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Abstract

There is a mystery at the heart of operator learning: how can one recover a non-self-adjoint
operator from data without probing its adjoint? Current practical approaches suggest that one can
accurately recover an operator while only using data generated by the forward action of the operator
without access to the adjoint [5]. However, naively, it seems essential to sample the action of the
adjoint for learning solution operator of time-dependent partial differential equations (PDEs) [3].
This motivates a fundamental question in numerical linear algebra: can one approximate a non-
symmetric low-rank matrix without sketching its adjoint?
In this talk, we will explore the limits of adjoint-free low-rank matrix recovery and propose an
approach that could help analyze the behavior of structured matrix recovery algorithms. Then,
we will show that one can approximate a family of non-self-adjoint infinite-dimensional compact
operators via projection onto a Fourier basis without querying the adjoint. We will apply the
result to recover Green’s functions of elliptic partial differential operators and derive an adjoint-
free sample complexity bound. While existing infinite-dimensional numerical linear algebra theory
justifies low sample complexity in operator learning [2, 4], ours is the first adjoint-free analysis that
attempts to close the gap between theory and practice [1].

Limits of adjoint-free low-rank matrix recovery. We start in the fundamental setting of
recovering a low-rank matrix by querying the map x 7→ Fx but without access to x 7→ F ∗x. We
show that querying x 7→ F ∗x is essential for recovering F and prove rigorous guarantees on the
quality of the reconstruction in terms of how close F is to a symmetric matrix. Thus, we conclude
that without prior knowledge of the properties of the adjoint, one must have access to its action.
We assume that F is δ-near-symmetric (i.e., its left and right singular subspaces are δ-close), but
we only have access to partial information regarding the symmetry of F , namely that F is ϵ-near-
symmetric for some ϵ ≥ δ, and sketching constraint FX. To quantify the resulting uncertainty
about F , we define the set of possible matrices one could recover given this prior knowledge as

Ωϵ
F,X = {A ∈ Mn(C) : rank(A) = k, AX = FX, ∃Q ∈ O(k), ‖U∗

AVA −Q‖2 ≤ ϵ}, (1)

where A = UASAV
∗
A is the singular value decomposition of A, O(k) is the group of k × k orthog-

onal matrices, and ‖ · ‖2 denotes the spectral norm. Hence, given some tolerance ϵ, Ωϵ
F,X is the

set of ϵ-near-symmetric matrices that can be returned by any low-rank recovery algorithm when
approximating F , such as the randomized SVD [6, 7] or the Nyström method [8].
The size of Ωϵ

F,X is measured by its diameter in the spectral norm and determines the maximum ac-
curacy of any reasonable reconstruction. If the diameter is large, one cannot estimate F accurately,
as one cannot distinguish between any candidate matrix in Ωϵ

F,X . This is because any matrix in
Ωϵ
F,X satisfies the sketching constraint and is near-symmetric. On the other hand, a small diameter

guarantees the fidelity of the reconstruction. We provide sharp upper and lower bounds on the
size of Ωϵ

F,X , i.e., determine how far apart any two matrices in Ωϵ
F,X can be from each other, with

respect to ϵ, which measures our prior knowledge of F ’s symmetry. The upper and lower bounds
on the diameter of Ωϵ

F,X reveal that the uncertainty about F given queries of its action is directly
related to the uncertainty about the symmetry of its left and right singular subspaces. For example,
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our ability to recover a symmetric rank-k matrix using k ≤ s < n queries is fundamentally limited
by our prior knowledge about the proximity of Range(F ) and Range(F ∗) because there are many
asymmetric matrices with the same rank that satisfy the same sketching constraints. This result is
a fundamental limitation of adjoint-free low-rank matrix recovery in numerical linear algebra and
has implications for operator learning.

An adjoint-free operator learning approach. To provide an operator learning approach that
does not need access to the adjoint, we exploit regularity results from PDE theory to estimate the
range of the adjoint of the solution operator. This allows us to prove the first guarantees on the
accuracy of adjoint-free approximations. Our key insight is to leverage the favorable properties
of a prior self-adjoint operator, such as the Laplace–Beltrami operator, to use as an operator
preconditioner in the approximation problem. In particular, we query the action of the solution
operator on the eigenfunctions of the prior self-adjoint operator, yielding an approximation with an
error that decays at a rate determined by the eigenvalues of the prior. This is remarkable because
common operator learning techniques always seem to plateau; yet, we construct a simple algorithm
that provably converges.

The effect of non-normality on sample complexity. We derive a sample complexity bound
for our algorithm when applied to second-order uniformly-elliptic PDEs that are perturbed away
from self-adjointness by lower-order terms. We show that for small perturbations, our bound on
the approximation error grows linearly with the size of the perturbation, and we conjecture that
this linear growth continues for large perturbations as well. This aspect of the error growth is also
present in common operator learning techniques, as our numerical experiments illustrate. With
respect to our operator learning algorithm, this means that the number of samples required to
achieve a fixed error tolerance grows algebraically with the perturbation size.
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