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Abstract

Computing the QR factorization of tall-and-skinny matrices is a critical component of many sci-
entific and engineering applications, including the solution of least squares problems, block or-
thogonalization kernels for solving linear systems and eigenvalue problems within block or s-step
Krylov methods, dimensionality reduction methods for data analysis like Principal Component
Analysis, and many others. Two of the most popular high performance QR algorithms for tall-
and-skinny matrices are the CholeskyQR2 and shifted CholeskyQR3 algorithms [3, 4], thanks to
their communication-avoiding properties along with their exploitation of vendor provided highly-
optimized dense linear algebra subroutines, allowing them to achieve high performance on rapidly
evolving modern computer architectures. However, CholeskyQR2 may fail to accurately factor-
ize a matrix V when its condition number κ(V ) ⪆ u−1/2, where u is unit roundoff [12]. Shifted
CholeskyQR3 is numerically stable as long as κ(V ) ⪅ u−1, but it requires over 50% more com-
putational and communication cost than CholeskyQR2 [3]. Although TSQR [2] is a more stable
communication-avoiding algorithm than the aforementioned Cholesky-based methods, it relies on
a non-standard reduction operator, which can make it substantially slower than CholeskyQR2 in
practice [4], and is significantly harder to implement efficiently on high performance GPUs. Hence,
Cholesky-based QR methods remain popular on modern architectures.
Random sketching has become a popular dimension reduction technique in the fields of numerical
linear algebra and data analysis. The central premise of random sketching is to embed a set V ⊂ Rn

into a lower-dimensional space via some random projection S : Rn → Rs, with s ≪ n. In numerical
linear algebra applications, the random sketch matrix S ∈ Rs×n is often selected to be an (ε, d,m)
oblivious subspace embedding, i.e., for any m-dimensional subspace V ⊂ Rn and x ∈ V , there is
some ε ∈ [0, 1) such that √

1− ε ∥x∥2 ≤ ∥Sx∥2 ≤
√
1 + ε ∥x∥2,

with probability at least 1− d [8, 9]. Such (ε, d,m) oblivious subspace embeddings S are attractive
in numerical linear algebra, because if one chooses the subspace V ⊂ Rn to be the column space of
a matrix V ∈ Rn×m, the embeddings can be shown to approximately preserve singular values,

(1 + ε)−1/2 σmin(SV ) ≤ σmin(V ) ≤ σmax(V ) ≤ (1− ε)−1/2 σmax(SV ),

and therefore approximately preserve condition numbers,

κ(V ) ≤
√

1 + ε

1− ε
κ(SV ),

with probability at least 1 − d. In the context of QR factorizations, one can factorize the small
sketched matrix QR = SV , and use the triangular factor R as a preconditioner for the large
unsketched matrix V , which is effective because

κ(V R−1) ≤
√

1 + ε

1− ε
κ(SV R−1) =

√
1 + ε

1− ε
= O(1),

for ε sufficiently below 1. This approach is known as the sketch-and-precondition framework [7].
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In this talk, we present the results from our recent work [5], which analyzes a randomized tall-
skinny QR algorithm called randomized Householder-Cholesky QR (rand_cholQR). The algorithm
uses the sketch-and-precondition framework with Householder QR as a preprocessing step before
following up with a pass of CholeskyQR to fully orthogonalize the preconditioned matrix with
little computational and communication cost. In order to reduce the cost of the computations
even further, we propose to use “multisketching,” i.e., the use of two consecutive random sketch
matrices, within the sketch-and-precondition framework. Our approach is general in the sense that
our analysis applies to any two oblivious subspace embedding sketching matrices, but is specifically
motivated by the use of a large sparse sketch followed by a smaller dense sketch, such as a Gaus-
sian or Radamacher sketch [1], as this particular strategy significantly reduces the complexity of
applying the sketch operator. Our analysis applies in particular to Count-Gauss (one application
of CountSketch followed by a Gaussian sketch), as described in [6, 10, 11].
We prove that with high probability, the orthogonality error of rand_cholQR is on the order of
unit roundoff for any numerically full-rank matrix V (i.e., κ(V ) ⪅ u−1) and hence it is as stable
as shifted CholeskyQR3 and it is significantly more numerically stable than CholeskyQR2. Our
numerical experiments ilustrate the theoretical results and suggest that rand_cholQR often succeeds
for numerically rank-deficient problems as well, unlike either CholeskyQR2 or shifted CholeskyQR3.
In addition, the rand_cholQR algorithm may be implemented using the same basic linear algebra
kernels as CholeskyQR2. Therefore, it is simple to implement and has the same communication-
avoiding properties. We perform a computational study on a state-of-the-art GPU to demonstrate
that rand_cholQR can perform up to 4% faster than CholeskyQR2 and 56.6% faster than shifted
CholeskyQR3, while significantly improving the robustness of CholeskyQR2.
In summary, our primary contribution consists of a new error analysis of a multisketched ran-
domized QR algorithm, proving it can be safely used for matrices of larger condition number than
CholeskyQR2 can handle. Numerical experiments confirm and illustrate the theory. Our secondary
contribution is a computational study on a state-of-the-art GPU that tangibly demonstrates that
the multisketched algorithm has superior performance over the single sketch algorithms and similar
performance to the high performance but less stable CholeskyQR2 algorithm.
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