
High-Accuracy Floating-Point Matrix Multiplication on
Low-Precision Floating-Point and Fixed-Point Hardware

Ahmad Abdelfattah, Jack Dongarra, Massimiliano Fasi, Mantas Mikaitis, Françoise Tisseur

Abstract

We have officially entered the exascale era. At the forefront is the Frontier supercomputer, topping
the June 2024 Top500 list1 as the first machine capable of performing over 1018 operations per sec-
ond in binary64 (double precision) arithmetic. Modern supercomputers achieve their remarkable
speeds by leveraging machine-learning hardware accelerators, which deliver extraordinary through-
put by trading off some degree of accuracy. While these accelerators currently support binary64
arithmetic, the field is shifting, and soon many will be optimized exclusively for lower precision.
Today, fully utilizing the potential of these accelerators requires relying on low-precision formats:
TensorFloat-32, bfloat16, binary16 (half precision), E4M3, E5M2, and even compact integer data
types, such as INT8. These reduced-precision formats can have a throughput up to two orders
of magnitude higher than binary64, but they lack the precision needed for traditional scientific
simulations, which require higher accuracy to yield meaningful results.
To integrate GPUs effectively into scientific computing, we must reimagine high-precision com-
putations by strategically applying lower precision when feasible. Here, we explore techniques to
reformulate a high-precision matrix multiplication as a series of low-precision operations, and we
outline two strategies for assigning different precision levels across computations. Matrix multipli-
cation is a fundamental kernel in scientific computing, and efficient implementations underpin the
performance of many algorithms in numerical linear algebra. The techniques we discuss will enable
numerical codes to make better use of current accelerators, where the performance gap between low
and high precision is widening, and of future ones, where high precision will be missing altogether.
General scheme for mixed-precision matrix multiplication Let Flow and Fhigh be a low-
precision and a high-precision floating-point format, respectively, and let ulow and uhigh be their
unit roundoffs. We consider the computation of C = AB ∈ Fm×n

high , where A ∈ Fm×p
high and B ∈ Fp×n

high .
Rows of A and column of B with only zeros do not affect the result, thus we assume that each row
of A and column of B contains at least one nonzero element. The high-precision matrices A and
B can be written as the unevaluated sum of low-precision matrices

A = A(1) +A(2) + · · ·+A(sA) +∆A, B = B(1) +B(2) + · · ·+B(sB) +∆B, (1)

where the entries of A(1), A(2), …, A(sA), B(1), B(2), …, B(sB) belong to Flow, while ∆A and ∆B
are truncation errors. With the decomposition (1), we can approximate the product as

C̃ ≈
sA∑
k=1

sB∑
ℓ=1

A(k)B(ℓ). (2)

In terms of runtime, (2) will achieve good performance if the low-precision matrix products of the
form A(k)B(ℓ) are executed on hardware that can efficiently multiply matrices stored in Flow and
accumulate the result in Fhigh. Two terms contribute to the total error in the approximation C̃:

• the truncation error ∆AB +A∆B, which depends on the splitting strategy in (1); and
1https://www.top500.org/lists/top500/list/2024/06/

1

https://www.top500.org/lists/top500/list/2024/06/

• a rounding error, caused by the matrix products and sums in (2)

Matrix multiplication using multi-word arithmetic A natural way to obtain the decom-
position (1) is to split A and B as sum of low-precision floating-point matrices [4]. This can be
accomplished by applying the splitting algorithm:

A(k) = fllow

(
A−

k−1∑
t=1

A(t)

)
, B(ℓ) = fllow

(
B −

ℓ−1∑
t=1

B(t)

)
, (3)

where fllow(X) rounds the entries of the input matrix X to precision Flow. In this case, we can set
sA = sB = s, as the final accuracy will be limited by the smaller between sA and sB.
If the splitting (1) is obtained using (3), and the approximation C̃ is computed using (2), then [1]∣∣C̃ − C

∣∣ ≤ (2uslow + u2slow)|A||B|+ (n+ s2 − 1)uhigh

s∑
k=1

s∑
ℓ=1

∣∣A(ℓ)
∣∣∣∣B(ℓ)

∣∣. (4)

For practical choices of ulow and uhigh, a small value of s, 2 or 3 say, is sufficient to make the two
terms in (4) of similar size. Furthermore, not all s2 products in (2) need be computed, since the
magnitude of the elements of A(k) and B(ℓ) decreases rapidly as k and ℓ increase. Ignoring all
products of the form A(k)B(ℓ), for k+ ℓ > s+1, yields a faster algorithm and an error bounded by∣∣C̃ − C

