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Abstract

We explore quadratures for F(s) = BTϕ(A, s)B where A is a symmetric, nonnegative-definite
matrix in Rn×n, B is a tall matrix in Rn×p, and ϕ(·, s) is a matrix function with parameter s [1, 2].
These formulations commonly arise in the computation of multiple-input, multiple-output transfer
functions for diffusion PDEs.
We derive bounds and averaging schemes for quadrature rules for BTϕ(A, s)B computed via the
block-Lanczos algorithm, which are particularly efficient for discretizations of PDE operators with
continuous spectra. Additionally, we demonstrate that these bounds and averaging schemes are
applicable to parametric model reduction of dynamical systems via Galerkin projections.

1 Block-Lanczos Approximations to BTϕ(A, s)B

We propose an approximation scheme for F(s) = BTϕ(A, s)B leveraging the block-Lanczos algo-
rithm [3] and its representation via Stieltjes matrix continued fractions.
The block-Lanczos recursion for the block-Lanczos vectors Qi ∈ Rn×p reads

AQi = Qi+1βi+1 +Qiαi +Qi−1(βi)
T , (1)

with block coefficients αi,βi ∈ Rp×p. Using Stieltjes matrix continued fractions, we show that
this block-Lanczos algorithm defines a block-Gauss quadrature approximation Fm(s) and converges
monotonically for ϕ(A, s) = (A+sI)−1 with s ∈ R+ and I the identity matrix. We further show that
a monotonically convergent block Gauss-Radau quadrature F̃m(s) can be readily defined through
this Stieltjes continued fraction representation. In the literature, Gauss-Radau quadratures for
symmetric matrices are often defined via rank-one updates of the Lanczos matrix in the non-block
case [4, 5] or rank p updates in the block case [6].
Here we define Gauss-Radau quadrature through Stieltjes matrix continued fractions which can be
written via the recursion

Cj(s) =
1

sγ̂j +
1

γj + Cj+1(s)

,

where γ̂j ,γj ∈ Rp×p are symmetric positive definite matrices directly related to the block-Lanczos
coefficients αj and βj . We show that the Gauss quadrature approximation to BT (A+sI)−1B after
m iterations of block-Lanczos corresponds to C1(s), defined through the above recursion, terminated
with Cm+1 = 0, whereas the Gauss-Radau quadrature corresponds to truncation with Cm+1 = ∞.
Through Stieltjes matrix continued fractions, we demonstrate that Gauss quadrature provides a
lower bound, while Gauss-Radau quadrature provides an upper bound to the matrix function.
Combined with the monotonicity result, this yields an ordering of the Gauss and Gauss-Radau
quadrature approximations to F . Given m, the quadrature order, we obtain

0 < Fm−1(s) < Fm(s) < F(s) < F̃m(s) < F̃m−1(s) ∀s ∈ R+,
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where, for two symmetric matrices G1, G2, the notation G1 < G2 indicates that G2−G1 is positive
definite.
This ordering further enables derivation of easily computable error bounds of the form

∥F − Fm∥ < ∥F̃m −Fm∥.

In this contribution, we discuss averaging schemes of Gauss and Gauss-Radau quadrature motivated
by potential theory for Padé approximations. We show numerical examples for various ϕ(A, s),
where A is a graph Laplacian or discretization of an operator with a continuous spectrum (e.g.,
PDE operators in unbounded domains). These examples demonstrate that the derived error bound
is tight in important applications, and that the averaging schemes reduce the approximation error
by an order of magnitude for discretizations of operators with continuous spectra, as shown in [7].
In the next section we discuss the applicability of such Gauss-Radau bounds to parametric model
reduction, a subsequent result not covered in [7].

2 Parametric Model Reduction via Galerkin Projection

The first iteration of the block-Lanczos procedure can be interpreted as a Galerkin projection of a
symmetric positive definite matrix on a general basis. This insight allows us to directly apply the
Gauss-Radau bound and averaging schemes to, for instance, projection-based parametric model
reduction [8].
Consider the parametric dynamical system

(A(ρ) + sI)X(s, ρ) = B, with transfer function F(s) = BTX(s, ρ),

where A(ρ) ∈ Rn×n is symmetric positive definite for all parameters ρ of interest, B ∈ Rn×p, and
the Laplace frequency s ∈ R+. This formulation arises in inverse problems where A(ρ) represents
a discretized PDE operator with PDE coefficients parametrized by ρ.
Assuming for simplicity, that the Galerkin projection basis U ∈ Rn×k contains B as U = [B,U0]
and is orthogonalized UTU = Ik (e.g. a rational Krylov subspace with a shift at ∞). Then the
Galerkin approximation of F is

FGal(s) = (UTB)T (UTA(ρ)U + sIk)
−1(UTB)

=

[
Ip
0

]T
(HROM(ρ) + sIk)

−1

[
Ip
0

]
.

We can interpret U as the first Lanczos vector Q1 in equation (1) for i = 1 with Q0 = 0 and HROM(ρ)
as the α1 block-Lanczos coefficents. Then we can further define the β2 coefficent according to the
block-Lanczos recursion

(β2)
Tβ2 = UTA2U − (HROM(ρ))2.

Then the Gauss-Radau quadrature approximation to the k × k transfer function FU = UT (A(ρ) +
sI)U as defined in [7] reads

F̃U (s) =

[
Ik
0

]T ([
HROM(ρ) βT

2

β2 β2(H
ROM(ρ))−1βT

2

]
+ sI2k

)−1 [
Ik
0

]
.

2



Since the Gauss Radau approximation F̃U is an upper bound to FU their difference F̃U − FU is
s.p.d. and any subspace projection of a s.p.d. matrix is s.p.d. Hence the leading p× p block of F̃U

provides an easy-to-compute error bound for the leading block of FU which coincides with FGal and
holds for any U and ρ. In this contribution, we will show that such a bound provides a meaningful
tool for applications in inverse problems and greedy selection of interpolation points in parametric
model reduction.
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