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Abstract

The Extended Dynamic Mode Decomposition (DMD/EDMD) has become a tool of trade in com-
putational data driven analysis of complex nonlinear dynamical systems, e.g. fluid flows, where
it can be used to reveal coherent structures by decomposing the flow field into component fluid
structures, called DMD modes, that describe the evolution of the flow. The theoretical underpin-
ning of the EDMD is the Koopman composition operator that can be used for spectral analysis
of nonlinear dynamical system [6]. The numerical realization and software implementation pose
several challenges to numerical linear algebra, and this contribution discusses few selected ones.
To set the stage, consider the initial value problem

ẋ(t) = F (x(t)) ≡

(
F1(x(t))

...
FN (x(t))

)
, x(t0) = x0, (1)

with state space X ⊂ RN and vector-valued nonlinear function F : X → RN . The corresponding
flow map ϕt is defined as ϕt(x(t0)) = x(t0 + t) = x(t0) +

∫ t0+t
t0

F (x(τ))dτ.

Instead of the states, consider observables (functions of the states) f : X → C, f ∈ F ; e.g. F =
Lp(X , µ) (1 ≤ p ≤ ∞). Koopman operator semigroup (Uϕt)t≥0 is defined by Uϕtf = f ◦ ϕt, f ∈ F .
The Koopman (composition) operator Uϕt is linear operator that can be considered an infinite
dimensional linearization of (1) that takes the action into the space F of observables.
In the case of discrete dynamical system xi+1 = T (xi), the Koopman operator U ≡ UT is defined
on a space of observables F by Uf = f ◦ T, f ∈ F . In practical computation, one always
works with discrete systems. If we run a numerical simulation of the ODE’s (1) in a time interval
[t0, t∗], the numerical solution is obtained on a discrete equidistant grid with fixed time lag ∆t:
t0, t1 = t0+∆t, . . . , ti−1 = ti−2+∆t, ti = ti−1+∆t, . . . In this case, a black-box software toolbox
acts as a discrete dynamical system zi = T (zi−1) that produces the discrete sequence of zi ≈ x(ti).
For ti = t0 + i∆t we have f(x(t0 + i∆t)) = (f ◦ ϕi∆t)(x(t0)) = (Uϕi∆tf)(x(t0)) = (U i

ϕ∆tf)(x(t0)),
where U i

ϕ∆t = Uϕ∆t ◦ . . . ◦ Uϕ∆t .

On the other hand, using Uf = f ◦ T , zi ≈ x(ti), T 2 = T ◦ T , T i = T ◦ T i−1, f(zi) = f(T (zi−1)) =
. . . = f(T i(z0)) = (U if)(z0). Hence, in a software simulation of (1) with the initial condition
z0 = x(t0), we have an approximation (U if)(z0) ≈ (U i

ϕ∆tf)(z0), f ∈ F , z0 ∈ X , i = 0, 1, 2, . . . ,m.
Such a sequence of values from the trajectory of the system may be also obtained by experimen-
tal measurements (e.g. high speed camera recording, wind tunnel measurements, particle image
velocimetry/thermometry), without using/knowing the governing equations. In general, the ob-
servables are vector valued, f = (f1, . . . , fn)

T , and Uf = (Uf1, . . . ,Ufn)T is defined component-wise.
Often n ≫ m. The acquired numerical values of the observables (data snapshots) are assembled
column-wise into the matrix (column index corresponds to discrete time step)

F =(f(x0) ... f(xm−1) f(xm))=

 f1(x0) ... f1(xm−1) f1(xm)
f2(x0) ... f2(xm−1) f2(xm)

...
...

...
...

fn(x0) ... fn(xm−1) fn(xm)

, f(xi+1)= f(T (xi))=(Uf)(xi)= f(T (T (xi−1))).
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The columns of the data snapshot matrix F can be interpreted as the Krylov sequence f ,Uf , . . . ,Umf ,
evaluated at x0, which motivates looking for approximate eigenvalues and eigenvectors of U .
Why is spectral data of U interesting? If (Uϕi)(s) ≈ λiϕi(s), i = 1, . . . ,m, and if for some carefully
and judiciously selected λi1 , . . . , λiℓ and vector coefficients zij (that must be computed)

f(s) ≈
ℓ∑

j=1

zijϕij (s), then (Ukf)(s) =

(Ukf1)(s)
...

(Ukfn)(s)

 ≈
ℓ∑

j=1

zijϕij (s)λ
k
ij , k = 0, 1, . . . (2)

This decomposition (called the Kopman Mode Decomposition, KMD) reveals the latent structure
of the dynamics (in particular when ℓ is relatively small) and allows for forecasting future values,
because applying the powers of U in (2) means pushing the dynamics forward in time.
In this decomposition, the vector coefficients zi’s are approximate eigenvectors of a matrix A such
that Af(xi) = f(T (xi)) for all i. The matrix A is the DMD matrix – it may not be uniquely
determined by the data and only certain Ritz pairs can be computed by a data driven version of
the classical Rayleigh-Ritz extraction procedure, as in the DMD algorithm [8] and its enhancement
[5] that provides computable residuals and uses them to select physically meaningful eigenvalues
and modes, and to guide sparse representation of the snapshot in the KMD.
But, there is a problem. One of the computational/numerical challenges in the Koopman/DMD
framework is the case of non-normal operators, when the computed (Ritz) eigenvectors of the
DMD matrix become severely ill-conditioned. High non-normality of the eigenmodes is not just
a mathematically manufactured and for the sake of academic exercise contrived misfortune. It
does occur in important applications. For instance, Schmid [7] discusses examples of non-normal
operators in fluid flows, and the impact of non-normality on treatment of stability of such flows.
A well-known and intensively studied example is the formulation of the viscous stability problem
for parallel shear flows, in which linearization of the Navier-Stokes equation leads to the Orr-
Sommerfeld linear partial differential equation whose solutions exhibit highly non-normal behavior.
The severity of the problem can be easily demonstrated by running a numerical simulation and
visualizing the pseudospectrum and computing the angles between the eigenvectors. This issue
is mostly ignored in the DMD literature, but the practitioners have experienced the problem in
applications, and it is listed in [10] as one of the challenges in applications of the DMD.
To alleviate the problem of ill-conditioned eigenvectors in the existing implementations of the
Dynamic Mode Decomposition (DMD) and the Extended Dynamic Mode Decomposition (EDMD,
[9]), in [4] we introduce a Koopman-Schur decomposition – Schur decomposition of a data driven
compression of the Koopman operator onto a subspace FN defined by a given dictionary ψ1, . . . , ψN .
The first step in this approach is as follows. As in the EDMD, compute the data driven compression

