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Abstract

With the explosion of big data, the need for explainable data analysis tools, efficient representations,
and structure-exploiting operations has exploded as well. Many data and operators are naturally
multiway, and as a result, multilinear or tensor methods have revolutionized the interpretability
of feature extraction, the compressibility of large-scale data, and the computational efficiency of
multiway operations. Despite numerous successes, many tensor frameworks suffer from a so-called
“curse of multidimensionality;” that is, that fundamental linear algebra properties break down in
higher dimensions, particularly the notion of optimality. Recent advances in matrix-mimetic tensor
frameworks have made it possible to preserve linear algebraic properties for multilinear analysis
and, as a result, obtain optimal representations of multiway data.
Matrix mimeticity arises from interpreting tensors as operators that can be multiplied, factorized,
and analyzed analogously to matrices. Underlying the tensor operation is an algebraic framework
parameterized by an invertible linear transformation. Specifically, consider a third-order tensor
A ∈ Rn1×n2×n3 ; i.e., a multiway arrays with rows, columns, and depth indices. We can view A as
an n1 × n2 matrix where each entry is a 1× 1× n3 tube. We multiply tubes a,b ∈ R1×1×n3 using
the ⋆M-product [5] (the prefix is pronounced “star-M”) via

a ⋆M b = vec−1 (RM[a] vec(b)) where RM[a] = M−1 diag(M vec(a))M, (1)

vec : R1×1×n3 → Rn
3 is a bijective map that vectorizes tubes and diag : Rn3 → Rn3×n3 forms a

diagonal matrix from the entries of a vector. We say the action a on b under the ⋆M-product
is equivalent to left multiplication by the structured matrix RM[a]. A given invertible matrix M
thereby induces a matrix subalgebra that equips the vector space of tubes with a bilinear operation
given by RM[·]; the term tensor algebra refers to this operation.
We define tensor-tensor products analogously to matrix-matrix products by replacing scalar with
tubal multiplication given by (1). Using Matlab indexing notation, the tubal entrywise definition
of the tensor-tensor product of A ∈ Rn1×m×n3 and B ∈ Rm×n2×n3 is

(A ⋆M B)i1,i2,: =
m∑
k=1

Ai1,k,: ⋆M Bk,i2,: (2)

for i1 = 1, . . . , n1 and i2 = 1, . . . , n2. Under the algebraically-consistent ⋆M-product, we obtain
matrix-mimetic generalizations of ⋆M-rank, -orthogonality, -transposition, more [6]. Notably, we
can define a tensor singular value decomposition that satisfies an Eckart-Young-like theorem, re-
sulting in optimal, low-rank approximations of multiway data [7].
The choice of linear mapping M and associated tensor algebra is crucial to approximation quality.
Traditionally, M is chosen heuristically to leverage expected correlations in the data. However, in
many cases, these correlations are unknown and common heuristic mappings lead to suboptimal
performance. This presentation, based on the work in [8], introduces ⋆M-optimization, an algorithm
to learn optimal linear transformations and corresponding optimal tensor representations (e.g.,
low-⋆M-rank) simultaneously. The new framework explicitly captures the coupling between the
transformation and representation by solving the bilevel optimization problem

min
M∈On3

Φ(M,X (M)) s.t. X (M) ∈ arg min
X∈X

Φ(M,X ). (3)
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Here, X is the desired representation belonging to feasible set X , and X (M) is an optimal rep-
resentation for a given transformation, M. Our goal is to learn an invertible M, which we guar-
antee by optimizing over the orthogonal group of n3 × n3 matrices, On3 . The objective function
Φ : On3 ×X → R measures the quality of the representation. We solve (3) for M using Riemannian
optimization over the orthogonal group [2, 1, 3].
A key innovation of ⋆M-optimization is the use of variable projection to form X (M), which elim-
inates the variable X via partial optimization [4]. We heavily leverage the optimality of ⋆M-
representations to guarantee the existence of an optimal X (M); other comparable tensor approaches
typically only guarantee quasi-optimality.
In the talk, we will highlight the generality of the ⋆M-optimization framework by considering
two prototype problems for fitting tensor data and for finding compressed representations. We
will present new theoretical results regarding the uniqueness and invariances of the ⋆M-operator
and convergence guarantees of ⋆M-optimization. We will demonstrate the efficacy of learning the
transformation and provide interpretable insight into ⋆M-optimization behavior through several
numerical examples, including image compression and reduced order modeling.
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