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Leveraging Numerical Linear Algebra for Robust Learning of Optimal H2

models from time-domain data

Michael S. Ackermann, Serkan Gugercin

Abstract

We investigate the optimal H2 approximation of a discrete-time, single-input single-output system

x[k + 1] = Ax[k] + bu[k]

y[k] = c⊤x[k]
with transfer function H(z) = c⊤(zI−A)−1b, (1)

where x[k] ∈ Rn, u[k] ∈ R, and y[k] ∈ R are, respectively, the states, input, and output at time k;
A ∈ Rn×n,b ∈ Rn, and c ∈ Rn. Even though we explicitly write the state-space matrices in (1), in
this work, we will never assume access to the system matrices, system state, or evaluations of the
transfer function, but only to time-domain input-output data

U = [u[0] . . . u[T ]]⊤ ∈ RT+1 and Y = [y[0] . . . y[T ]]⊤ ∈ RT+1. (2)

Given the input/output data (2), we seek to construct a data-driven reduced-order model (DDROM)

xr[k + 1] = Arxr[k] + bru[k]

yr[k] = c⊤r xr[k]
with transfer function Hr(z) = c⊤r (zIr −Ar)

−1br, (3)

where xr[k] ∈ Rr is the reduced state, yr[k] is the reduced output, and Ar ∈ Rr×r,br ∈ Rr, and
cr ∈ Rr with r ≪ n. Specifically, we would like the DDROM (3) to minimize the H2 distance

∥H −Hr||2H2
=

1

2π

∫ π

−π
|H(eiω)−Hr(e

iω)|2dω. (4)

The optimal H2 reduced order modeling problem is of interest because the H2 error (4) provides a
bound on the output error for finite energy inputs [4], more specifically,

∥y − yr∥L∞ ≤ ∥H −Hr∥H2∥u∥L2 . (5)

The Realization independent Iterative Rational Krylov Algorithm (TF-IRKA) [5] constructs H2

optimal DDROMs using only samples of the transfer function H(σ) and H ′(σ) without explicit
access to the underlying dynamics. However, TF-IRKA requires repeated evaluations of H(z) and
H ′(z) at a priori unknown points outside the unit disc, i.e., |σ| > 1. In some settings, one cannot
actively re-sample H(z), but is only provided input-output time-domain data as in (2).
In a recent work by Burohman et al. [8], a new method to calculate transfer function evaluations
from time-domain data was presented. This method takes the form of a linear system relating the
transfer function value H(σ) to the time domain data (U,Y):[

Hn(U) 0
Hn(Y) −γn(σ)

] [
ξ

H(σ)

]
=

[
γn(σ)
0

]
, (6)

where

Hn(U) =

u[0] . . . u[T − n]
... . . . ...

u[n] . . . u[T ]

 ∈ R(n+1)×(T−n+1) and γn(σ) =


1
σ
...
σn

 ∈ Cn+1.
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A similar linear system also relates H ′(σ) to the time-domain data (U,Y). While in exact arith-
metic (6) enables recovery of H(σ) from time domain data (2), the numerics of the problem are
much more subtle. In particular, the stacked Hankel matrices are expected to be extremely ill-
conditioned [3, 6, 7], and the presence of σn in γn(σ) could lead to overflow for large n and |σ| > 1.
It is these numerical linear algebra considerations that we cover in this talk.
Consider the classical method to solve (6) via the singular value decomposition of the coefficient
matrix in (6)

ÛΣ̂V̂⊤ =

[
Hn(U) 0
Hn(Y) −γn(σ)

]
.

We may then solve (6) by computing[
ξ

H(σ)

]
= V̂Σ̂−1Û⊤

[
γn(σ)
0

]
. (7)

If the solution is computed as in (7), we expect the ill-conditioning present in the coefficient matrix
(and reflected in the singular values Σ̂) to negatively affect the solution accuracy, especially if the
data in (U,Y) are noisy.
Our first contribution [1] makes use of the fact that we do not need to solve for the whole vector
in the linear system (6); indeed the information in ξ is not used at all; we only require the last
entry of the solution vector to recover H(σ). This allows us to replace all but the last column in
the coefficient matrix of (6) by an orthonormal basis for their range and still recover the same last
component of the solution vector without needing to invert any singular values.

