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Abstract

Estimating the trace of an implicitly given matrix B ∈ Rn×n,

tr(B) =

n∑
i=1

[B]ii, (1)

is an important task in many areas of applied mathematics and computer science. In
many of these applications, we have B = f(A), where A ∈ Rn×n is a large and sparse (or
structured) matrix. A common practice is to approximate (1) with an estimator of the
form

tr(B) ≈
N∑
k=1

vT
k Bvk, (2)

for suitably crafted vectors v1, . . . , vN . With this approach, approximating (1) relies on
matrix-vector products or quadratic forms with B, which are, e.g., performed by applying
a polyomial (or rational) Krylov subspace method or a Chebyshev expansion for approxi-
mating f(A)v or vTf(A)v, avoiding the often prohibitive tasks of forming B or computing
the eigenvalues of A.
Prominent examples are stochastic estimators, including Hutchinson’s method [5], based
on choosing random vectors in (2), and recent variants based on low-rank approximations,
Hutch++ [6] and XTrace [2], which work especially well if a fast decay is present in the
singular values of B.
When B = f(A) with sparse, symmetric A, a popular other class of methods are based on
probing [4, 7]. This approach requires the computation of a distance-d coloring of the graph
G(A) associated with A, which is a feasible task only under suitable assumptions; see [4].
The probing estimator is obtained by using probing vectors in (2), i.e., vectors associated
with each color whose entries are 0 or 1 depending on the coloring pattern. In [4], the
authors show that the error of the probing approximation is bounded by n · ηd, where ηd
decays with a rate that depends on how regular f is over the spectrum of A. The numerical
experiments in [4] prove that O(n) bounds are the best we can achieve with this method.
We consider a stochastic probing approach, given by the combination of probing tech-
niques with stochastic estimators. The nonzero entries of the stochastic probing vectors
are the same as the deterministic counterparts, but filled with ±1 with a uniform dis-
tribution (Rademacher entries). This allows to average more than one vector per color,
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with an improvement on the convergence related to Hutchinson’s estimator. Although this
combination is algorithmically quite straightforward and has already been used before by
practitioners [1], a detailed analysis was lacking.
In [3], we show for which matrix functions f and matrices A the standard deviation of the
stochastic probing estimator can be bounded by quantities of the form

√
n · ηd, where ηd

has the same asymptotic behavior as the deterministic case. This significantly improves
on the linear scaling with the size of the error in the deterministic case, even if just one
stochastic vector is associated to any color. As a by-product of our analysis, we refined
classical results on sign patterns in the entries of f(A).
Our theoretical findings are illustrated and confirmed by a variety of numerical experiments,
where we observed the scaling of the error with the size and compared the performance
with other known estimators, indicating when stochastic probing can be the method of
choice.
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