PFN
U|FN

(
(
ψ1(x) . . . ψN (x)

) f1
...
fN

)=
(
ψ1(x) . . . ψN (x)

)
(UN

 f1
...
fN

),

where PFN
stands for the algebraic least squares projection using the available data, and UN is the

matrix of the compression. With the notation Ψ(x) = (ψ1(x), . . . , ψN (x))T ∈ CN , the action of U
on FN can be compactly written as U(Ψ(x)T z) = Ψ(x)TUNz + R(x)T z, x ∈ Cn, z ∈ CN , where
R(x) = (ρ1(x), . . . , ρN (x))T ∈ CN is the residual that has been minimized over the available data.
In this setting, a well defined object is, instead of UN , another compression – UN is compressed
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onto a N × r POD basis V (computed using the SVD of a data snapshot matrix, with r < N) and
replaced with the r × r Rayleigh quotient Û . In the proposed approach [4], we compute a Schur
decomposition of Û , Û = QTQ∗, and UNZ = ZT becomes a partial Schur form with Z = V Q. On
the operator level, this becomes

U(
(
ψ1(x) . . . ψN (x)

)
Z) =

(
ψ1(x) . . . ψN (x)

)
UNZ +R(x)TZ

=
(
ψ1(x) . . . ψN (x)

)
ZT +R(x)TZ ⋍

(
ψ1(x) . . . ψN (x)

)
ZT. (3)

If we define a new sequence
(
ζ1(x) . . . ζr(x)

)
=
(
ψ1(x) . . . ψN (x)

)
Z, then (3) reads

U
(
ζ1(x) . . . ζr(x)

)
=
(
ζ1(x) . . . ζr(x)

)
T +R(x)TZ ⋍

(
ζ1(x) . . . ζr(x)

)
T. (4)

Since T is upper triangular, (4) contains a nested sequence of partial triangulations

U
(
ζ1 ζ2 . . . ζi

)
⋍
(
ζ1 ζ2 . . . ζi

)
T (1 : i, 1 : i), i = 1, . . . , r. (5)

This Schur form can be reordered – with a suitable unitary matrix Θ, T̃ = Θ∗TΘ is again upper
triangular with diagonal entries corresponding to the eigenvalues in any given order. The new
partial Schur form of UN becomes UN (V QΘ) = (V QΘ)T̃ , T̃ = Θ∗TΘ, and we replace (4) with

U
(
ζ1(x) ζ2(x) . . . ζr(x)

)
Θ ⋍

(
ζ1(x) ζ2(x) . . . ζr(x)

)
Θ(Θ∗TΘ), (6)

i.e. the new functions are generated using Z̃ = ZΘ = V QΘ (Z̃∗Z̃ = Ir),(
ζ̃1(x) . . . ζ̃r(x)

)
=
(
ζ1(x) . . . ζr(x)

)
Θ =

(
ψ1(x) . . . ψN (x)

)
Z̃. (7)

In this framework, the spectral analysis of the snapshots, including the KMD (2), is entirely based on
unitary transformations. The analysis in terms of the eigenvectors as modes of a Koopman operator
compression is replaced with a modal decomposition in terms of a flag of invariant subspaces that
correspond to selected eigenvalues – the partial ordered Schur decomposition provides convenient
orthonormal bases for subspaces determined by any given selection λi1 , . . . , λiℓ of the eigenvalues.
From this point, we proceed in two direction. First, we analyze the convergence (as the size of
the dictionary and the number of data snapshots become infinite) to obtain results analogous to
the EDMD. Then, to have the same functionality as the existing EDMD (snapshot reconstruction
using selected eigenvalues, dynamically changed data window in online applications, forecasting,
formulation with the kernel trick etc.), many technical (algorithms and software related) details
have to be worked out. For instance, in the case of real data, a real ordered partial Schur form is
used and the computation is based on real orthogonal transformations, even when the spectrum
is complex. Other details include e.g. streaming data with dynamically changing data windows.
Numerical experiments show superior performances in the numerically difficult non-normal cases.
The second topic that will be discussed is numerical implementation of the Hermitian case of the
physic informed DMD [1], [3] – if it is a priori known that the underlying operator is Hermitian, how
to ensure that the numerical implementation of the DMD guarantees real spectrum and orthonormal
eigenvectors? What are the other issues when it comes to software implementation [2] e.g. in the
framework of the LAPACK library?
These themes are excellent case study examples that demonstrate the importance of numerical
linear algebra and of the power of numerical analysis of an algorithm – it precisely predicts in what
way it may fail and indicates what has to be done to provably fix the problem.
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