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Abstract

Discrete linear inverse problems arising in many applications in Science and Engineering are for-
mulated as the solution of large-scale linear systems of equations of the form

Axtrue + n = b , (1)

where the discretized forward operator A ∈ Rm×n is large-scale with ill-determined rank, and
n ∈ Rm are some unknown perturbations (noise) affecting the available data b ∈ Rm. In this
setting, in order to recover a meaningful approximation of xtrue ∈ Rn, one should regularize (1).
In this talk we consider variational regularization methods that compute an approximation xreg of
xtrue as

xreg = arg min
x∈Rn

∥R(Ax− b)∥pp + λ∥Lx∥qq , where λ ≥ 0, p, q > 0, R ∈ Rm×m L ∈ Rl×n. (2)

In the above formulation, when p = q = 2, many standard numerical linear algebra tools can be
employed to approximate xreg: these include the SVD of A (when A has some exploitable structure
and L is the identity), early termination of Krylov solvers for (1) (when λ = 0), and hybrid
projection methods. We refer to [2] for a recent survey of these strategies. However, by properly
setting p, q ̸= 2, better approximations of xtrue can be obtained in many scenarios, including: when
the noise n is not Gaussian, nor white, and/or when wanting to enforce sparsity onto Lxreg (e.g., in
the compressive sensing framework, when A is heavily underdetermined). Although many classes of
well-established optimization methods are usually employed to handle the non-smooth and possibly
non-convex instances of (2), in the last decades a number of new solvers based on ‘non-standard’
(such as flexible [1, 4] or generalized [5]) Krylov methods have been successfully considered for this
purpose; see also [3, 7]. Even though the common starting point of such ‘non-standard’ Krylov
solvers is the reformulation of a smoothed version of (2) as an iteratively reweighted least squares
problem, flexible Krylov methods for p = 2 are typically more efficient and stable than generalized
Krylov methods, while the latter can handle also the p ̸= 2 case and many options for L.
This talk introduces new solvers for (2), based on a new flexible Golub-Kahan factorization of the
kind

ÂZk = Uk+1M̄k , Â⊤Yk+1 = Vk+1Tk+1 ,

where: Uk+1 ∈ Rm×(k+1) and Vk ∈ Rn×k have orthonormal columns ui (i = 1, . . . , k + 1) and vi

(i = 1, . . . , k), respectively; Zk = [L†
1v1, . . . ,L

†
kvk], Yk+1 = [R†

1u1, . . . ,R
†
k+1uk+1]; M̄k ∈ R(k+1)×k

is upper Hessenberg and Tk+1 ∈ R(k+1)×(k+1) is upper triangular; k ≪ min{m,n}. The ith
approximate solution of xreg in (2) is defined as

xi = Zi argmin
s∈Ri

∥f(Ti+1, M̄i)s− ci∥22 + λi∥Sis∥22 ,

where the regularization parameter λi is adaptively set, Si ∈ Ri×i is a regularization matrix for the
projected variable s, ci is a projected right-hand side, and f compactly denotes products and/or
sums of (possibly slight modifications and transposes of) both matrices Ti+1 and M̄i; different
choices of f and Si define different solvers. Note that R†

i and L†
i act as variable ‘preconditioners’

for the constraint and solution subspaces, respectively; their role is to enforce iteration-dependent
information useful for a successful regularization. Different choices of Â, R†

i and L†
i allow to handle

different instances of (2). Namely:
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(a) Â = [A⊤, L⊤]⊤, R†
i = diag(I, λiI) and L†

i = I solves Tikhonov problems in general form in
the 2-norm, with adaptive regularization parameter choice strategy; this provides an alterna-
tive to the generalized Krylov method in [6].

(b) Â = A, R†
i = I and L†

i = diag(g−1
q (xi−1)) (where gq is a function that depends on the q-

norm and is applied entry-wise) solves the so-called ℓ2−ℓq regularized problem, with adaptive
regularization parameter choice strategy; this coincides with the basic version of the method
in [1] (and can be reformulated to cover all the options in [1]).

(c) Â = [A⊤, L⊤]⊤, R†
i = diag(gp(R(Axi−1 − b)), λigq(Lxi−1)) (where, similarly to gq, gp is

a function that depends on the p-norm and is applied entry-wise) and L†
i = I solves the

so-called ℓp− ℓq regularized problem, with adaptive regularization parameter choice strategy;
this extends the methods in [1] and provides an alternative to the generalized Krylov method
in [5]. As a particular case, setting λi = 0, i = 1, 2, . . . solves a p-norm residual minimization
problem.

The new solvers are theoretically analyzed by providing optimality properties and by studying
the effect of variations in R†

i and L†
i on their convergence. The new solvers can efficiently be

applied to both underdetrmined and overdetermined problems, and successfully extend the current
flexible Krylov solvers to handle different matrices R (typically the inverse square root of the noise
covariance matrix), as well as regularization matrices L whose A-weighted generalized pseudo-
inverse cannot be cheaply computed.
Numerical experiments on inverse problems in imaging, such as deblurring and computed tomog-
raphy, show that the new solvers are competitive with other state-of-the-art nonsmooth and non-
convex optimization methods, as well as generalized Krylov methods.
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