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Abstract

The regression problem y = f(X) + ϵ, where X ∈ Rn×d1×d2 , y ∈ R1 is a tensor input variable,
presents unique challenges at the intersection of numerical linear algebra and statistical model-
ing. This extended abstract synthesizes recent advancements in solving both linear and non-linear
variants of this problem, focusing on scalable methods that leverage tensor structures.
In the linear case, we consider the tensor regression model f(X) = B ◦ X, where ◦ denotes a
tensor product. In [1], we focus on a generalization of matrix multiplication to tensors. This
formulation leads to large-scale tensor linear systems that are computationally challenging to solve
using traditional methods. Our primary contribution in this domain is the development of frontal
slice approaches for iteratively solving these systems.
Our innovation in [1] lies in adapting classical iterative methods from numerical linear algebra
to the tensor domain. By focusing on frontal slices of the coefficient tensor B, we develop a
family of iterative algorithms that significantly reduce the computational burden compared to direct
solvers. Our frontal slice methods come in cyclic, block, and randomized variants, each offering
different trade-offs between convergence speed and computational efficiency. These approaches draw
inspiration from classical numerical linear algebra techniques such as Gauss-Seidel, block iterative
methods, and randomized algorithms.
Another aspect of our work is the rigorous convergence analysis provided for these methods. We
establish conditions for convergence and derive bounds on the convergence rate in terms of tensor
properties. This analysis not only validates the proposed methods but also offers insights into
algorithm behavior, guiding practitioners in method selection and parameter tuning.
The computational advantages of our approach are particularly striking for large-scale problems.
We achieve a computational complexity of O(d2 ·max(d1, n)

3) for n samples and tensor dimensions
d1 and d2, comparing favorably to the O(d22 ·max(d1, n)

3) complexity of naive iterative solver via
gradient descent, when d2 is large.
Extending beyond linear models, f(X) are assumed to be nonlinear. We address the challenge
of non-linear tensor regression through the development of tensor-input tree (TT) models in [2].
Our model innovation generalize decision trees to handle tensor inputs, offering a flexible, non-
parametric approach to modeling complex relationships in tensor data. The TT framework can
be viewed as approximating the non-linear function f(X) with a piecewise linear tensor function,
where each piece corresponds to a leaf in the decision tree.
The development of TT models required innovative solutions to several challenges at the inter-
face of numerical linear algebra and statistical learning. Our key contribution in [2] is the design
of splitting criteria that effectively capture the multi-dimensional structure of tensor inputs. We
propose criteria based on both variance reduction and low-rank approximation errors, leveraging
tensor algebraic concepts to inform the tree-building process. To address the computational chal-
lenges of finding optimal splits in high-dimensional tensor spaces, we introduce two randomized
numerical linear algebra techniques: leverage score sampling and branch-and-bound optimization.
The complexity for generating the tree structure (via exhaustive search) is O(n2 · d21 · d22 · log k),
where k is the number of nodes in the tree, in contrast to O(n3) in a tensor Gaussian process [3].
This approach aligns with theoretical results on tensor decompositions and proves highly effective
in practice, especially for datasets exhibiting intrinsic low-rank structure.
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The theoretical analysis provided for both our linear solvers and nonlinear TT models offers valuable
insights into their behavior and limitations. For the linear case, we provide detailed convergence
analysis, including results for both consistent and inconsistent systems. In the context of TT
models, we establish consistency guarantees for coefficient estimates and derive oracle bounds for
prediction errors.
Empirical evaluations on diverse datasets demonstrate the effectiveness of our approaches. In the
linear case, we show the efficiency of frontal slice methods in applications like image deblurring.
For non-linear regression, we compare TT models against state-of-the-art approaches like tensor
Gaussian Processes, highlighting scenarios where TT offers superior performance or significant
computational advantages.
From a numerical linear algebra perspective, our work opens several intriguing avenues for future
research. The frontal slice methods suggest possibilities for developing tensor analogues of classical
iterative methods. The efficient splitting criteria used in TT models could inspire new precondi-
tioning techniques for tensor computations. Furthermore, the integration of randomized algorithms
in both our linear solvers and regression models points to a broader trend of leveraging stochastic
methods to tackle high-dimensional problems.
In conclusion, our research demonstrates the power of combining insights from numerical linear
algebra with advanced statistical modeling techniques to address the challenges of tensor regression.
By developing scalable methods for both linear and non-linear tensor regression (including tensor-
on-tensor and tensor-on-scalar), we contribute to a comprehensive toolkit for tensor-based data
analysis, laying the groundwork for future advancements in high-dimensional data analysis and
scientific computing.
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