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Abstract

Multiway arrays, commonly referred to as higher-order tensors, are a natural data structure for
representing multi-dimensional data and modeling processes consisting of composite interactions
between factors. The tubal tensor framework [6, 1, 5] views a tensor as a ‘matrix of tubes’, where
tubes are elements of a vector space supplemented with a binary, bilinear tubal multiplication,
thus endowing the set of tubes with scalar-like properties that enable matrix mimetic tensor-tensor
multiplication. From this perspective, tensors represent t-(tube-) linear mappings between Hilbert
C*-modules over the algebra of tubes [3, 2], for example, a 3rd order tensor X ∈ Rm×p×n represents a
t-linear mapping from Rp×1×n to Rm×1×n, and the t-product of X with a tensor Y ∈ Rp×q×n is a tensor
X ∗Y ∈ Rm×q×n that represents the composition of the two mappings. The matrix mimetic nature
of the t-product enables an almost direct translation of many matrix computations to the tensor
setting in a way that preserve, to some extent, the theoretical properties of the original operations,
e.g., perhaps most notable, the t-SVD which is a straightforward extension of the matrix SVD,
and enjoys an Eckart-Young like optimality result for rank truncations of a tensor[2, 4, 5]. The
extensive, still-growing set of matrix algorithms and tools, and the ease of their extension to tensors
via the tubal framework, make it a powerful tool for dealing with multi-dimensional problems.
In many applications, tensor data is obtained by a finite set of observations of a multi-dimensional
process evolving over a domain such as time or space. These processes are often modeled as elements
within an infinite-dimensional Hilbert space.However, when tubes reside in an infinite-dimensional
Hilbert space, the associated tubal algebra lacks certain properties present in the finite-dimensional
case, such as a multiplicative identity and von Neumann regularity. This limitation hinders any
direct extension of the tubal tensor framework to infinite-dimensional spaces, and, in particular,
the tubal SVD is no longer viable.
In this work, we introduce the quasitubal tensor framework, an extension of the tubal tensor
framework to tubal algebras defined on infinite-dimensional separable Hilbert spaces. Notably, we
establish the existence of a quasitubal SVD and prove Eckart-Young optimality results for low-rank
truncations of quasitubal SVD. With a strong theoretical basis, the quasitubal framework offers
attractive approach for tackling multi-way problems in infinite-dimensional spaces.

Background. An order-N tensor X over a field F (either C or R) is an object in Fd1×⋯×dN . The
line of research on tubal tensor algebra [5, 1, 6, 4] views tensors ‘matrices of tubes’. For example,
a 3rd order tensor X ∈ Fm×p×n is considered as an m×p matrix over Fn whose j, k (tubal) entry is
xjk ∈ Fn. The t-product [6, 1, 5] of two tubes x,y ∈ Fn is defined as x ∗ y = ifft(x̂⊙ ŷ), where
x̂ = fft(x) is the Fourier transform of x, and ⊙ is the Hadamard product.
The mode-3 multiplication of X by a matrix A ∈ Fr×n is the tensor X ×3 A ∈ Fm×p×r whose j, k tube
fiber is given by Axjk ∈ Fr. In particular, let F be the n×n DFT matrix and define X̂ = X×3F. The
tensor-tensor t-product of X ∈ Fm×p×n,Y ∈ Fp×q×n is defined by X∗Y = (X̂△Ŷ)×3F−1 with Z = X△Y

a tensor such that Z∶,∶,j = X∶,∶,jY∶,∶,j . Note that the t-product of two tubal-tensors is in-fact the
multiplication of matrices over the tubal ring. More general version of the t-product is obtained
by replacing F with any invertible matrix M [2, 4] (so X̂ = X×3M), resulting in the ⋆M -product,
X⋆MY = (X̂△ Ŷ)×3M−1.
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The p×p identity tensor Ip ∈ Fp×p×n is such that X⋆MIp = X,Ip⋆MY = Y. The Hermitian adjoint
of X ∈ Fm×p×n is the tensor XH ∈ Fp×m×n with X̂H

j,k,h = x̂k,j,h. A slice A⃗ ∈ Fp×1×n is ⋆M unit nor-
malized if A⃗H⋆M A⃗ = 1, and we say that A⃗, B⃗ ∈ Fp×1×n are ⋆M -orthogonal if A⃗H⋆M B⃗ = 0. A ten-
sor U is said to be ⋆M -unitary if UH ∗U = U⋆MUH = I. The t-SVDM of X ∈ Fm×p×n is a de-
composition X = U⋆MS⋆MVH where U ∈ Fm×m×n,V ∈ Fp×p×n are ⋆M -unitary, and S ∈ Fm×p×n is f-
diagonal, i.e., S∶,∶,k are diagonal for all k. The t-rank of X under ⋆M [5, 2] is the number of
non-zero diagonal tubes in S, and the multi-rank of X under ⋆M [3, 4] is a vector ρ of integers
ρk = rank(X̂∶,∶,k). Given r ≤ min(m,p), the t-rank r truncation of X under ⋆M is the tensor
Xr = U∶,1∶r,∶⋆MS1∶r,1∶r,∶⋆MV∶,1∶r,∶

