pairwise
preconditioner in a simulation with many close-touching discs. When the distance d between two
discs gets small, the solution σ to the BIE in (3) becomes highly peaked. This requires an extremely
fine discretization of the boundary in the close-to-touching region. We label the close-to-touching
region as Γ2 and the remaining boundary as Γ1 = ∂Ω \ Γ2. Then, (3) can be discretized as a block
linear system, (

K11 K12

K21 K22

)(
σ1
σ2

)
=

(
g1
g2

)
, (4)

where g1 and σ1 are the boundary conditions and unknowns on Γ1, g2 and σ2 are the boundary
conditions and unknowns on Γ2, and Kij represents a sub-block of the discretized operator K that
computes interactions from sources on Γj to targets on Γi. Right preconditioning (4) with the block
diagonal preconditioner

( I 0
0 K−1

22

)
yields the system(
K11 K12K

−1
22

K21 I

)(
σ1
σ2

)
=

(
g1
g2

)
, (5)

where σ2 = K22σ2 is a new unknown on Γ2. While (5) may require fewer GMRES iterations to
solve than (4), it still requires an excessively fine discretization in the close-to-touching region Γ2.
Additionally, computing K−1

22 on the fly can be expensive, especially for problems with moving
boundaries. However, one may show that σ2 can be discretized on a coarse mesh and that the
off-diagonal block K12K

−1
22 is low rank.

2.1 Compressing close-to-touching interactions

Since Γ1 and Γ2 are disjoint, the discretized boundary integral operators K12 and K21 are low
rank, with the numerical rank independent of the distance d. Hence, the column space of K21

is comprised of smooth functions that can be discretized using piecewise polynomials on a coarse
mesh. From (5), we have σ2 = g2 − K21σ1; therefore, σ2 is smooth whenever g2 is smooth and
it can be discretized on a coarse mesh. Since K12 is low rank, so is K12K

−1
22 (with numerical

rank independent of d). There are several ways of constructing a compressed representation for
K12K

−1
22 . To retain the boundary integral structure and allow for acceleration by the fast multipole

method (FMM), we use a representation of the form K12R where R is a low-rank operator such that
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K12R ≈ K12K
−1
22 , up to a given numerical tolerance. We now describe the numerical construction

of R.
Consider two different panelizations of Γ2: a fine mesh where the panels on each disc are refined
dyadically towards the closest point between the discs, and a coarse mesh with a small number of
uniformly sized panels on each disc. We denote quantities on the coarse mesh with a superscript
“c”; all other quantities are assumed to live on the fine mesh. Define the prolongation operator P
that interpolates data from the coarse mesh to the fine mesh, and diagonal matrices Wf and Wc

containing the weights for smooth integration on the fine and coarse meshes, respectively. Then,
W−1

c P TWf computes an L2 projection from the fine mesh to the coarse mesh.
Assuming that the boundary data g2 is smooth and therefore representable on the coarse mesh, we
have

g2 = P gc2, (6)
σ2 = P σc

2. (7)

Since K12 and K21 are low rank, they can be approximated accurately by their coarse discretizations,

K12 = Kc
12W

−1
c P TWf , (8)

K21 = PKc
21, (9)

Substituting (6)–(9) in (5), we obtain(
K11 Kc

12R
Kc

21 I

)(
σ1
σc
2

)
=

(
g1
gc2

)
(10)

where R = W−1
c P TWfK

−1
22 P . This definition of R is used in the RCIP (recursively compressed

inverse preconditioning) method [2]. For an order-p fine mesh with O(log d) levels of refinement, di-
rect construction of R takes O(p3(log d)3) operations; the RCIP method provides a faster algorithm
to construct R without directly computing K−1

22 , taking O(p3 log d) operations. Our main result—
termed ICIP (interpolated compressed inverse preconditioning)—instead constructs R through pre-
computation and interpolation, requiring only O(p2) work.

2.2 Interpolated compressed inverse preconditioning (ICIP)

Constructing R = R(d) each time for a different value of d can be expensive since it requires com-
puting K−1

22 . Instead, we construct a polynomial interpolant for R(d) over a range d ∈ [dmin, dmax]
(where 0 < dmin < dmax). Then for any value of d in the interval, we construct R(d) through
entrywise interpolation. We use Chebyshev polynomials in log d as our interpolation basis, i.e.,

[R(d)]ij ≈
q∑

k=0

[Rk]ijTk(log d)

where [Rk]ij is the kth Chebyshev coefficient for the ijth entry of R(d). For accurate interpolation
of R(d) over a large dynamic range of 10−10 < d < 10−1, only a moderate interpolation order of
q = 32 is required. After an offline precomputation to generate {Rk}qk=0, constructing R(d) at each
time step costs O(p2q) operations.
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3 Accelerating timestepping with subspace recycling

While the two-disc preconditioner is effective at lowering the number of GMRES iterations induced
by close-to-touching interactions, a significant number of GMRES iterations may still be required at
each time step for problems with many discs. To ameliorate this effect, we propose a preconditioner
which effectively reuses the Krylov subspace from previous time steps.
After the kth iteration of GMRES, the Krylov matrix is given by X = [b Ab · · · Ak−1b]. Let
QR = AX be the QR decomposition of AX. Then the matrix P given by

P = I −QQT +XR−1QT

has the following properties:
PAx = x for all x ∈ span(X),

Py = y for all y ⊥ span(X).

Hence, P effectively reuses the given Krylov subspace X when used as a preconditioner in a Krylov
method. In a high-order time-stepping scheme based on spectral deferred corrections, this precon-
ditioner can drastically reduce the number GMRES iterations by recycling the Krylov subspace
between time steps.
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