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Abstract

In this talk, we will present a class of adaptive approximation methods for computing the partial
solution of eigenvalue problems. We will concentrate on algorithms which are matrix-free in the
sense that they treat a matrix A, or its shifted inverse (z − A)−1, as a mapping A : x 7→ Ax, and
(z −A)−1 : x 7→ (z −A)−1x, respectively. We present a Beyn-type eigensolver (see [1]) accelerated
by the use of adaptive reduced-order model of the matrix resolvent. As prototype examples, we
will consider both linear as well as nonlinear (in the spectral parameter) eigenvalue problems. In
particular, we will study examples from thermoacoustics applications [14].
In the interest of clarity, let us first concentrate on the standard linear eigenvalue problem for a
diagonalisable matrix A. When the resolvent is given as a mapping (z−A)−1 : x 7→ (z−A)−1x, one
has to incorporate the inexactness (due to the approximation truncation) of the evaluation of this
mapping into an analysis. This is a known and structurally challenging problem in the theory of
Krylov-type solvers [10, 16]. An alternative approach is to transform the problem of approximating
the eignvalue cluster enclosed by the finite contour Γ into an eigenvector problem for the spectral
projector PΓ

PΓ =
1

2πi

∫
Γ
(z −A)−1 dz ≈ ΠΓ :=

N∑
i=1

ωi(zi −A)−1.

One can then apply the standard subspace iteration to extract eigenvector information using the
approximation

xj 7→ PΓxj =
1

2πi

∫
Γ
(z −A)−1xj dz ≈

N∑
i=1

ωi(zi −A)−1xj , j = 1, · · · , d

For this talk we choose not to discuss the implications of embarrassing paralelism (in terms of
sampling the resolvent with respect to the spectral parameter zi and vectors xj) on the evaluation
of the action of PΓ.
We will loosely call this approach interpolatory and nonintrusive. Namely, to produce a reliable
eigenvalue/vector approximation method, one only needs a solver for the shifted system (z, x) 7→
(z − A)−1x as a black box, but with an error estimate and error control. The projection PΓ is
a dense, but low-rank matrix. The dimension of its range equals the joint algebraic multiplicity
of the eigenvalues enclosed by the contour Γ, denoted by #Γ. The problem of computing an
orthonormal basis of the eigensubspace associated with the enclosed cluster of eigenvalues can now
be reduced to the calculation of the SVD of a large implicitly defined matrix PΓ of low rank. This
orthonormal basis can then be used to construct a small auxiliary spectral problem from which
eigenvector/eigenvalue information can be directly and robustly extracted (not the topic of this
talk). Randomized SVD has distinguished itself as a method of choice for analyzing approximate low
rank matrices. It has been studied in many settings, including its infinite-dimensional incarnation
[13, 3, 2], which is suitable for the study of numerical methods applied to discretizations of partial
differential operators in physics and engineering. Note that in our notation the randomized SVD
algorithm for ΠΓ ≈ PΓ starts with the random draw of the interpolation directions xj , j = 1, · · · , d
for d ≥ #Γ+ 2. Here we assume that xj have been drawn appropriately, [2].
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The nonintrusive nature of contour integration methods is the reason for inclusion in SLEPc or even
as Extended Eigensolver Routines in the Intel MKL library. This is the easiest way to incorporate
any monolithic solver for the shifted system into an eigenvalue/eigenvector approximation routine.
Large-scale matrices in NLA are typically discretizations of partial differential operators, and the
use of contour integration approach allows more flexibility to seamlessly incorporate various dis-
cretisations of the shifted system (called in the engineering jargon the Helmholtz solvers). These
include rectangular approximations of the resolvent such as those from [8] used in chebop object or
the Discontinuous Petrov Gelerkin approach which also leads to rectangular approximations of the
resolvent [11, 9, 7].
Based on the (infinite-dimensional) randomized SVD for Hilbert–Schmidt operators, an extension
of Beyn’s contour integration method for operators in Hilbert spaces has been described in [5]. The
key ingredient, encapsulated in the phrase solve than discretize, is adaptive error control for the
Helmholtz solver. Pushing discretization by adaptivity to the later stage, the randomized part of
the algorithm gives us means to explore the Hilbert space more broadly and generate an accelerating
subspace with better candidates for eigenvector approximations.
The use of advances in the rational function approximation problem in the context of the solution of
the spectral problem has been thoroughly analyzed, in a slightly different context, in [6]. To coarsely
assess the performance of this method, consider a finite difference discretization of A = −4− V ,
V > 0, with Gaussian potential V , ‖V ‖∞ < ∞. Using the Matlab toolbox SpecSolve1 on a
computer with 10 cores, it took 104 seconds to approximate the spectral density in the interval
[−‖V ‖∞, 0] with tolerance ε = 0.05. In comparison, Matlab eigs on the same machine applied to
a 104 × 104 discretization computed all eigenvalues in the same interval within 0.5 seconds. Apart
from the further use of obvious embarrassing parallelism in the sampling of the resolvent, a speedup
can be achieved by exploiting the product structure in the construction of random vectors [4] (not
this talk) or by speeding up the evaluation of the resolvent using subspace acceleration [14] (this
talk).
As prototypes, we will consider a large class of (nonlinear) eigenvalue problems which are defined
by the generalized resolvent

R(z) = (A0 + f1(z)A1 + · · ·+ fs(z)As)
−1

with self-adjoint coefficients Ai, i = 0, . . . , s and scalar functions fi, i = 1, . . . , s. We will present
an analysis and improvements of the method described in [14] which uses subspace acceleration
together with reduced-order interpolatory modeling of the nonlinear resolvent R. Our method
will be cast within the context of scientific computing with particular emphasis on problems in
thermoacoustics. We will discuss the comparison of the performance of the contour integration
method with the performance of the method based on the direct rational interpolation of the
resolvent and the application of the rational Arnoldi to its linearization [15, 12]. Finally, we will
present a general analysis of the randomized SVD algorithm for operators of the form

r(A0 + V ) +W .

Here r is a rational function approximation of an indicator function, A0 is self-adjoint and positive
definite, potential V is relatively compact with respect to A0, and we use functions of A0 to
construct a Gaussian kernel for random sampling. Finally, W (not necessarily self-adjoint) is a
small bounded operator presenting the errors caused by adaptive discretization.

1https://github.com/SpecSolve/SpecSolve
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