Theorem 1. Assume access to the data (2) and define

U = orth
([

Hn(U)
Hn(Y)

])
. (8)

Then, the solution to the new linear system[
U

0
−γn(σ)

] [
ξ̂

H(σ)

]
=

[
γn(σ)
0

]
(9)

has the same last component as the original linear system (6).

Therefore, the highly ill-conditioned stacked Hankel matrices may be replaced by an orthonormal
basis for their range without changing the last component of the solution vector. Note that this is
different than the solution formula (7) where the whole vector is constructed. While theoretically
equivalent, Theorem 1 does not require inverting (small/any) singular values as solving (6) via (7)
requires. The effect of Theorem 1 is quite dramatic, in some examples reducing the condition
number of the coefficient matrix from 1016 to 101. Another advantage of Theorem 1 is that when
one must recover H(σi) for many different σi (as is required for H2 optimality), the orthonormal
basis U may be precomputed once and recycled for many transfer function evaluations, reducing
the online runtime from O(n3) to O(n2).
While (9) offers great conditioning improvements over (6) when |σ| = 1, the presence of σn in γn(σ)
causes the coefficient matrix in (9) to be badly scaled when |σ| > 1. As we seek to construct H2

optimal reduced models, recovering H(σ) where |σ| > 1 is required. Exploration of this issue leads
to the problem of finding eigenpairs of a rank-one update to an orthogonal projection

QQH + zzH (10)
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where Q ∈ Cm×n is subunitary and z ∈ Cm is arbitrary. In our work [2], we give explicit formulas
for the eigenvectors and eigenvalues of (10).

Theorem 2. Let Q ∈ Cm×n with m > n be subunitary and z ∈ Cm. Let u = QQHz and
v = (I − QQH)z. Assume ∥v∥ ̸= 0 and ∥u∥ ̸= 0. Then the extreme nonzero eigenvalues of
QQH + zzH are

λ =
1

2

(
1 + ∥z∥2 ±

√
1 + ∥z∥4 + 2∥z∥2 − 4∥v∥2

)
(11)

with associated eigenvectors

1

2∥u∥2
(
1− ∥v∥2 + ∥u∥2 ±

√
(∥v∥2 − ∥u∥2 − 1)2 + 4∥u∥2∥v∥2

)
u+ v. (12)

We remark that the expression for the smallest nonzero eigenvalue of QQ∗+zz∗ appears similar to
the lower bound for the smallest eigenvalue of a perturbed Hermitian matrix found in [9]. While the
expressions are similar, we provide an exact expression for the updated extreme nonzero eigenvalues
and associated eigenvectors under the additional assumption that the unperturbed matrix is an
orthogonal projection.
Clearly, Theorem 2 also gives the condition number of the matrix

[
Q z

]
, which gives us a formula

for the condition number of the coefficient matrix in (9). Expressing this condition number formula
in terms of only ∥z∥ allows us to prove that normalizing z in (9) is the optimal scaling for (9). This
optimal scaling is extremely effective at further reducing the condition number of (9) and opens
the door for further analysis.
Results of this analysis include a connection between the underlying dynamical system (1) that
produced the data (2) and the condition number of the coefficient matrix in (9). Specifically, we
show that conditioning is worse when the relative derivative |H ′(σ)/H(σ)| is large, a link that is not
unexpected from the definition of relative condition number for functions. This leads to a method
for preventing overflow in initial computation of γn(σ).
We will expand upon these contributions in the talk, and in addition will showcase the efficacy of
our final algorithm on benchmark examples. Comparisons with the TF-IRKA algorithm [5] show
that obtaining the data H(σ) from time domain data (U,Y) does not degrade the approximation
quality. Also included in these examples will be a demonstration that we can construct H2 optimal
DDROMs from time-domain data obtained from a black-box PDE solver, an exciting indication
that we may not require data explicitly obtained from a discrete-time LTI system as in (1).
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Rational Interpolation, the Loewner Framework and the Kolmogorov
Superposition Theorem.

