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Abstract

We consider the computation of matrix functions f(A) when the eigenvalues of A are known
to lie on or near a collection of disjoint intervals Σ ⊂ R. The Akhiezer iteration is an inverse-
free iterative method for this task that arises via an orthogonal polynomial expansion of f on Σ.
When Σ consists of two or more intervals, extensions of the Chebyshev polynomials, often called
the Akhiezer polynomials, are employed. This method is an extension of the classical Chebyshev
iteration and an effective implementation of the ideas of Saad [7].
The Akhiezer iteration relies on orthogonal polynomial recurrence coefficients and Cauchy inte-
grals. Importantly, orthonormal polynomials {pj}∞j=0 with respect to a weight function w satisfy a
symmetric three-term recurrence

xp0(x) = a0p0(x) + b0p1(x),

xpj(x) = bj−1pj−1(x) + ajpj(x) + bjpj+1(x), j ≥ 1,
(1)

for some recurrence coefficients {aj}∞j=0, {bj}∞j=0 where bj > 0 for all j. The Cauchy integrals of
these polynomials are defined by

CΣ[pjw](z) =
1

2πi

∫
Σ

pj(s)w(s)

s− z
ds.

As a particular example, consider Σ = [a1, b1] ∪ [a2, b2], b1 < a2. The orthonormal polynomials
with respect to the weight function

w(x) =
1

π
1Σ(x)

√
x− b1√

b2 − x
√
x− a1

√
x− a2

,

were constructed by Akhiezer in [1]. The construction gives an explicit formula for these polynomials
in terms of Jacobi elliptic and theta functions. From this formula and derivation, formulae for their
recurrence coefficients and Cauchy integrals can be derived [2]. When explicit formulae are not
known, e.g., when Σ consists of more than two intervals, N pairs of recurrence coefficients and
Cauchy integrals can be computed in O(N) operations via the numerical method of [3].
Given a function f that is analytic in a region containing Σ, let p0, p1, . . . denote the orthonormal
polynomials with respect to w. Then, for x ∈ Σ, a pj-series expansion for f is given by

f(x) =

∞∑
j=0

αjpj(x), αj =

∫
Σ
f(x)pj(x)w(x)dx.

For a matrix A with eigenvalues on or near Σ, this extends to an iterative method for computing
f(A) by truncating the series:

f(A) =
∞∑
j=0

αjpj(A) ≈
k∑

j=0

αjpj(A) =: Fk+1. (2)
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The coefficients {αj}∞j=0 and polynomials {pj(A)}∞j=0 can be generated via Cauchy integrals and
recurrence coefficients, respectively. Applying (1), the polynomials are generated as follows:

p0(A) = I,

p1(A) =
1

b0
(Ap0(A)− a0p0(A)),

pj(A) =
1

bj−1
(Apj−1(A)− aj−1pj−1(A)− bj−2pj−2(A)), j ≥ 2.

Let Γ be a counterclockwise oriented curve that encloses the spectrum of A such that f is analytic
in a region containing Γ. Then,

αj =

∫
Σ
f(x)pj(x)w(x)dx =

∫
Σ

(
1

2πi

∫
Γ

f(z)

z − x
dz

)
pj(x)w(x)dx.

Applying a quadrature rule with nodes {zℓ}mℓ=1 and weights {wℓ}mℓ=1 to the inner integral, the
coefficients can be approximated via Cauchy integrals as

αj ≈
∫
Σ

1

2πi

m∑
ℓ=1

f(zℓ)

zℓ − x
pℓ(x)w(x)dx = −

m∑
ℓ=1

f(zℓ)CΣ[pjw](zℓ).

Assuming that one has access to such an approximation, the truncated series (2) can be implemented
as an iteration as in Algorithm 1. The resulting method has a computable and provable geometric
rate of convergence that is independent of the dimension of A and governed by the classical exterior
Green’s function with pole at infinity from potential theory. We remark that once the coefficients
αj are known, this algorithm is the same for all matrix functions.

Algorithm 1: Akhiezer iteration for matrix function approximation
Input: f , A, and functions to compute recurrence coefficients ak, bk and pk-series coefficients
αk.

Set F0 = 0.
for k=0,1,… do

if k=0 then
Set P0 = I.

else if k=1 then
Set P1 =

1
b0
(AP0 − a0P0).

else
Set Pk = 1

bk−1
(APk−1 − ak−1Pk−1 − bk−2Pk−2).

end
Set Fk+1 = Fk + αkPk.
if converged then

return Fk+1.
end

end

A particular application pertains to the solution of Sylvester equations of the form

XA−BX = C, (3)
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Runtime (seconds)
n Akhiezer Factored ADI Bartels–Stewart

100 0.0639 0.0116 0.0060
500 0.2263 0.3939 0.2836

1000 0.4947 1.9799 1.8147
1500 0.8297 4.8730 6.5464
2000 1.3224 9.6079 21.3945

Table 1: Runtime for solving (3) to full precision where A ∈ Rn×n has spectrum contained in [2, 3],
B ∈ Rn×n has spectrum contained in [−1.8,−0.5], and C is rank 2.

where the spectra of A ∈ Cn×n and B ∈ Cm×m lie in known intervals. If these intervals are disjoint,
the unique solution X to (3) is the lower left block of the matrix

sign

(
A 0
C B

)
, (4)

where sign evaluates to 1 on the spectrum of A and −1 on the spectrum of B [6].
Algorithm 1 can be directly applied to compute (4); however, its naive use requires the computation
of potentially dense matrix-matrix products and blocks that are irrelevant to the approximate
solution. In the case where C = UV is low-rank, this can be circumvented by deriving an equivalent
iteration for only the relevant block entry, writing updates in block form and compressing at each
iteration.
Such an implementation is effectively O(n2) for A,B ∈ Cn×n, as it requires only matrix-vector
products and the compression of low-rank objects. In contrast, when the coefficient matrices are
dense, rational methods and direct solvers will typically be O(n3). We compare timings of such
an implementation with the Bartels–Stewart algorithm [4] and factored Alternating-Directional-
Implicit (ADI) iterations [5] in Table 1. The lower computational complexity is reflected in these
timings, as the Akhiezer iteration has a shorter runtime than competing methods when n ≥ 500.
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