H = ∑r
j=1 U⃗j⋆MSj,j,∶⋆M V⃗

H

j with U⃗j = U∶,j,∶ being the jth ‘column’ slice
of U. For ρ = (ρ1, . . . , ρn) with ρk ≤ min(m,p), the multi-rank ρ truncation of X under ⋆M is
the tensor Xρ such that [X̂ρ]∶,∶,k = Û∶,1∶ρk,∶△ Ŝ1∶ρk,1∶ρk,∶△ V̂

H

∶,1∶ρk,∶. The central result of the tubal
framework is that the above truncations are optimal in the sense of Frobenius norm error, provided
that M is a nonzero multiple of a unitary matrix. Formally, let M be a nonzero multiple of a
unitary matrix and X ∈ Fm×p×n. If Y ∈ Fm×p×n is of t-rank r (respectively, multirank ρ) under ⋆M
then ∥X −Y∥F ≥ ∥X −Xr∥F [5, 2] (respectively, ∥X −Y∥F ≥ ∥X −Xρ∥F [4]).
In the above 3rd order example, each entry xjk ∈ Fn of X represents a function xjk∶Ω→ F, where
Ω = [n] = {1, . . . , n} and xj,k,t = xjk(t). A common assumption in practice, is that the domain Ω of
xjk is actually a compact subset of R and the values xj,k,h are point evaluations of xjk on a grid
t1 ≤ t2 ≤ ⋯ ≤ tn ∈ Ω such that xj,k,h = xjk(th). Furthermore, it is possible to consider the functions
xjk as elements of a Hilbert space (H, ⟨⋅, ⋅⟩H) in which vector addition and scalar multiplication are
defined pointwise. In this case, we have a ‘matrix of functions’ in H and we write X ∈Hm×p.

Matrices over Hilbert Spaces. Suppose that H is a separable Hilbert space over F, and let
{ϕj}j∈Z be an orthonormal basis in H. Then, the mapping x↦ Φx = ∑j⟨x,ϕj⟩Hej where ej is
the jth standard basis vector in the space ℓ2 of square summable sequences with the usual dot
product, is an isometry. Note that if a,b ∈ ℓ2 then the elementwise multiplication a ⊙ b is also
in ℓ2. A natural extension of the ⋆M product to H is given by x⋆Φy = Φ∗(Φx⊙Φy) where Φ∗

is the adjoint (and inverse) of Φ. Let X ∈Hm×p and define the mode-3 operation of Φ on X as
the tensor X̂ = X×3Φ ∈ ℓm×p2 with x̂jk = Φxjk. Correspondingly, the the tensor-tensor ⋆Φ -product of
X ∈Hm×p,Y ∈Hp×q is X⋆ΦY = (X̂△ Ŷ)×3Φ∗.

The Challenge of Defining Tubal SVD in Infinite Dimensional Hilbert Space . Let
x ∈H, then the operation Tx defined by Txy = x⋆Φy is a bounded linear operator on H. Further-
more, Tx is Hilbert-Schmidt operator since ∑j ∥Txϕj∥2H = ∑j ∥x̂⊙ ej∥2ℓ2 = ∑j ∣x̂j ∣2 = ∑j ∣⟨x,ϕj⟩H∣2 =
∥x∥2H. Thus, the a multiplicative identity in H is impossible since it would imply that the identity
operator is a Hilbert-Schmidt operator, in contradiction to the infinite-dimensionality of H. Direct
consequences of this are that 1) there are no unit normalized slices in Hp 2) there are no ⋆Φ -unitary
tensors in Hm×m. Most importantly, no decomposition of the form X = U⋆ΦS⋆ΦVH can be defined
in Hm×p such that U ∈Hm×m,V ∈Hp×p are isometries.

Quasitubal Framework. Consider the set Hp ∶=⊕p
j=1H of slices X⃗ = (x1, . . . ,xp) with ele-

mentwise addition and ⋆Φ -product by H elements, e.g., X⃗⋆Φa = a⋆Φ X⃗ = (a⋆Φx1, . . . ,a⋆Φxp) and
X⃗ + Y⃗ = (x1 + y1, . . . ,xp + yp) for X⃗, Y⃗ ∈Hp and a ∈H. An operator T ∶Hp → Hm is said to be
t-linear (or H-linear) if T (a⋆Φ X⃗) = a⋆ΦT X⃗ for all a ∈H, X⃗ ∈Hp. Let L(Hp,Hm) be the set of
t-linear operators from Hp to Hm. Note that such operators are necessarily bounded and linear
over F, hence L(Hp,Hm) ⊂ B(Hp,Hm).
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Our theory is based on the following fundamental observations

Lemma 0.1. An operator T is in L(H) if and only if there exists a bounded sequence τ̂ ∈ ℓ∞ such
that Ta = Φ∗(τ̂ ⊙ â) for all a ∈H. If in addition, T is Hilbert-Schmidt then τ̂ ∈ ℓ2 and there exists
τ ∈H such that Ta = τ⋆Φa for all a ∈H.
As a consequence, T ∈ L(Hp,Hm) if and only if there exists T̂ ∈ ℓm×p∞ such that T X⃗ = Φ∗(T̂ △ ̂⃗X)
for all X⃗ ∈Hp. If in addition, T is Hilbert-Schmidt then T̂ ∈ ℓm×p2 and there exists T ∈Hm×p such
that T X⃗ = T⋆Φ X⃗ for all X⃗ ∈Hp.