Athanasios C. Antoulas, Ion Victor Gosea, Charles Poussot-Vassal

Abstract

Problem #119, in [1], asks the question: Are there actually functions of three variables?
Stated differently: is it possible to use compositions of functions of two or fewer variables to express
any function of three variables? This question is related to Hilbert’s 13th problem: are there any
genuine continuous multivariate functions. As a matter of fact, Hilbert conjectured the existence
of a three-variable continuous function which cannot be expressed in terms of composition and
addition of two-variable continuous functions. For a recent overview of this problem, see [2].
For continuous function, the Kolmogorov Superposition Theorem (KST) answers this question
negatively. It shows namely that continued functions of several variables can be expressed as
composition and superposition of functions of one variable. Thus, there are no true functions of
three variables.
The present contribution presents connections between the Loewner framework for rational in-
terpolation of multivariate functions and KST restricted to rational functions. The result is the
formulation of KST for the special case of rational functions. As a byproduct taming of the curse
of dimensionality, both in computational complexity, storage, and last but not least, numerical
accuracy, is achieved.
Short summary of the Loewner framework. The Loewner framework is an interpolatory
approach designed for approximating linear and nonlinear systems. Reference [3] extends this
framework to linear parametric systems with an arbitrary number of parameters, in other words
to multivariate functions of n variables. One main innovation established is the construction of
data-based system realizations for any number of parameters. Equally importantly, [3] shows how
to alleviate the computational burden, storage and numerical accuracy, by avoiding the explicit
construction of higher dimensional Loewner matrices of size N×N . Instead, the proposed method-
ology achieves decoupling of variables, leading to (i) a complexity reduction from O(N3) to below
than O(N1.5) when N > 5 and (ii) to memory storage bounded by the largest variable dimension
rather than the product of all variable dimensions, thus taming the curse of dimensionality and
making the solution scalable to large data sets.
After defining a new multivariate realization, we introduce the higher dimensional multivariate
Loewner matrices and show that they can be computed by solving a coupled set of Sylvester
equations. The null space of these Loewner matrices then allows the computation of the multivariate
barycentric weights of the associated rational function. One of the main results of [3] is to show
how the null space of N -dimensional Loewner matrices can be computed using a sequence of 1-
dimensional Loewner matrices. This leads to a drastic computational burden reduction. This also
leads to the formulation of KST for rational functions. Finally, two algorithms are proposed (one
direct and one iterative) to construct, directly from data, multivariate (or parametric) realizations
ensuring (approximate) interpolation. For details on the above material see [3].
The purpose of this contribution is to make contact of the above results with the Kolmogorov
Superposition Theorem. For clarity of exposition we will illustrate the main features of our approach
by means of a three-variable example.
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Example. Consider the three-variable function H(s, t, x) = s2+xs+1
t+x+st+2 . Since the degrees in each

variable are (2, 1, 1), we will need the integers ν1 = 3, ν2 = 2, and ν3 = 2, This implies that
N = ν1ν2ν3 = 12. The right and left interpolation points are

s1 = 1, s2 = 2, s3 = 3, t1 = 4, t2 = 5, x1 = 6, x2 = 7, and
s4 = 3/2, s5 = 5/2, s6 = 7/2, t3 = 9/5, t4 = 11/5, x3 = 13/3, x4 = 5, respectively.

Following the theory in [3], the right triples of interpolation points are S = [s1, s2, s3]⊗ I1,2⊗ I1,2,
T = I1,3 ⊗ [t1, t2] ⊗ I1,2, X = I1,3 ⊗ I1,2 ⊗ [x1, x2] ∈ C1×N . Thus the resulting 3D-Loewner
matrix has dimension N ×N and the barycentric weights are

Bary =
[

16
29 −17

29 −18
29

19
29 −40

29
42
29

46
29 −48

29
24
29 −25

29 −28
29 1

]T
.

Again, the theory in [3], allows the demposition of this vector in a (pointwise) product of barycentric
weights with respect to each variable, separetly. Thus decoupling the problem is achieved, one of
the important aspects of KST; in [3] we obtain:

Bary = Baryx ⊙Baryt ⊙Barys,

where ⊙ denotes the pointwise product. This is a special case of formula (5.5) in [3].
This is the key result which allows the connection with KST and taming the curse of dimensionality.
We have thus shown that the 3D multivariate function can be computed in terms of three 1D
functions (one in each variable). These functions are denoted below by Φ(x), Ψ(t) and Ω(s).
Furthermore Lagx, Lagt and Lags are the Lagrange bases components in each variable. Finally
W are the right interpolation values for the triples in S × T × X. The ensuing numerical values
are as follows:

