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Abstract

In recent years autoencoders – mappings Aθ : X → X parameterized by θ ∈ Rℓ – have emerged
as a cornerstone of machine learning and data science, playing a pivotal role in numerous applica-
tions. Their ability to learn efficient low-dimensional representations of data has led to significant
advancements in fields such as image and natural language processing, anomaly detection, and
generative modeling.
While universal approximation theorems provide a general theoretical foundation of autoencoder,
various analytical aspects such as interpretability, robustness, network design, and hyperparameter
selection remain relatively unexplored. Numerical linear algebra has played a fundamental and
crucial role in the development of modern science and technology and its impact on autoencoders
remains under-utilized.
The connection between linear autoencoder and singular value decomposition/principal component
analysis has been laid out in various works. Recognizing the connection between linear autoencoders
and singular value decomposition has sparked novel research utilizing autoencoders in fields such as
matrix factorizations, model reduction, denoising, spectral clustering, and low-rank approximations
to name a few.
In this work, we aim to investigate and initiate discussions on how tools from the numerical linear
algebra community may provide fundamental and novel results for autoencoders, scientific machine
learning, and beyond. We will discuss fundamental connections between matrix factorizations,
classical inverse problems, and autoencoders in the field of signal compression and inverse problems.
In the following, we provide details on the formulation of linear autoencoders through the Bayes
risk formulation and the linear algebra involved in its analysis.
Linear autoencoder. Autoencoders are neural networks that learn to encode input data x into
a compressed representation (latent representation) and then decode it back to reconstruct the
original data x ∈ Rn. Let us consider a linear autoencoder A ∈ Rn×n, where each element in A
represents a trainable parameter. Assuming we have an ℓ-dimensional latent space we may compute
a generic optimal autoencoder by minimizing the Bayes risk, i.e.,

min
rank(A)≤ℓ

f(A) = E ∥(A− I)x∥22 , (1)

given a distribution of the random variable x and where E denotes the expectation and I the
identity mapping. Assuming the random variable x has symmetric positive definite second moment
E xx⊤ = Γ with Cholesky decomposition Γ = BB⊤, then

E ∥(A− I)x∥22 = tr((A− I)Γ(A⊤ − I)) = ∥AB −B∥2F (2)

and (1) is equivalent to
min

rank(A)≤ℓ
∥AB −B∥2F . (3)

For ℓ = n the identity mapping A = I is an optimal solution. For rank constraint problems ℓ < n
an optimal low-rank solution can be found using the following generalization of the Eckart–Young–
Mirsky theorem.
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Theorem 1. Let matrix B ∈ Rn×n have full row rank with SVD given by B = UΣV ⊤. Then

Â = UℓU
⊤
ℓ

is a solution to the minimization problem

min
rank(A)≤ℓ

∥AB −B∥2F ,

having a minimal Frobenius norm ∥Â∥F =
√
ℓ and ∥ÂB − B∥2F =

∑n
k=ℓ+1 σk(B). This solution is

unique if and only if either ℓ = n or 1 ≤ ℓ < n and σℓ(B) > σℓ+1(B).

Following this result, the natural choice for the autoencoder Â to be decomposed into an encoder
and a decoder is Â = D̂Ê, with encoder and decoder being Ê = U⊤

ℓ and D̂ = Uℓ, respectively. Note
that this decomposition is not unique, e.g., let K be any n × n invertible matrix then Ê = U⊤

ℓ K

and D̂ = K−1Uℓ, are valid choices.
Sparse autoencoder. While for small latent spaces ℓ ≪ n one obtains a low-rank approximation and
a compressed approximation on the original signal x. However, compression can also be obtained
utilizing a compressed sensing framework. Let us consider the problem of finding an optimal linear
autoencoder A with the decomposition A = DE into encoder E ∈ Rℓ×n and D ∈ Rn×ℓ where ℓ > n
by minimizing L1-regularized optimization problem

min
D∈Rn×ℓ,E∈Rℓ×n

E ∥(DE − I)x∥2 + λ∥Ex∥1 (4)

with λ > 0. Autoencoders with ℓ > n are referred to as overcomplete autoencoders. Such sparsity-
promoting overcomplete autoencoders were first been introduced in the 2010s with pioneering work
from various research groups but are not commonly utilized. The generalized lasso approach (4) may
generate sparse vectors Ex while maintaining the same expected squared error as an undercomplete
linear autoencoder where ℓ < n.
Numerical results. We present our analytical findings and confirm them through numerical exam-
ples. We approach linear inverse problems using linear autoencoder approximations with theoret-
ical guarantees. Here, we illustrate this with medical tomography, deblurring, and a classic heat
equation. Furthermore, we analyze small angle scattering (SAS) data – a technique from material
science to obtain information about the size, shape, and arrangement of material – via the proposed
sparse autoencoder. We are able to obtain superior compression rates compared to state-of-the-art
approaches.
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