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Abstract

Thanks to influential works like [8, 1], many classical problems in numerical linear algebra (NLA)
can be formulated as optimization problems on smooth and differentiable manifolds. The link
with optimization on manifolds allows us to approach these problems from the world of numerical
optimization. The archetypical example is the symmetric eigenvalue problem (EVP): the dominant
k-dimensional eigenspaces of A correspond to extrema of the partial trace function

f(X) = −Trace(XTAX), (1)

where X ∈ Rn×k is an orthonormal matrix (that is, XTX = Ik). Due to the partial trace being
invariant by orthogonal transformation on the right (that is, X ⇝ XQ with orthogonal Q), this
problem is naturally stated on Gr(n, k), the Grassmann manifold of k-dimensional subspaces in
Rn. Minimizing f by the Riemannian steepest descent method is, in specific cases, equivalent to
the power method.
It is well known that the steepest descent method converges exponentially fast, in distance to the
optimizer and in function value, when the objective function is locally strongly convex. Applied to
spectral problems in NLA, a nonzero spectral gap is required to ensure uniqueness and the initial
estimate has to be sufficiently close to the optimal subspace. Unfortunately, the latter condition is
usually very stringent. For a symmetric matrix A with eigenvalues λ1 ≥ · · · ≥ λn, for example, we
have shown in [5] that (1) is geodesically convex in

N =

{
span(X) ∈ Gr(n, k) : sin2(θk) ≤

λk − λk−1

λ1 + λk

}
.

Here, θk is the kth principal angle between span(X) and the dominant eigenspace span(V ). While
this is an improvement over more direct estimates that require θk = O(δ), the condition θk = O(

√
δ)

is still small.
Fortunately, classical (geodesic) convexity is not needed to have gradient descent converge expo-
nentially fast. In the Euclidean case, an old result by [11] proves that the Polyak–Łojasiewicz (PL)
condition,

∃µ > 0 s.t. ∥∇f(x)∥2 ≥ 2µ(f(x)− f∗), ∀x ∈ Rn, (2)
is sufficient to guarantee fast (exponential) convergence in function value. The PL condition with
constant µ is weaker than µ strong convexity
More recently, an even weaker notion of strong convexity that relates to convergence with respect
to distance to the optimum, has been studied [7, 10, 5]. The property is called weak-quasi-strong-
convexity (WQSC) and is defined in the Euclidean case as follows:

∃a > 0, µ > 0 s.t. f(x)− f∗ ≤ 1

a
⟨∇f(x), x− xp⟩ −

µ

2
∥x− xp∥2, ∀x ∈ Rn,

with xp the projection of x onto the solution set of minimizers of f .
We have shown in [5, 2] that the manifold version of the WQSC property applies to the following
spectral problems:
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• Symmetric EVP of A: the objective function f in (1) is WQSC with parameters a(span(X)) =
θk/ tan θk and µ = 8δ/π2.

• Symmetric generalized EVP of (A,B) with B ≻ 0: the objective function

f(span(X)) = −Trace((XTBX)−1XTAX)

is WQSC with parameters a(span(X)) = σmin(V
TBX(XTBX)−1/2) and µ = 8δ/π2.

Once WQSC is shown to hold, it can be used to analyse accelerated versions of gradient descent
[7, 6]. For the symmetric EVP, the Riemannian conjugate gradient method from [4] also leads to
practical improvements when comparing to other accelerated gradient methods, like the LOBPCG
method of [9].
Would it be possible to relax these generalized convexity properties even more? In other words,
suppose gradient descent converges exponentially fast when started in any point in a set around the
optimum, then which property does f satisfy? As shown in [3], the objective needs to be WQSC
when measuring convergence in distance to the optimum. Recently, we have also shown that only
the PL condition is required for convergence in function value. Hence, PL and WQSC are in some
sense necessary and sufficient for a fast gradient method.
An added bonus of the optimization viewpoint is that gapless problems can be treated and analysed
fairly easily. The convergence of gradient descent is no longer exponential but only algebraic.
This talk will present a general overview of these properties and highlight algorithmic and analytical
applications from NLA. The contents are based on joint work with Pierre-Antoine Absil, Foivos
Alimisis, and Yousef Saad.
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