−16
17

1

−18
19

1

−20
21

1

−23
24

1

−24
25

1

−28
29

1


︸ ︷︷ ︸

Baryx

,



−17
19

−17
19

1

1

−7
8

−7
8

1

1

−25
29

−25
29

1

1


︸ ︷︷ ︸

Baryt

,



19
29
19
29
19
29
19
29

−48
29

−48
29

−48
29

−48
29

1

1

1

1


︸ ︷︷ ︸

Barys

,



1
x−6
1

x−7
1

x−6
1

x−7
1

x−6
1

x−7
1

x−6
1

x−7
1

x−6
1

x−7
1

x−6
1

x−7


︸ ︷︷ ︸

Lagx

,



1
t−4
1

t−4
1

t−5
1

t−5
1

t−4
1

t−4
1

t−5
1

t−5
1

t−4
1

t−4
1

t−5
1

t−5


︸ ︷︷ ︸

Lagt

,



1
s−1
1

s−1
1

s−1
1

s−1
1

s−2
1

s−2
1

s−2
1

s−2
1

s−3
1

s−3
1

s−3
1

s−3


︸ ︷︷ ︸

Lags

,



1
2
9
17
4
9
9
19
17
20
19
21
17
23
19
24
7
6
31
25

1
31
29


︸ ︷︷ ︸

W

def
⇒


Φ(x) = Baryx ⊙ Lagx,

Ψ(t) = Baryt ⊙ Lagt,

Ω(s) = Barys ⊙ Lags.

With the above notation we can express H as the quotient of two rational functions:

n̂(s, t, x) =
∑

rows [W ⊙Φ(x)⊙Ψ(t)⊙Ω(s)]

d̂(s, t, x) =
∑

rows [Φ(x)⊙Ψ(t)⊙Ω(s)]

}
⇒ n̂(s, t, x)

d̂(s, t, x)
= H(s, t, x).

Consequently, KST for rational functions, as composition and superposition of one-variable func-
tions, takes the form:

n̂(s, t, x) =
∑

rows exp [ logW + logΦ(x) + logΨ(t) + logΩ(s) ]

d̂(s, t, x) =
∑

rows exp [ logΦ(x) + logΨ(t) + logΩ(s) ] .

}
(∗)
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Some details of the above computation. To compute (i) Baryx, computation of the nullspace
of six 1D Loewner matrices of size 2× 2 is needed, (ii) Baryt, computation of three 1D Loewner
matrices of size 2×2 is needed, and (iii)Barys, computation of one 1D Loewner matrix of size 3× is
needed. The resulting total computation using 1D Loewner matrices is ν31ν2ν3+ν32ν3+ν33 = 99 flops
as opposed to (ν1ν2ν3)

3 = 1728 flops, when working with 3D Loewner matrices. For details on the
computational complexity, storage and numerical accuracy, we refer to [3]. Note also that the nD
Loewner matrix is of dimension 12×12 while in the 1D case, a maximum of 3×3 matrix is needed.
Comparison of KST and (*). A number of researchers have contributed in sharpening Kol-
mogorov’s original result, so currently is is often referred to as the Kolmogorov, Arnol’d, Kahane,
Lorenz and Sprecher Theorem (see [2], theorem 2.1). For simplicity we will follow [2] and state this
result for n = 3, so that we can compare it with (*).
Theorem. Given a continuous function f : [0, 1]3 → R of three variables, there exist real num-
bers λi, i = 1, 2, and single-variable continuous functions ϕk : [0, 1] → R, k = 1, · · · , 7, and a
single-variable function g : R → R, such that

f(x1, x2) =

7∑
k=1

g(ϕk(x1) + λ1ϕk(x2) + λ2ϕk(x3)), ∀(x1, x2, x3) ∈ [0, 1]3 .

In the above result, λi and ϕk do not depend on f . Thus for n = 3, eight functions are needed
together with two real scalars λi.
Similarities and differences between KST and (*).

1. While KST refers to continuous functions defined on [0, 1]n, (*) is concerned with rational
functions defined on Cn.

2. In its present form (*) is valid in a particular basis, namely the Lagrange basis. Multiplication
of functions in (*), is defined with respect to this basis.

3. The composition and superposition property holds for the numerator and denominator. No-
tice that in KST no explicit denominators are considered. This is important in our case
because (*) preserves interpolation conditions.

4. The parameters needed are n = 3 Lagrange bases (one in each variable) and the barycentric
coefficients of numerator and denominator.

