Flexible Golub-Kahan Factorization for Linear Inverse Problems

Silvia Gazzola

Abstract

Discrete linear inverse problems arising in many applications in Science and Engineering are formulated as the solution of large-scale linear systems of equations of the form

$$\mathbf{A}\mathbf{x}_{\text{true}} + \mathbf{n} = \mathbf{b}\,,\tag{1}$$

where the discretized forward operator $\mathbf{A} \in \mathbb{R}^{m \times n}$ is large-scale with ill-determined rank, and $\mathbf{n} \in \mathbb{R}^m$ are some unknown perturbations (noise) affecting the available data $\mathbf{b} \in \mathbb{R}^m$. In this setting, in order to recover a meaningful approximation of $\mathbf{x}_{\text{true}} \in \mathbb{R}^n$, one should regularize (1).

In this talk we consider variational regularization methods that compute an approximation \mathbf{x}_{reg} of \mathbf{x}_{true} as

$$\mathbf{x}_{\text{reg}} = \arg\min_{\mathbf{x}\in\mathbb{R}^n} \|\mathbf{R}(\mathbf{A}\mathbf{x}-\mathbf{b})\|_p^p + \lambda \|\mathbf{L}\mathbf{x}\|_q^q, \quad \text{where} \quad \lambda \ge 0, \ p, \ q > 0, \ \mathbf{R}\in\mathbb{R}^{m\times m} \ \mathbf{L}\in\mathbb{R}^{l\times n}.$$
(2)

In the above formulation, when p = q = 2, many standard numerical linear algebra tools can be employed to approximate \mathbf{x}_{reg} : these include the SVD of \mathbf{A} (when \mathbf{A} has some exploitable structure and \mathbf{L} is the identity), early termination of Krylov solvers for (1) (when $\lambda = 0$), and hybrid projection methods. We refer to [2] for a recent survey of these strategies. However, by properly setting $p, q \neq 2$, better approximations of \mathbf{x}_{true} can be obtained in many scenarios, including: when the noise \mathbf{n} is not Gaussian, nor white, and/or when wanting to enforce sparsity onto $\mathbf{L}\mathbf{x}_{\text{reg}}$ (e.g., in the compressive sensing framework, when \mathbf{A} is heavily underdetermined). Although many classes of well-established optimization methods are usually employed to handle the non-smooth and possibly non-convex instances of (2), in the last decades a number of new solvers based on 'non-standard' (such as flexible [1, 4] or generalized [5]) Krylov methods have been successfully considered for this purpose; see also [3, 7]. Even though the common starting point of such 'non-standard' Krylov solvers is the reformulation of a smoothed version of (2) as an iteratively reweighted least squares problem, flexible Krylov methods for p = 2 are typically more efficient and stable than generalized Krylov methods, while the latter can handle also the $p \neq 2$ case and many options for \mathbf{L} .

This talk introduces new solvers for (2), based on a new flexible Golub-Kahan factorization of the kind

$$\widehat{\mathbf{A}}\mathbf{Z}_k = \mathbf{U}_{k+1}\overline{\mathbf{M}}_k, \quad \widehat{\mathbf{A}}^{\top}\mathbf{Y}_{k+1} = \mathbf{V}_{k+1}\mathbf{T}_{k+1}$$

where: $\mathbf{U}_{k+1} \in \mathbb{R}^{m \times (k+1)}$ and $\mathbf{V}_k \in \mathbb{R}^{n \times k}$ have orthonormal columns \mathbf{u}_i $(i = 1, \dots, k+1)$ and \mathbf{v}_i $(i = 1, \dots, k)$, respectively; $\mathbf{Z}_k = [\mathbf{L}_1^{\dagger} \mathbf{v}_1, \dots, \mathbf{L}_k^{\dagger} \mathbf{v}_k]$, $\mathbf{Y}_{k+1} = [\mathbf{R}_1^{\dagger} \mathbf{u}_1, \dots, \mathbf{R}_{k+1}^{\dagger} \mathbf{u}_{k+1}]$; $\mathbf{M}_k \in \mathbb{R}^{(k+1) \times k}$ is upper Hessenberg and $\mathbf{T}_{k+1} \in \mathbb{R}^{(k+1) \times (k+1)}$ is upper triangular; $k \ll \min\{m, n\}$. The *i*th approximate solution of \mathbf{x}_{reg} in (2) is defined as

$$\mathbf{x}_{i} = \mathbf{Z}_{i} \arg\min_{\mathbf{s}\in\mathbb{R}^{i}} \|f(\mathbf{T}_{i+1}, \bar{\mathbf{M}}_{i})\mathbf{s} - \mathbf{c}_{i}\|_{2}^{2} + \lambda_{i} \|\mathbf{S}_{i}\mathbf{s}\|_{2}^{2},$$

