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Abstract

Inverse problems involve the process of calculating parameters of a mathematical model from ob-
servational data [3]. Often these problems are ill-posed and a Bayesian approach is used to produce
a posterior distribution for the unobservable parameters. A key question is “how best to acquire
data” in such a setting. We consider the case of Bayesian linear inverse problems where there are
m candidate sensor locations, and we need to pick the k “best” ones.
Consider the measurement equation

d = Fm+ ϵ, (1)
where d ∈ Rm is the data, F ∈ Rm×n is the mathematical model, and m ∈ Rn is the parameter to be
reconstructed. The observations are assumed to be perturbed with additive uncorrelated Gaussian
noise, i.e. ϵ ∼ N (0,Γnoise). We assume that m < n, which makes the problem underdetermined.
If we assume our prior to also be Gaussian, m ∼ N (µpr,Γpr), the posterior will also be a Gaussian
with covariance Γpost = (FTΓ−1

noiseF+ Γ−1
pr )

−1 and mean µpost = Γpost(F
TΓ−1

noised+ Γ−1
pr µpr).

The rows of F correspond to the m different candidate sensor locations and we would like to select
only k locations to collect data. To determine the optimal sensor placements, we solve the following
combinatorial optimization problem

min
W⊂{1,··· ,m}

ϕ(W ), subject to |W | ≤ k. (2)

Here ϕ(W ) is a set-valued function which determines the quality of the sensor placement. In
this work we focus on the A-optimality criterion, which minimizes average posterior variance,
and D-optimality, which measures the information gain from the prior to the posterior. These
criteria amounts to measuring the trace and log-determinant of the posterior covariance matrices
respectively. For the current problem, these criteria take the form

ϕA(W ) = trace

(
Γ1/2
pr

(
I+CCT

)−1
Γ1/2
pr

)
and ϕD(W ) = −logdet

(
I+CCT

)
, (3)

where C = A(:,W ) are the columns of an appropriately formed matrix indexed by W . Here
A := Γ

1/2
pr FTΓ

−1/2
noise ∈ Rn×m is the prior-preconditioned forward operator and selecting k columns

is akin to selecting sensors. Note that we use ϕ(W ) and ϕ(C) interchangeably.
Assuming the following partitioned SVD of A with 1 ≤ k ≤ m,

A =
[
Uk U⊥

] [Σk

Σ⊥

] [
Vk V⊥

]T
.

Now our structural bounds are for column selection of the form AΠ =
[
AΠ1 AΠ2

]
=

[
C T

]
with an identical permutation of the truncated right singular vectors VT

kΠ =
[
V11 V12

]
.

Theorem 1 [1] Let A ∈ Rn×m with k ≤ rank (A). Then for any permutation Π such that
rank (V11) = k and AΠ =

[
C T

]
we have,

σi(A)∥∥V−1
11

∥∥
2

≤ σi(C) ≤ σi(A), 1 ≤ i ≤ k.
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The bounds on individual singular values of C are key to obtaining bounds and algorithms for
the different OED objectives. Let Copt

D denote the optimal selection for the D-optimality criteria
(respectively Copt

A for A-optimality). Then utilizing Theorem 1, we can see that

ϕD(A) ≤ ϕD(Σk) ≤ ϕD(C
opt
D ) ≤ ϕD(C) ≤ ϕD

(
Σk/

∥∥V−1
11

∥∥
2

)
and

t (Σk) + (n− k)∥∥Γ−1
pr

∥∥
2

≤ ϕA(C
opt
A ) ≤ ϕA (C) ≤ ∥Γpr∥2

(
t
(
Σk/

∥∥V−1
11

∥∥
2

)
+ (n− k)

)
,

(4)

where t(X) =
∑rank(X)

i=1
1

1+σ2
j (X)

. Not surprisingly, the performance of the selected columns depend
on the top-k singular values of A. If the discarded singular values, Σ⊥, are not negligible, we cannot
expect Copt to be close to A in either criterion. Note that the error bounds for the D-optimality
case is much cleaner than A-optimality due to the absence of the prior term which factors out as a
constant because of the logdet objective. Another point of concern is the presence of the terms with
n for A-optimality, which in principle can be extremely large. This term arises due to the ill-posed
nature of the inverse problem and corresponds to the singular values of 1 in In + CCT. These
values multiply out for D-optimality but are harder to remove in the A-optimality case prompting
the development of relative bounds.
Equation (4) clearly identifies the factor

∥∥V−1
11

∥∥
2

to optimize for in an OED algorithm. Also since
V11 is an invertible submatrix of Vk, we have

∥∥V−1
11

∥∥
2
≥ 1. We wish to make this value as close

to 1 as possible by finding a set of k well-conditioned columns of VT
k . This is exactly the Golub-

Klema-Stewart approach for subset selection [4], which we further accelerate using randomized
approaches. Inspired by rank-revealing factorizations [2] and exchange algorithms for OED [5], we
also investigate column-swapping based methods on model inverse problems.
The explicit connection to column subset selection gives us many avenues for future work. Is it
possible to extend our techniques to the correlated noise or to nonlinear problems? Can we reduce
the gap to ϕ(Σk) by combining sensor information in a sensible manner? What if our optimization
criteria is some user specified goal?
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