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Abstract

Block Lanczos-type solvers, such as the block BiCGSTAB method [3], for large sparse linear systems

AX = B, A ∈ Rn×n, B ∈ Rn×s, s ≪ n

often exhibit large oscillations in the residual norms. In finite precision arithmetic, the large oscil-
lations lead to a large residual gap (the difference GRk

between the recursively updated residual Rk

and the explicitly computed residual B − AXk) and a loss of attainable accuracy of the approxi-
mations, as observed in

∥GRk
∥ − ∥Rk∥ ≤ ∥B −AXk∥ ≤ ∥GRk

∥+ ∥Rk∥, GRk
:= (B −AXk)−Rk.

This problem is addressed by using cross-interactive residual smoothing (CIRS). Just as the stan-
dard Lanczos-type solvers for a single linear system have been extended to their global and block
versions for solving systems with multiple right-hand sides, similar extensions of CIRS are naturally
considered. While we have developed the global CIRS scheme (Gl-CIRS) in our previous study [1],
we propose a block version (Bl-CIRS) in this study. Then, we demonstrate the effectiveness of
Bl-CIRS from various perspectives, such as theoretical insights into the convergence behaviors of
the residual and approximation norms, numerical experiments on model problems, and a detailed
rounding error analysis for the residual gap. In particular, we show for the case of Bl-CIRS that
orthonormalizing the columns of direction matrices plays an important role in reducing the residual
gap. The presented analysis also complements our previous study above that includes an evaluation
for the residual gap of the block Lanczos-type solvers.

Advances in residual smoothing Block Lanczos-type solvers typically update the kth approx-
imation Xk and residual Rk by using the recursion formulas

Xk+1 = Xk + Pkα
□
k , Rk+1 = Rk − (APk)α

□
k , k = 0, 1, . . . ,

respectively, where Pk ∈ Rn×s is a direction matrix and α□
k ∈ Rs×s is determined under a certain

condition. Residual smoothing was introduced by Schönauer [7] to Lanczos-type solvers for a
single linear system to get a non-increasing sequence of residual norms [8]. A block version of
the simple residual smoothing (Bl-SRS) was presented by Jbilou [5]. Let Xk and Rk be the kth
primary approximation and residual, respectively. Then, new sequences of approximations Yk and
the corresponding smoothed residuals Sk(:= B −AYk) are generated by the recursion formulas

Yk+1 = Yk + (Xk+1 − Yk)η
□
k+1, Sk+1 = Sk + (Rk+1 − Sk)η

□
k+1, k = 0, 1, . . . ,

respectively, where Y0 = X0, S0 = R0, and η□k ∈ Rs×s is a parameter matrix. With a local
minimization of the smoothed residual norm in choosing η□k , a monotonically decreasing sequence
of ∥Sk∥ is obtained.
Studies on the relationship between residual smoothing and the residual gap have an interesting his-
tory. For a single right-hand side case, Gutknecht and Rozložník [4] clarified that the conventional

1



Table 1: Difference in the recursion formulas for updating smoothed residuals.
Type SRS scheme CIRS scheme