We call L(H) elements quasitubes due to their tubal representation in ℓ∞. Respectively, oper-
ators in L(Hp,Hm) are called quasitubal tensors as they retain a tubal tensor structure in the
coordinates of the transform domain. We use the same notation for L(H) and L(Hp,Hm) operators
as for elements in H,Hm×p, therefore, the ⋆Φ product of quasitubal tensors reads as composition of
t-linear operators. While it is not possible to identify the space L(Hp,Hm) with Hm×p (as in the
finite-dimensional case), the notation is still compatible, valid and useful.

Lemma 0.2. The set L(H) with the usual operator addition, scaling, composition, adjoint and
norm, is the smallest commutative, unital C*-algebra in which H is embedded as a *-ideal. And it
follows that L(H,Hp) ≅ L(H)p together with the L(H)-valued inner-product ⟪X⃗, Y⃗⟫ = ∑p

j=1x
∗
j⋆Φyj

is a Hilbert C*-module over L(H), in which Hp is embedded as a *-invariant submodule.

Given X⃗ ∈ L(H)p we have ∣X⃗∣2L(H)p = ⟪X⃗, X⃗⟫ which is a non-negative element in a C*-algebra,
hence has a unique square root ∣X⃗∣L(H)p , and the real valued norm ∥X⃗∥L(H)p = ∥∣X⃗∣L(H)p∥. The
induced “operator norm” of an m×p quasitubal tensors is then ∥X∥ = sup∣Y⃗∣L(H)p=1 ∥X⋆Φ Y⃗∥L(H)m .
Another consequence of the Hilbert C*-module structure over a unital C*-algebra, is the ability to
define ⋆Φ -orthogonality and ⋆Φ -unitarity for quasitubal tensors similarly to the finite-dimensional
case. With the above, the ground is set for construction of a quasitubal SVD:

Theorem 0.3. Let X be anm×p quasitubal tensor, then there exists a decomposition X = U⋆ΦS⋆ΦV∗
with U ∈ L(Hm),V ∈ L(Hp) being ⋆Φ -unitary, and S ∈ L(Hm,Hp) an f-diagonal tensor with diagonal
entries s1 ≥L(H) s2 ≥L(H) ⋯ ≥L(H) smin(m,p) ≥L(H) 0.

The t-rank and multirank of a quasitensor X under ⋆Φ , as well as t-rank and multi-rank truncations,
are defined similarly to the finite-dimensional case. And we have the main result:

Theorem 0.4. Given an m×p quasitubal tensor X, if Y ∈ L(Hp,Hm) is of t-rank r (respectively,
multirank ρ) under ⋆Φ then ∥X −Y∥ ≥ ∥X −Xr∥ (respectively, ∥X −Y∥ ≥ ∥X −Xρ∥).

Objects in Hm×p have the elementwise H norm: ∥X∥2H = ∑j,k ∥xjk∥2H, which is an equivalent to the
Frobenius norm in the finite-dimensional case. Consider X = U⋆ΦS⋆ΦV∗ ∈Hm×p, then S ∈Hm×p

and ∥X∥H = ∥S∥H. Importantly

Theorem 0.5. Given X ∈Hm×p, if Y ∈ L(Hp,Hm) is of t-rank r (respectively, multirank ρ) under
⋆Φ then ∥X −Y∥H ≥ ∥X −Xr∥H (respectively, ∥X −Y∥H ≥ ∥X −Xρ∥H). In particular Xr,Xρ ∈Hm×p.

Possible Applications. Due to the strong theoretical foundation of the quasitubal SVD, a
promising line of research is the development of multivariate functional PCA, in a similar spirit to
our previous work on the finite-dimensional settings [7]. Furthermore, the matrix mimetic nature of
the platform, combined with the optimality results for low-rank truncations suggest that direct ex-
tensions of randomized algorithms for low-rank matrix approximations to the quasitubal setting are
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possible and should offer theoretical guarantees. This opens the door to computational speedups
in modeling and simulations of multi-input multi-output dynamical systems where the quality of
the approximation is about as crucial as the computational cost. We provide numerical examples
for the application of the quasitubal framework to multivariate functional data analysis and signal
processing, and demonstrate the potential of the framework for developing efficient tensor-based
algorithms for such settings.
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