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Abstract

Modern hardware increasingly supports not only single and double precisions, but also half and
quadruple precisions. These precisions provide new opportunities to considerably accelerate linear
algebra computations while maintaining numerical stability and accuracy. Efforts on developing
mixed precision algorithms in the numerical linear algebra and high performance computing com-
munities have mainly focussed on linear systems and least squares problems. Eigenvalue problems
are considerably more challenging to solve and have a larger solution space that cannot be computed
in a finite number of steps [5].
There are two classes of algorithms for symmetric eigenproblems: (i) those that work directly on
the matrix, such as the Jacobi algorithm and the QR-based Dynamically Weighted Halley (QDWH-
eig) algorithm and (ii) those that reduce the matrix to tridiagonal form in a finite number of steps
and then employ an iterative scheme to compute all or just part of the eigenvalues and/or the
eigenvectors, such as bisection and inverse iteration (BI), the QR algorithm, and the divide-and-
conquer algorithm (DC). All these algorithms have pros and cons. DC and the method of multiple
relatively robust representations (MR), which is a sophisticated variant of inverse iteration, are
generally much faster than QR and BI on large matrices, with MR performing the fewest floating
point operations but at a lower MFLOPS rate than DC. The latter and QR are the most accurate
algorithms with observed accuracy O(

√
nu), where u is the working precision, n the size of the

matrix, and accuracy is measured in terms of scaled residual norms and loss of orthogonality for
the eigenvectors [1]. None of these eigensolvers exploits the low precisions available in modern
hardware.
A key question is how can we exploit access to multiple precisions arithmetic to accelerate symmetric
eigensolvers while maintaining numerical stability and accuracy?
In terms of arithmetic cost, solving a symmetric eigenvalue problem is about 27 times more ex-
pensive than solving a symmetric positive definite linear system. Unlike for linear systems for
which the O(n3) part of the computation can be performed at low precision and the n-dimensional
solution refined at working precision in O(n2) operations, it can be shown that for the eigenvalue
problem, some of the O(n3) operations need to be performed in the working precision if one hopes
to maintain numerical stability and achieve accuracy. So to gain any speedup, these should be
BLAS 3 operations, i.e., highly optimized matrix-matrix multiplies. Modern architectures execute
matrix multiplies of large size n at least 18 faster than symmetric eigensolvers on the same size
matrices. Low precision arithmetic can be used to preprocess or to precondition the eigenproblem
to allow for a faster solution.
In this talk we concentrate on symmetric positive definite matrices A ∈ Rn×n and consider a mixed
precision preconditioned Jacobi algorithm that uses three precisions uh < u < uℓ. The precondi-
tioner Q̃ is an approximate eigenvector matrix that is efficiently computed using a combination of
low and working precisions. Zhang and Bai [7] and Zhou [8] suggested to compute an eigenvector
matrix at low precision and then orthogonalize it to working precision so that

∥Q̃T Q̃− I∥2 ≤ p1u < 1, (1)
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where p1 is a low degree polynomial in n. It is essential that the preconditioner Q̃ satisfies (1) to
ensure that the eigenvectors returned by the mixed precision preconditioned Jacobi algorithm are
orthogonal to working precision u. We discuss several alternative efficient ways to construct such
preconditioner and prove it reduces the off-diagonal entries of A to a level determined by the chosen
low precision uℓ so that the initial slow convergence phase of the Jacobi algorithm can be skipped.
Demmel and Veselič [2] showed that the eigenvalues computed by the Jacobi algorithm with stop-
ping criterion |aij | ≤

√
aiiajj for all i, j satisfy

|λi(A)− λ̃i(A)|
|λi(A)|

≤ p(n)uκS2 (A), (2)

where λi(A) and λ̃i(A) denote the ith largest exact and computed eigenvalue of A, p(n) is a low
degree polynomial and u is the working precision. Here κS2 (A) is the scaled condition number of A
defined by

κS2 (A) = κ2(DAD), D = diag(a
−1/2
ii ),

where κ2(B) = λ1(B)/λn(B). For the QR and DC algorithms, the relative error is bounded
by n1/2p(n)uκ2(A) so when κ2(DAD) ≪ κ2(A), the Jacobi algorithm can produce much more
accurate approximations to the smaller eigenvalues than QR or DC algorithms.
Malyshev [6] and Drygalla [3, 4] suggest that preconditioning the matrix at a precision uh higher
than the working precision u improves the accuracy of the spectral decomposition computed by
the preconditioned Jacobi algorithm. However, Malyshev only discuss the backward error and
Drygalla only claims the high accuracy property without proving it. Let us denote by Ã and
Ãcomp the product Q̃TAQ̃ computed in exact and floating point arithmetic, respectively. We prove
under mild assumptions that the relative errors in the computed eigenvalues are proportional to
uκS2 (Ãcomp) and uκS2 (Ã) instead of uκS2 (A) which appears in (2). Moreover, we prove that if Ã is
θ-scaled diagonally dominant, i.e., θ = ∥D̃ÃD̃∥2 < 1 then the scaled condition numbers κS2 (Ã) and
κS2 (Ãcomp) are of order 1. Hence, all the eigenvalues are computed to high relative accuracy. We
remark that any preconditioner Q̃ such that off(Ã)/mini(ãii) < 1, where off(Ã) = (

∑
i ̸=j ã

2
ij)

1/2,
yields an Ã that is scaled diagonally dominant. For a preconditioned matrix Ã that is not scaled
diagonally dominant, we use a result by Demmel and Veselič [2, Prop. 6.2] to argue that if off(Ã) is
sufficiently small so that we can treat the diagonals of Ã as its approximate eigenvalues, the scaled
condition numbers κS2 (Ãcomp) and κS2 (Ã) are significantly smaller than κS2 (A).
Finally, we present numerical results to support our theoretical analysis.
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