Standard
Ax = b

[7, 8]
sk = sk−1 + ηk(rk − sk−1),
rk, sk−1 ∈ Rn, ηk ∈ R

[2, 6]
sk = sk−1 − ηkAvk,

vk, sk−1 ∈ Rn, ηk ∈ R

Global
AX = B

[9]
Sk = Sk−1 + ηk(Rk − Sk−1),
Rk, Sk−1 ∈ Rn×s, ηk ∈ R

[1]
Sk = Sk−1 − ηkAVk,

Vk, Sk−1 ∈ Rn×s, ηk ∈ R

Block
AX = B

[5]
Sk = Sk−1 + (Rk − Sk−1)η

□
k ,

Rk, Sk−1 ∈ Rn×s, η□k ∈ Rs×s

Present study
Sk = Sk−1 − (AQ̃k)η̃

□
k ,

Q̃k, Sk−1 ∈ Rn×s, η̃□k ∈ Rs×s

smoothing schemes (including the Zhou–Walker implementation [10]) do not help to improve the
attainable accuracy. To be more specific, rounding errors accumulated in the primary sequences
propagate to the smoothed sequences, and the smoothed true residual norms stagnate at the same
order of magnitude as the primary ones. In order to remedy this phenomenon, Komeyama et al. [2, 6]
modified the Zhou–Walker implementation so that the primary and smoothed sequences influence
one another. This modification is referred to as cross-interactive residual smoothing (CIRS) and is
indeed effective in reducing the residual gap and increasing attainable accuracy. As SRS has been
extended to global and block versions [9, 5], CIRS is also extended. In this perspective, our previous
study [1] presented a global version of CIRS (Gl-CIRS) for the global- and block-type solvers, and
therefore, we propose a block version of CIRS (Bl-CIRS) in this study. Table 1 summarizes the
recursion formulas for the aforementioned residual smoothing schemes. This table shows that this
study fills a gap in the literature of the CIRS schemes.

Block cross-interactive residual smoothing This study proposes updating approximations
and the corresponding residuals by the recursion formulas

smoothed Yk+1 = Yk + Vk+1η
□
k+1, Sk+1 = Sk − (AVk+1)η

□
k+1,

primary Xk+1 = Yk+1 + Vk+1(Is − η□k+1), Rk+1 = Sk+1 − (AVk+1)(Is − η□k+1),

respectively, for k = 0, 1, . . . with Y0 = X0 and S0 = R0 so that the primary and smoothed sequences
influence one another, where Vk+1 = Vk(Is−η□k )+ P̃k is an auxiliary matrix for η□0 = O ∈ Rs×s and
V0 = O ∈ Rn×s. Here, P̃k ∈ Rn×s is a direction matrix in the recursion formula Xk+1 = Xk + P̃k.
Again with a local minimization of the smoothed residual norm in choosing η□k , a monotonically
decreasing sequence of ∥Sk∥ is obtained. Note that the essential difference of Bl-CIRS from Gl-
CIRS [1, Algorithm 3.1] is that the smoothing parameter η□k of Bl-CIRS is an s-by-s matrix instead
of a scalar.
For numerical stability, Bl-CIRS needs to orthonormalize the columns of the auxiliary matrix Vk

for each iteration. Let Vk = Q̃kξ̃k be the QR decomposition of Vk, where Q̃k ∈ Rn×s and ξ̃k ∈ Rs×s

are the Q- and R-factors, respectively. With the auxiliary matrix η̃□k := ξ̃kη
□
k , the above formulas

are equivalently rewritten as

smoothed Yk+1 = Yk + Q̃k+1η̃
□
k+1, Sk+1 = Sk − (AQ̃k+1)η̃

□
k+1,

primary Xk+1 = Yk+1 + Q̃k+1(ξ̃k+1 − η̃□k+1), Rk+1 = Sk+1 − (AQ̃k+1)(ξ̃k+1 − η̃□k+1)
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together with Vk+1 = Q̃k(ξ̃k − η̃□k ) + P̃k for k = 0, 1, . . . .
Our main results via a rounding error analysis shows that Bl-CIRS with the orthonormalization
strategy suppresses the residual gap.

Theorem 1. In finite precision arithmetic, let Xk ∈ Fn×s and Rk ∈ Fn×s be the kth approximation
and residual generated by the recursion formulas

Xk = Xk−1 + Q̂k−1α
□
k−1, Rk = Rk−1 − (AQ̂k−1)α

□
k−1, k = 0, 1, . . . , (1)

respectively, where F ⊂ R is a set of floating point numbers and Q̂k−1 is a Q-factor of the di-
rection matrix Pk−1 obtained from the QR decomposition with Givens rotations or Householder
transformations. Then, with X0 = O, the residual gap GRk

satisfies the bound

∥GRk
∥ <

(
8
√
sγm+3s + γ1

)
k∥A∥ max

0<i≤k
∥Xi∥+ kγ1 max

0<i≤k
∥Ri∥,

where γk := ku/(1− ku) with a unit roundoff u and m is the maximum number of nonzero entries
per row of A.

In the case of Bl-CIRS, replacing Xk and Rk by Yk and Sk, respectively, in (1), this theorem holds
for the residual gap GSk

= (B−AYk)−Sk. Therefore, even when using an inexact orthonormaliza-
tion for the columns of iteration matrices, Bl-CIRS in which the residual and approximation norms
converge smoothly is indeed useful to reduce the residual gap. This theoretical result is consis-
tent with our numerical results. Numerical experiments demonstrate that Bl-CIRS is effective for
suppressing the residual gap and improving the attainable accuracy of the approximations.
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