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Abstract

Problem #119, in [1], asks the question: Are there actually functions of three variables?
Stated differently: is it possible to use compositions of functions of two or fewer variables to express
any function of three variables? This question is related to Hilbert’s 13th problem: are there any
genuine continuous multivariate functions. As a matter of fact, Hilbert conjectured the existence
of a three-variable continuous function which cannot be expressed in terms of composition and
addition of two-variable continuous functions. For a recent overview of this problem, see [2].
For continuous function, the Kolmogorov Superposition Theorem (KST) answers this question
negatively. It shows namely that continued functions of several variables can be expressed as
composition and superposition of functions of one variable. Thus, there are no true functions of
three variables.
The present contribution presents connections between the Loewner framework for rational in-
terpolation of multivariate functions and KST restricted to rational functions. The result is the
formulation of KST for the special case of rational functions. As a byproduct taming of the curse
of dimensionality, both in computational complexity, storage, and last but not least, numerical
accuracy, is achieved.
Short summary of the Loewner framework. The Loewner framework is an interpolatory
approach designed for approximating linear and nonlinear systems. Reference [3] extends this
framework to linear parametric systems with an arbitrary number of parameters, in other words
to multivariate functions of n variables. One main innovation established is the construction of
data-based system realizations for any number of parameters. Equally importantly, [3] shows how
to alleviate the computational burden, storage and numerical accuracy, by avoiding the explicit
construction of higher dimensional Loewner matrices of size N×N . Instead, the proposed method-
ology achieves decoupling of variables, leading to (i) a complexity reduction from O(N3) to below
than O(N1.5) when N > 5 and (ii) to memory storage bounded by the largest variable dimension
rather than the product of all variable dimensions, thus taming the curse of dimensionality and
making the solution scalable to large data sets.
After defining a new multivariate realization, we introduce the higher dimensional multivariate
Loewner matrices and show that they can be computed by solving a coupled set of Sylvester
equations. The null space of these Loewner matrices then allows the computation of the multivariate
barycentric weights of the associated rational function. One of the main results of [3] is to show
how the null space of N -dimensional Loewner matrices can be computed using a sequence of 1-
dimensional Loewner matrices. This leads to a drastic computational burden reduction. This also
leads to the formulation of KST for rational functions. Finally, two algorithms are proposed (one
direct and one iterative) to construct, directly from data, multivariate (or parametric) realizations
ensuring (approximate) interpolation. For details on the above material see [3].
The purpose of this contribution is to make contact of the above results with the Kolmogorov
Superposition Theorem. For clarity of exposition we will illustrate the main features of our approach
by means of a three-variable example.
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Example. Consider the three-variable function H(s, t, x) = s2+xs+1
t+x+st+2 . Since the degrees in each

variable are (2, 1, 1), we will need the integers ν1 = 3, ν2 = 2, and ν3 = 2, This implies that
N = ν1ν2ν3 = 12. The right and left interpolation points are

s1 = 1, s2 = 2, s3 = 3, t1 = 4, t2 = 5, x1 = 6, x2 = 7, and
s4 = 3/2, s5 = 5/2, s6 = 7/2, t3 = 9/5, t4 = 11/5, x3 = 13/3, x4 = 5, respectively.

Following the theory in [3], the right triples of interpolation points are S = [s1, s2, s3]⊗ I1,2⊗ I1,2,
T = I1,3 ⊗ [t1, t2] ⊗ I1,2, X = I1,3 ⊗ I1,2 ⊗ [x1, x2] ∈ C1×N . Thus the resulting 3D-Loewner
matrix has dimension N ×N and the barycentric weights are

Bary =
[

16
29 −17

29 −18
29

19
29 −40

29
42
29

46
29 −48

29
24
29 −25

29 −28
29 1

]T
.

Again, the theory in [3], allows the demposition of this vector in a (pointwise) product of barycentric
weights with respect to each variable, separetly. Thus decoupling the problem is achieved, one of
the important aspects of KST; in [3] we obtain:

Bary = Baryx ⊙Baryt ⊙Barys,

where ⊙ denotes the pointwise product. This is a special case of formula (5.5) in [3].
This is the key result which allows the connection with KST and taming the curse of dimensionality.
We have thus shown that the 3D multivariate function can be computed in terms of three 1D
functions (one in each variable). These functions are denoted below by Φ(x), Ψ(t) and Ω(s).
Furthermore Lagx, Lagt and Lags are the Lagrange bases components in each variable. Finally
W are the right interpolation values for the triples in S × T × X. The ensuing numerical values
are as follows:

−16
17

1

−18
19

1

−20
21

1

−23
24

1

−24
25

1

−28
29

1


︸ ︷︷ ︸

Baryx

,



−17
19

−17
19

1

1

−7
8

−7
8

1

1

−25
29

−25
29

1

1


︸ ︷︷ ︸

Baryt

,



19
29
19
29
19
29
19
29

−48
29

−48
29

−48
29

−48
29

1

1

1

1


︸ ︷︷ ︸

Barys

,



1
x−6
1

x−7
1

x−6
1

x−7
1

x−6
1

x−7
1

x−6
1

x−7
1

x−6
1

x−7
1

x−6
1

x−7


︸ ︷︷ ︸

Lagx

,



1
t−4
1

t−4
1

t−5
1

t−5
1

t−4
1

t−4
1

t−5
1

t−5
1

t−4
1

t−4
1

t−5
1

t−5


︸ ︷︷ ︸

Lagt

,



1
s−1
1

s−1
1

s−1
1

s−1
1

s−2
1

s−2
1

s−2
1

s−2
1

s−3
1

s−3
1

s−3
1

s−3


︸ ︷︷ ︸

Lags

,



1
2
9
17
4
9
9
19
17
20
19
21
17
23
19
24
7
6
31
25

1
31
29


︸ ︷︷ ︸

W

def
⇒


Φ(x) = Baryx ⊙ Lagx,

Ψ(t) = Baryt ⊙ Lagt,

Ω(s) = Barys ⊙ Lags.

With the above notation we can express H as the quotient of two rational functions:

n̂(s, t, x) =
∑

rows [W ⊙Φ(x)⊙Ψ(t)⊙Ω(s)]

d̂(s, t, x) =
∑

rows [Φ(x)⊙Ψ(t)⊙Ω(s)]

}
⇒ n̂(s, t, x)

d̂(s, t, x)
= H(s, t, x).

Consequently, KST for rational functions, as composition and superposition of one-variable func-
tions, takes the form:

n̂(s, t, x) =
∑

rows exp [ logW + logΦ(x) + logΨ(t) + logΩ(s) ]

d̂(s, t, x) =
∑

rows exp [ logΦ(x) + logΨ(t) + logΩ(s) ] .

}
(∗)
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Some details of the above computation. To compute (i) Baryx, computation of the nullspace
of six 1D Loewner matrices of size 2× 2 is needed, (ii) Baryt, computation of three 1D Loewner
matrices of size 2×2 is needed, and (iii)Barys, computation of one 1D Loewner matrix of size 3× is
needed. The resulting total computation using 1D Loewner matrices is ν31ν2ν3+ν32ν3+ν33 = 99 flops
as opposed to (ν1ν2ν3)

3 = 1728 flops, when working with 3D Loewner matrices. For details on the
computational complexity, storage and numerical accuracy, we refer to [3]. Note also that the nD
Loewner matrix is of dimension 12×12 while in the 1D case, a maximum of 3×3 matrix is needed.
Comparison of KST and (*). A number of researchers have contributed in sharpening Kol-
mogorov’s original result, so currently is is often referred to as the Kolmogorov, Arnol’d, Kahane,
Lorenz and Sprecher Theorem (see [2], theorem 2.1). For simplicity we will follow [2] and state this
result for n = 3, so that we can compare it with (*).
Theorem. Given a continuous function f : [0, 1]3 → R of three variables, there exist real num-
bers λi, i = 1, 2, and single-variable continuous functions ϕk : [0, 1] → R, k = 1, · · · , 7, and a
single-variable function g : R → R, such that

f(x1, x2) =

7∑
k=1

g(ϕk(x1) + λ1ϕk(x2) + λ2ϕk(x3)), ∀(x1, x2, x3) ∈ [0, 1]3 .

In the above result, λi and ϕk do not depend on f . Thus for n = 3, eight functions are needed
together with two real scalars λi.
Similarities and differences between KST and (*).

1. While KST refers to continuous functions defined on [0, 1]n, (*) is concerned with rational
functions defined on Cn.

2. In its present form (*) is valid in a particular basis, namely the Lagrange basis. Multiplication
of functions in (*), is defined with respect to this basis.

3. The composition and superposition property holds for the numerator and denominator. No-
tice that in KST no explicit denominators are considered. This is important in our case
because (*) preserves interpolation conditions.

4. The parameters needed are n = 3 Lagrange bases (one in each variable) and the barycentric
coefficients of numerator and denominator.

5. Both KST and (*) accomplish the goal of replacing the computation of multivariate functions,
by means of a series of computations involving single-variable functions, KST for general
continuous functions and (*) for rational functions. Notice also that (*) provides a different
formulation of the problem than KST.
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