∣∣ ≤ ((s+ 1)uslow + (n+ s2 − 1)uhigh
)
|A||B|+O

(
uhighulow + us+1

low

)
, (5)

which is just slightly weaker than (4). We evaluated this scheme using double-binary16 (s = 2
and ulow = 2−11) arithmetic to compute binary32 matrix products (uhigh = 2−24). We run our
implementations of the algorithm described above on NVIDIA GPUs equipped with tensor cores—
mixed-precision units that compute the product of binary16 matrices using binary32 arithmetic.
We identified some cases where, surprisingly, double-binary16 fails to achieve binary32 accuracy:
this is the case, for example, if the entries of the matrix are drawn from the interval (0, 1]. This
phenomenon does not contradict the bounds (4) and (5), and with the help of probabilistic rounding
error analysis we showed that a possible cause is the fact that the tensor cores use a custom rounding
mode that is less accurate than round-to-nearest [2]. To support this conclusion, we used the
CPFloat library [3] to simulate a variant of the tensor cores that uses round-to-nearest throughout,
and we showed that switching between rounding modes has indeed the expected effect on accuracy.
The Ozaki scheme for matrix multiplication An alternative technique, which goes back to
Rump, Ogita, and Oishi [8], uses a fixed-point representation to recast the matrix product as a
sequence of error-free transformations. In the case of matrix multiplication [7], this technique is
known as the Ozaki scheme. The decomposition (1) is computed using the element-wise algorithm

a
(k)
ij = fl

(
fl

(
αi +

(
aij −

k−1∑
t=1

a
(t)
ij

))
− αi

)
, αi = 2max1≤j≤p⌈log2|aij |⌉+f(aij),

b
(ℓ)
ij = fl

(
fl

(
βj +

(
bij −

ℓ−1∑
t=1

b
(t)
ij

))
− βj

)
, βj = 2max1≤j≤p⌈log2|bij |⌉+f(bij),

(6)

where f(x) returns 1 if x is a power of two, and 0 otherwise. If the routine computing A(k)B(ℓ)

in (2) takes matrices with elements in Flow as input but uses precision uhigh internally, then the
intermediate precision used by the fl operator in (6) can have at most

q =
⌈
(log2 u

−1
high − log2 p)/2

⌉

2

bits, where p is the common dimension of A and B. This choice of q ensures that all multiplications
of the form A(k)B(ℓ) will be exact.
Implicitly, the algorithm (6) performs two actions. First, it scales all entries in the ith row of A by
α−1
i , where αi is the smallest power of two that is strictly larger, in magnitude, than all elements in

the ith row of A; this ensures that α−1
i aij has magnitude in the interval [0, 1). Next, each α−1

i aij is
interpreted as a fixed-point number, and its representation is divided up into q-bit segments, each
assigned to a different low-precision slice A(k). The matrix B is sliced analogously, with the proviso
that the algorithm operates by columns rather than by rows. This gives the representation

A = ∆A+ diag(α)

sA∑
k=1

2−kqA(k), B = ∆B +

sB∑
ℓ=1

2−ℓqB(ℓ)diag(β), (7)

where A(1), A(2), …, A(sA) and B(1), B(2), …, B(sB) are slices of a fixed-point representation of the
elements in A and B. Since αi and βj depend on the magnitude of the largest entry in row i and
column j, respectively, the leading matrices may have zeros in positions corresponding to small
elements in A and B.
If sA and sB are large enough to guarantee that ∆A = 0 and ∆B = 0 in (7), then algorithm (2)
will produce an extremely accurate approximation C̃, where the only rounding errors are due to the
sAsB floating-point sums. Mukunoki et al. [5] have specialized this algorithm and have implemented
it to obtain binary64 accuracy by using binary16 arithmetic on the NVIDIA tensor cores.
The latest NVIDIA GPUs can perform matrix multiplication even more efficiently using integer
arithmetic. The tensor cores of NVIDIA H100 cards, for example, can compute the product of
matrices stored in INT8 format (an 8-bit signed format) using 32-bit signed integer arithmetic.
Exploiting the fixed-point nature of the Ozaki scheme, Ootomo, Ozaki, and Yokota [6] have therefore
developed a method that computes the product of two binary64 matrices using only INT8 matrix
multiplications. This initial idea was further refined by Uchino, Ozaki, and Imamura [9], who
developed a more accurate and efficient variant of this scheme and gave a first error analysis. For
sA = sB = s, they show that∣∣C̃ − C

