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Abstract

Computing a low-rank approximation to a large m x n matrix A is a ubiquitous task in Numerical
Linear Algebra (NLA), and possibly the single topic that contributed the most to making ran-
domized NLA algorithms popular, trusted, and widely used. Typically [1, 5], the first step is to
compute a random sketch of the form AS (or SA, or both [12]), where the size of the sketch is
at least the target rank, which is often unknown. Extensive theory is now available [5, 8, 11] that
gives strong guarantees for the quality of the resulting approximation that hold with extremely
high probability.

In this work we develop an algorithm for low-rank approximation that (i) requires only an O(1)
sketch size, (ii) comes with high-probability error control to achieve a user-defined error tolerance,
without requiring the knowledge of the rank, (iii) avoids computing orthogonal projections, and (iv)
is based on the CUR decomposition [6] and its stable implementation [10], so inherits properties of
A such as sparsity and nonnegativity, if present. These are achieved by bringing together techniques
in randomized NLA algorithms, including CUR, subset selection methods [2, 9] based on a sketch-
and-pivot strategy [3, 4], and error estimation via trace estimation [7].

The algorithm finds a near-optimal (up to a modest polynomial in r) rank-r approximation in
O(N + (m + n)r?) operations, where N is the cost of a matrix-vector multiplication with A.
Advantages over the MATLAB routine svdsketch [13] include faster runtime and the ability to set
the error tolerance to be smaller than y/u, where u is the unit roundoff.

This talk is based on joint projects with the following collaborators: Per-Gunnar Martinsson and
Nathaniel Pritchard; Anjali Narendran; and Taejun Park.
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