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Abstract

For a square matrix A, the resolvent at a point z ∈ C is defined as (A − zI)−1. It was observed
in [2] that for certain matrices A with ill-conditioned eigenvalues the resolvent is close to the rank
one matrix σ1(z)u1(z)v1(z)

H , for a wide range of z values, where σ1(z) is the largest singular value
of (A− zI)−1 and u1(z) and v1(z) are the corresponding left and right singular vectors. Moreover,
for a slightly smaller range of z values, u1(z) and v1(z) are almost orthogonal to each other. Here
we provide a partial explanation for this phenomenon.
The distance in 2-norm from (A − zI)−1 to the nearest rank one matrix, σ1(z)u1(z)v1(z)

H , is
σ2(z), the second largest singular value of (A − zI)−1, and one might define the relative distance
as σ2(z)/∥(A− zI)−1∥2 = σ2(z)/σ1(z). Given ϵ > 0, we are interested in

{z ∈ C : σ2(z)/σ1(z) < ϵ}. (1)

Recall that the ϵ-pseudospectrum of A can be defined as [3]:

{z ∈ C : 1/σ1(z) < ϵ}. (2)

If it turns out that σ2(z) ∼ 1 throughout the ϵ-pseudospectrum, then these two sets may look very
similar. Indeed, the plots in [2] look much like pseudospectra.
To study this phenomenon, we will work with the matrix A − zI, whose singular values are the
inverses of those of (A−zI)−1 and whose right and left singular vectors are the left and right singular
vectors of (A− zI)−1. If sn(z) and sn−1(z) denote the smallest and second smallest singular values
of A− zI, then we are interested in the ratio sn(z)/sn−1(z).
The following theorem and corollary are proved in a paper currently in progress [1]:

Theorem. Let λ be a simple eigenvalue of A and let A0 := A − λI = USV H be a singular
value decomposition of A0, where U := [u1, . . . , un], V := [v1, . . . , vn], S := diag(s1, . . . , sn−1, 0),
s1 ≥ . . . ≥ sn−1 > 0. Let A†

0 denote the Moore-Penrose pseudoinverse of A0:

A†
0 := Vn−1S

−1
n−1U

H
n−1, (3)

where Un−1 := [u1, . . . , un−1], Vn−1 := [v1, . . . , vn−1], and Sn−1 := diag(s1, . . . , sn−1). For each
k = 1, 2, . . ., the smallest singular value of A0 − zI is less than or equal to

k∑
j=1

|z|j |uHn (A†
0)

j−1vn|+ |z|k+1/skn−1. (4)

Taking k = 1 in the theorem, we obtain the bound

sn(A0 − zI) ≤ |uHn vn| |z|+ |z|2/sn−1.

If λ is ill-conditioned, it means that the inner product of the left and right unit eigenvectors of
A corresponding to eigenvalue λ is tiny, but these eigenvectors are the same as the left and right
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singular vectors un and vn corresponding to the zero singular value of A0. In this case, if also
sn−1 ∼ 1, then sn(A0 − zI) grows more like |z|2 than like |z| for |uHn vn| << |z| << 1. If un is
also nearly orthogonal to A†

0vn, then taking k = 2 in the theorem suggests that the growth rate of
sn(A0 − zI) with |z| may be more like |z|3, and the more powers j for which |uHn (A†

0)
jvn| is small,

the higher the power of |z| describing the growth of sn(A0− zI), for |z| << 1. If the absolute value
of z times each eigenvalue of A†

0 is less than one, then the first sum in (4) will converge to a finite
value as k → ∞, and for |z| < sn−1, the second term in (4) will go to 0 as k → ∞. In this case,
the smallest bound may be obtained by taking k = ∞.
Although we are not yet sure how to interpret the conditions that |uHn (A†

0)
jvn| be small, these

conditions seem to be satisfied by many test problems with ill-conditioned eigenvalues, such as
those available through the ’gallery’ command in MATLAB and many in [3].
Corollary. With the notation and assumptions of the previous theorem, let ϵ ∈ (0, 1) be given. The
region where the ratio of the second largest to the largest singular value of the resolvent (A−zI)−1

is less than ϵ contains the set of points z ∈ C such that |z − λ| < sn−1 and

min
k=1,2,...

 k∑
j=1

|z − λ|j |uHn (A†
0)

j−1vn|+ |z − λ|k+1/skn−1

 /(sn−1 − |z − λ|) < ϵ. (5)

The ϵ-pseudospectrum of A contains the set of points z ∈ C such that

min
k=1,2,...

 k∑
j=1

|z − λ|j |uHn (A†
0)

j−1vn|+ |z − λ|k+1/skn−1

 < ϵ. (6)

This corollary defines disks about each eigenvalue that are known to lie within the regions defined
in (1) and (2). In our numerical tests, they are not far from the largest disks about the eigenvalues
that are contained in these regions.
We will report on these results, as well as some results obtained by differentiating the singular
values and vectors of A− zI.
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