∣∣ ≤ 4(s+ 1)k2−qsαβT + (s− 1)uhigh|A||B|,

where uhigh is the unit roundoff of the floating-point arithmetic used to accumulate the partial
matrix products in (2). This result suggests that the algorithm can be inaccurate if s is too small,
or if the entries of the matrix are large in absolute value, as this will cause the entries of the vectors
α and β to be large.
We propose an alternative error analysis that can be used to inform the choice of the parameters
sA and sB, which we argue need not be equal in the Ozaki scheme. First, we note that the terms
in (7) satisfy

|δaij | < αiuA, uA := 2−sAq, |δbij | < βjuB, uB := 2−sBq. (8)
In error analysis, it is often more informative to bound the relative error. Such bounds arise natu-
rally when using floating-point arithmetic, because floating-point numbers have constant precision.
In fixed-point arithmetic, precision is tapered, so bounds like those in (8) are more familiar, but it
is still possible to bound |δaij | and |δbij | in terms of |aij | and |bij |, respectively, since

|δaij | ≤ κAuA|aij |, κA := 2 max
1≤i≤m

max{|aij | : 1 ≤ j ≤ p}
minj{|aij | : 1 ≤ j ≤ p and aij ̸= 0}

,

|δbij | ≤ κBuB|bij |, κB := 2 max
1≤j≤n

max{|bij | : 1 ≤ i ≤ p}
min{|bij | : 1 ≤ i ≤ p and bij ̸= 0}

.

3

Our analysis yields the alternative error bound∣∣C̃ − C
∣∣ ≤ κAuA + κBuB + κAκBuAuB + γsAsB−1(1 + κAuA + κBuB + κAκBuAuB)

)
|A||B|.

In other words, the overall error can be substantial if either κA or κB are large. One can counteract
the prominence of these two terms by increasing sA and sB, but doing so will negatively impact
the performance of the algorithm, which needs to perform O(sAsB) integer matrix multiplications.
The integer-based Ozaki scheme can be much faster than traditional high-precision alternatives,
but our analysis suggests that it can also be significantly less accurate, depending on the dynamic
range of the entries of A and B. The value of the parameters sA and sB required to meet a specific
accuracy target can be determined by examining κA and κB, which are inexpensive to compute.
For a given choice of sA and sB, we can estimate the runtime of the scheme, and we can opt for a
traditional high-precision routine when the latter is expected to be faster.

References

[1] M. Fasi, N. J. Higham, F. Lopez, T. Mary, and M. Mikaitis. Matrix multiplication in multiword
arithmetic: Error analysis and application to GPU tensor cores. SIAM J. Sci. Comput., 45(1):
C1–C19, 2023.

[2] M. Fasi, N. J. Higham, M. Mikaitis, and S. Pranesh. Numerical behavior of NVIDIA tensor
cores. PeerJ Comput. Sci., 7:e330(1–19), 2021.

[3] M. Fasi and M. Mikaitis. CPFloat: A C library for simulating low-precision arithmetic. ACM
Trans. Math. Software, 49(2):1–32, 2023.

[4] S. Markidis, S. W. D. Chien, E. Laure, I. B. Peng, and J. S. Vetter. NVIDIA tensor core
programmability, performance & precision. In Proceedings of the 2018 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW), May 2018.

[5] D. Mukunoki, K. Ozaki, T. Ogita, and T. Imamura. DGEMM using tensor cores, and its
accurate and reproducible versions. In High Performance Computing, P. Sadayappan, B. L.
Chamberlain, G. Juckeland, and H. Ltaief, editors, Springer-Verlag, 2020, page 230–248.

[6] H. Ootomo, K. Ozaki, and R. Yokota. DGEMM on integer matrix multiplication unit. Int. J.
High Performance Computing Applications, 38(4):297–313, 2024.

[7] K. Ozaki, T. Ogita, S. Oishi, and S. M. Rump. Error-free transformations of matrix multipli-
cation by using fast routines of matrix multiplication and its applications. Numer. Algorithms,
59(1):95–118, 2012.

[8] S. M. Rump, T. Ogita, and S. Oishi. Accurate floating-point summation part I: Faithful round-
ing. SIAM J. Sci. Comput., 31(1):189–224, 2008.

[9] Y. Uchino, K. Ozaki, and T. Imamura. Performance enhancement of the Ozaki scheme on integer
matrix multiplication unit. Technical report, September 2024. arXiv:2409.13313 [cs.DC].

4

http://dx.doi.org/10.1137/21m1465032
http://dx.doi.org/10.1137/21m1465032
http://dx.doi.org/10.7717/peerj-cs.330
http://dx.doi.org/10.7717/peerj-cs.330
http://dx.doi.org/10.1145/3585515
http://dx.doi.org/10.1109/ipdpsw.2018.00091
http://dx.doi.org/10.1109/ipdpsw.2018.00091
http://dx.doi.org/10.1007/978-3-030-50743-5_12
http://dx.doi.org/10.1007/978-3-030-50743-5_12
http://dx.doi.org/10.1177/10943420241239588
http://dx.doi.org/10.1007/s11075-011-9478-1
http://dx.doi.org/10.1007/s11075-011-9478-1
http://dx.doi.org/10.1137/050645671
http://dx.doi.org/10.1137/050645671
https://arxiv.org/abs/2409.13313
https://arxiv.org/abs/2409.13313