5. Both KST and (*) accomplish the goal of replacing the computation of multivariate functions,
by means of a series of computations involving single-variable functions, KST for general
continuous functions and (*) for rational functions. Notice also that (*) provides a different
formulation of the problem than KST.
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Collect, Commit, Expand: an Efficient Strategy for Column Subset
Selection on Extremely Wide Matrices

Robin Armstrong, Anil Damle

Abstract

The column subset selection problem (CSSP) appears in a remarkably wide range of applications.
For example, point selection problems that arise in model order reduction [5], computational chem-
istry [7], spectral clustering [8], low-rank approximation [6, 13], and Gaussian process regression [15]
can all be treated as instances of CSSP. Given a matrix A ∈ Rm×n and a target rank k ≤ min{m, n},
CSSP seeks to find a set of k columns from A that are “highly linearly independent.” A more formal
statement, using the framework of rank-revealing QR factorizations [4, 11, 12], is that algorithms
for CSSP produce an index set S ∈ [n]k satisfying

σmin(A(:, S)) ≥
maxJ∈[n]k σmin(A(:, J))

q(n, k)
(1)

for some low-degree bivariate polynomial q. The Golub-Businger algorithm [3], which uses al-
ternating column pivots and Householder reflections to compute a column-pivoted QR (CPQR)
factorization AΠ = QR, is widely used for this problem. After running this algorithm, choosing
A(:, S) = AΠ(:, 1 : k) results in an S which does not provably satisfy (1), but which nearly always
brings σmin(A(:, S)) reasonably close to its maximum.
We seek to address a computational bottleneck in the Golub-Businger algorithm that results from
sequential application of Householder reflections with level-2 BLAS. Most existing solutions to this
problem involve reducing the number of rows manipulated with BLAS-2. For example, the CPQR
factorization routine in LAPACK reflects only as many rows as are needed to determine a small
block of pivot columns, deferring the full Householder reflection to a later application with BLAS-3
[16]. There also exists a large class of randomized algorithms that apply standard CPQR routines
to sketched matrices with far fewer rows [6, 10, 14, 17]. We, however, are interested in problems
where the difficulty arises not from the number of rows, but from the number of columns. For
example, spectral clustering generates instances of CSSP where each row represents a cluster and
each column represents a data point [8], meaning m may be several orders of magnitude smaller
than n. In these applications, reducing the number of rows being manipulated with BLAS-2 does
not address the main bottleneck.
We will demonstrate a new CPQR-based column selection algorithm that effectively mitigates the
BLAS-2 bottleneck for matrices with far more columns than rows. Our algorithm divides columns
into a “tracked” set, where residual column norms are recorded, and an “untracked” set, where
only overall norms are recorded. Pivot columns are selected in blocks, and each block is selected
using a three-step strategy:

1. A “collect” step assembles a small number of candidate columns from the tracked set, and
forms a conventional CPQR factorization of the candidates.

2. A “commit” step uses the CPQR factors to identify a set of provably “safe” pivots from among
the candidates, and updates only the tracked columns according to the new pivots.

3. An “expand” step moves a small number of columns from “untracked” to “tracked,” setting
up for a new round of candidates to be chosen in the next block.

We call this algorithm CCEQR (“Collect-Commit-Expand QR”).
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n GEQP3 Runtime (s) CCEQR Runtime (s)
102 1.9× 10−5 8.1× 10−5

103 2.7× 10−4 3.7× 10−4

104 1.8× 10−3 7.5× 10−4

105 1.8× 10−2 3.7× 10−3

106 4.0× 10−1 4.5× 10−2

Figure 1: Average runtimes of GEQP3 and CCEQR (over 20 trials) on matrices of size 20× n, for
increasing n. Test matrices were generated from a spectral clustering problem, and correspond to
Laplacian embeddings of n data points drawn from a 20-component Gaussian mixture model.