where the regularization parameter λ_i is adaptively set, $\mathbf{S}_i \in \mathbb{R}^{i \times i}$ is a regularization matrix for the projected variable \mathbf{s} , \mathbf{c}_i is a projected right-hand side, and f compactly denotes products and/or sums of (possibly slight modifications and transposes of) both matrices \mathbf{T}_{i+1} and \mathbf{M}_i ; different choices of f and \mathbf{S}_i define different solvers. Note that \mathbf{R}_i^{\dagger} and \mathbf{L}_i^{\dagger} act as variable 'preconditioners' for the constraint and solution subspaces, respectively; their role is to enforce iteration-dependent information useful for a successful regularization. Different choices of $\widehat{\mathbf{A}}$, \mathbf{R}_i^{\dagger} and \mathbf{L}_i^{\dagger} allow to handle different instances of (2). Namely:

- (a) $\widehat{\mathbf{A}} = [\mathbf{A}^{\top}, \mathbf{L}^{\top}]^{\top}, \mathbf{R}_{i}^{\dagger} = \text{diag}(\mathbf{I}, \lambda_{i}\mathbf{I})$ and $\mathbf{L}_{i}^{\dagger} = \mathbf{I}$ solves Tikhonov problems in general form in the 2-norm, with adaptive regularization parameter choice strategy; this provides an alternative to the generalized Krylov method in [6].
- (b) $\widehat{\mathbf{A}} = \mathbf{A}, \ \mathbf{R}_i^{\dagger} = \mathbf{I}$ and $\mathbf{L}_i^{\dagger} = \text{diag}(g_q^{-1}(\mathbf{x}_{i-1}))$ (where g_q is a function that depends on the *q*-norm and is applied entry-wise) solves the so-called $\ell_2 \ell_q$ regularized problem, with adaptive regularization parameter choice strategy; this coincides with the basic version of the method in [1] (and can be reformulated to cover all the options in [1]).
- (c) $\widehat{\mathbf{A}} = [\mathbf{A}^{\top}, \mathbf{L}^{\top}]^{\top}, \mathbf{R}_{i}^{\dagger} = \operatorname{diag}(g_{p}(\mathbf{R}(\mathbf{A}\mathbf{x}_{i-1} \mathbf{b})), \lambda_{i}g_{q}(\mathbf{L}\mathbf{x}_{i-1}))$ (where, similarly to g_{q}, g_{p} is a function that depends on the *p*-norm and is applied entry-wise) and $\mathbf{L}_{i}^{\dagger} = \mathbf{I}$ solves the so-called $\ell_{p} - \ell_{q}$ regularized problem, with adaptive regularization parameter choice strategy; this extends the methods in [1] and provides an alternative to the generalized Krylov method in [5]. As a particular case, setting $\lambda_{i} = 0, i = 1, 2, \ldots$ solves a *p*-norm residual minimization problem.

The new solvers are theoretically analyzed by providing optimality properties and by studying the effect of variations in \mathbf{R}_i^{\dagger} and \mathbf{L}_i^{\dagger} on their convergence. The new solvers can efficiently be applied to both underdetrmined and overdetermined problems, and successfully extend the current flexible Krylov solvers to handle different matrices \mathbf{R} (typically the inverse square root of the noise covariance matrix), as well as regularization matrices \mathbf{L} whose \mathbf{A} -weighted generalized pseudoinverse cannot be cheaply computed.

Numerical experiments on inverse problems in imaging, such as deblurring and computed tomography, show that the new solvers are competitive with other state-of-the-art nonsmooth and nonconvex optimization methods, as well as generalized Krylov methods.

References

- [1] J. Chung, S. Gazzola. Flexible Krylov Methods for ℓ_p Regularization. SIAM J. Sci. Comput., 41(5), pp. S149–S171, 2019.
- [2] J. Chung, S. Gazzola. Computational Methods for Large-Scale Inverse Problems: A Survey on Hybrid Projection Methods. SIAM Review, 66(2), pp. 205–284, 2024.
- [3] J. Cornelis, W. Vanroose. Projected Newton method for noise constrained ℓ_p regularization. Inverse Problems, 36 125004, 2020.
- [4] S. Gazzola, J. G. Nagy, and M. Sabatè Landman. Iteratively reweighted FGMRES and FLSQR for sparse reconstruction. SIAM J. Sci. Comput., 43, pp. S47–S69, 2021.
- [5] G. Huang, A. Lanza, S. Morigi, L. Reichel, F. Sgallari. Majorization-minimization generalized Krylov subspace methods for l_p - l_q optimization applied to image restoration. *BIT Numerical Mathematics*, 57(2), pp. 351–378, 2017.
- [6] J. Lampe, L. Reichel, H. Voss. Large-scale Tikhonov regularization via reduction by orthogonal projection. *Linear Algebra Appl.*, 436(8), pp. 2845–2865, 2012.
- [7] M. Sabate Landman, J. Chung. Flexible Krylov Methods for Group Sparsity Regularization. *Physica Scripta*, 2024.