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Abstract

The topic of this work is the solution of multiterm linear matrix equations of the form

L(X) := A1XB1 + . . .+AℓXBℓ = F,

under the assumption that the linear operator L is positive definite. These equations often appear
when discretizing elliptic PDEs, and in control problems. In this setting, it is often the case that
F is either a low-rank matrix, or can be well-approximated in this way, i.e., it has fast decaying
singular values. Throughout this work, we assume that F is a low-rank matrix.
A few special cases are easy to handle, and we can prove that the low-rank structure of F is
inherited by X. If ℓ = 1, X and F have the same rank; if ℓ = 2 we have an elegant theory based
on rational approximation that provides upper bounds for the singular values of X with a weak
dependency on the condition number of the operator L [2].
When ℓ > 2, most theoretical guarantees are lost: except for a few special cases, none of the
arguments used for ℓ = 2 can be extended easily. Nevertheless, it can be experimentally verified
that the structure is often present in X; sometimes, this can be justified via other means (such as
the regularity of the solution of the discretized PDE).
Algorithmically, we face similar challenges: the cases ℓ = 1 and ℓ = 2 are well understood, and
efficient low-rank solvers are available (examples include rational and extended Krylov methods, or
the Alternative Direction Implicit method, known as ADI). When ℓ > 2, fewer and less appealing
options are available, mainly based on Krylov solvers for L with low-rank truncation [5]. A major
issue with this class of methods is that the intermediate iterates often have much higher ranks than
the final solution, and aggressive truncations lead to degraded convergence properties.
We focus on the case ℓ > 2, assuming that X is the discretization of the solution to an elliptic
PDE. Assuming that X is well-approximated by a matrix of rank k, the problem can be recast into
the optimization problem

Find min
X

Φ(X), subject to rank(X) = k, Φ(X) :=
1

2
⟨L(X), X⟩ − ⟨F,X⟩,

for some moderate k, where ⟨·, ·⟩ is the standard scalar product inducing the Frobenius norm. The
matrices of rank k have a Riemannian manifold structure, and thus the problem can be conveniently
solved using Riemannian optimization [1, 4]. This idea has been successfully exploited in the past
to solve positive definite Lyapunov equations, which correspond to ℓ = 2 [6]. This strategy restricts
our search to matrices of rank k, and avoids the rank-growth phenomenon often observed in Krylov
methods. The convergence theory for Riemannian optimization schemes can be used to prove
convergence.
However, a straightforward application of a vanilla Riemannian optimization method presents a
major issue: when L arises from an elliptic PDE, it is often ill-conditioned, and so is the Hessian of
the objective function Φ(X). This leads to poor convergence for first-order optimization schemes.
We discuss how the idea of preconditioning can be extended to this setting, and show that one can
design effective modifications to the problem that drastically improve the convergence. The key
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ingredient is finding a map PX on the tangent space at X which is positive definite and approximates
the Hessian in a suitable sense. Then, the preconditioning can be described in two similar ways,
which are only approximately equivalent:

1. We may take gradients with respect to the inner product induced by PX , instead of the
canonical one; this turns the first-order method to be closer to a quasi-Newton scheme.

2. Alternatively, we may use PX to define a non-standard metric and inner product on the
Riemannian manifold, and then apply the first-order scheme in this new setup.

We discuss differences, advantages, and disadvantages of these strategies; we show that is possible
to employ both at the same time at once to design preconditioners for a large class of PDE problems
discretize with finite element methods.
In the examples that we consider, the multiterm matrix equation is often obtained by non-constant
diffusion coefficients in 2D diffusion problems; in this setting it is natural to choose PX as the
projection of the operator obtained discretizing the same equation, but with constant diffusion
coefficients; this typically is an operator of the same form, but with ℓ = 2. Hence, we consider
preconditioners of the form PX = AXB, PX = AX + XB, and PX = AXB + CXD. Applying
these preconditioners in any of the sense described above require to solve an equation on the tangent
space, which is low-dimensional. This is relatively easy to do in the first two cases, but it proves
challenging in the latter, when A,B,C,D ̸= I. We show how to this effectively by combining the
two viewpoints discussed above, and interpreting this preconditioner as a composition of the first
two options.
The proposed algorithm is competitive or faster than the state-of-the art in most cases, and in
particular when the target rank k is moderate. When k is larger, solving the equations on the
tangent space can become a bottleneck. For these cases, we propose yet another preconditioner,
obtained generalizing the ADI iteration to an iteration on the tangent space of the manifold; our
experiment show that it preserves the good convergence properties of the classical ADI scheme
for matrix equations, while being much cheaper to compute than the previous approaches. A few
steps of this “tangent ADI” iteration will prove to be a very good preconditioner for a large class
of problems.
Time permitting, a few extra details essential to produce a robust implementation will be discussed,
such as rank-adaptivity, and the use of randomized linear algebra to effectively estimate the residual;
the latter helps in detectubg possible stagnation due to wrong estimates for the solution rank, and
is essential for deciding when to perform rank changes inside the rank-adaptive scheme.
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