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Abstract

In this work, we aim at approximating the solution A(t) to large-scale matrix differential equations
of the form

Ȧ(t) = F (A(t)), A(0) = A0 ∈ Rm×n. (1)

For large m and n, the solution of (1) becomes expensive; in fact, it may not even be possible
to store the entire matrix A(t) explicitly. To circumvent this limitation, model order reduction
techniques based on exploiting (approximate) low-rank structure of A(t) can be employed. In
particular, dynamical low-rank approximation [3] approximates A(t) by evolving matrices Y (t) on
the manifold Mr of rank-r matrices, reducing memory usage when r ≪ m,n. By the Dirac-Frenkel
variational principle, the matrix Y (t) is obtained by solving the differential equation

Ẏ (t) = Pr(Y (t))F (Y (t)), Y (0) = Y0 ∈ Mr, (2)
where Pr(Y (t)) denotes the orthogonal projection onto TY (t)Mr, the tangent space of Mr at Y (t).
However, the stiffness of this equation leads to a severe step size restriction for standard explicit
time integration methods. To address this issue, special integrators for this equation have been
proposed [4, 2, 5]. Under the assumption

∥F (Y )− Pr(Y )F (Y )∥F ≤ ϵ̃, for all Y ∈ Mr ∩ {suitable neighbourhood of A(t)} (3)
all these methods exhibit at least first-order convergence up to O(ϵ̃).
Assumption (3), which states that F (Y ) is nearly contained in the tangent space, is arguably a
strong assumption. According to [2] and the examples shown, it is possible that A(t) can be well
approximated by a rank-r matrix even if (3) is not satisified with small ϵ̃. When this assumption
fails for small ϵ̃, using tangent space projections in numerical methods risks introducing significant
errors.
In this work, we develop low-rank time integration methods for (1) that do not rely on (3) but only
require A(t) to admit accurate low-rank approximations. Our approach is based on the notion of
projected integrators, which first perform a standard time integration step and then project back
to the manifold. For the manifold Mr, the efficiency of projected integrators is impaired by the
occurrence of high-rank matrices, e.g., during the intermediate stages of a Runge-Kutta method.
Previous work [2] mitigated this with repeated tangent space projections. Here, we propose a
novel alternative using randomized low-rank approximation, employing random sketches instead of
tangent projections to control rank growth efficiently.
To the best of our knowledge, this is the first work to propose and analyze randomized low-rank
approximation methods for time integration. The randomized low-rank Runge-Kutta (RK) methods
proposed in this work combine explicit RK methods with randomized low-rank approximation.
Assuming that the dynamics generated by F preserve rank-r matrices approximately, we derive a
probabilistic result that establishes a convergence order (up to the level of rank-r approximation
error) based on the so-called stage order of the underlying RK method, which matches the order
established in [2] for projected RK methods. However, unlike the results in [2], our numerical
experiments indicate that randomized low-rank RK methods actually achieve the usual convergence
order of the RK method, which can be significantly higher. For the randomized low-rank RK 4,
we also establish order 4 theoretically when allowing for modest intermediate rank increases in the
stages. This compares favorably to order 2 implied by the techniques in [2].
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