CCEQR is fully deterministic, and unlike CPQR-based column selection algorithms which dis-
tribute the column load across several parallel processors [1, 2, 9], it provably selects the same
basis columns as the Golub-Businger algorithm (assuming no ties between residual column norms).
Using test problems from domains such as computational chemistry, model order reduction, and
spectral clustering, we will demonstrate that CCEQR can run several times faster than the stan-
dard LAPACK routine (GEQP3) for matrices with an unbalanced column norm distribution. For
example, Figure 1 shows that CCEQR can run as much as 10 times faster than GEQP3 for certain
spectral clustering problems. We will also show that CCEQR and GEQP3 have essentially the
same runtime for large unstructured problems, such as Gaussian random test matrices.
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Numerical Linear Algebra on Quantum Computers Made Simple

Haim Avron, Lior Horesh, Liron Mor-Yosef, Shashanka Ubaru

Abstract

The field of quantum computing offers a unique opportunity to revolutionize numerical linear al-
gebra and scientific computing. This is due to the capability of quantum computers to efficiently
model complex structures, and their ability to represent and act on high dimensional vectors and
matrices using exponentially fewer qubits. These advantages arise due to the principles of super-
position and entanglement inherent to qubits.
However, the current landscape of quantum computing research emphasizes intricate, tailor-made
circuit designs, created in an adhoc manner for specific mathematical challenges. While such state-
of-the-art quantum algorithms offer a powerful approach by translating various computations into
circuits, their development not straightforward. Development often requires significant “circuit
engineering” to achieve the desired mathematical outcomes. In this talk, I will discuss our recent
progress on developing a unified and systemic approach to utilizing quantum computing for numer-
ical linear algebra. Our research centers around a novel Quantum Linear Algebra (qLA) framework
offering fundamental matrix algebra building blocks, akin to BLAS – but for Quantum Computers.
The motivation is to make progress toward harnessing the power of quantum computing to per-
form linear algebra operations efficiently, while enabling seamless development of numerical linear
algebra algorithms utilizing quantum computers. Even though quantum computing offers, in prin-
ciple, the potential for exponential improvements in runtime and storage complexity, for linear
algebra operations even modest gains are valuable and seemingly much more realistic. Indeed, even
seemingly minor efficiency improvements, such as reducing from O(n3) to O(n2) the complexity
of core operations like matrix-matrix product, can have significant real-world impact. This makes
quantum numerical linear algebra a highly promising area for exploration. Developing a high-level
framework for quantum linear algebra algorithms is key to unlocking qNLA’s potential in scientific
computing and machine learning. Such a framework would empower developers by hiding low-level
circuit complexities, ultimately accelerating progress in this exciting field.
The qLA framework is designed to provide a high-level interface for writing and executing linear
algebra subroutines by translating mathematical formulas directly into quantum circuits. While
qLA-based algorithms are classical to classical, they will produce circuits specifically intended for
efficient execution on quantum computers. The framework enables a wide range input models,
a broad range of matrix algebra operations, and facilitate seamless circuit design. Beyond its
core functionalities, the framework is developed so that it can be leveraged to design quantum
algorithms for scientific computing and machine learning problems, particularly those problems
involving computationally intensive linear algebra operations. The talk will discuss both the al-
gorithms and functionalities within the qLA framework, and how they can be leveraged to design
novel quantum algorithms.
An initial version of the qLA framework, called quantum Matrix States Linear Algebra (qMSLA), is
described in our accepted manuscript [1]. qMSLA focuses on a single input model: state preparation
circuits (the term will be explained in the talk), and provides a minimal set of linear algebra
operations that can be used to design quantum algorithm for estimating multivariate traces, i.e. the
trace of products of matrices. In the talk, I will discuss our recent work on expanding this framework
with additional input models (block encoding and density preparation circuits), a comprehensive
list of foundational matrix algebra operations, and the relation between input models.
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Some Modified Matrix Eigenvalue Problems

Zhaojun Bai

Abstract
This is the title of well-known numerical linear algebra survey article by Gene Golub published in
1973 [1]. The article covers a range of matrix eigenvalue problems which require some manipulations
before the standard algorithms may be used. I am using the same title to consider a new set of
modified matrix eigenvalue problems. This includes constrained and bi-level optimizations arising
from algorithms for fairness in machine learning, such as spectral clustering with group fairness
[2] and fair principal component analysis [3]. We also consider eigenvalue optimization via 2D
eigenvalue problem with applications to the calculation of the distance to instability among others
[4], and stationary values of a quadratic form subject to non-homogeneous linear constraints for
applications such as image segmentation with constraints [5]. I will discuss how to explore the
underlying structures of these problems to turn them into our familiar eigenvalue problems and
algorithms. This talk is based on joint work with Ian Davidson, Aaron Davis, Ren-Cang Li, Ding
Lu, Tianyi Lu, Junhui Shen, Yangfeng Su, Ji Wang, and Yunshen Zhou.
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Accelerating Randomized Tensor Decompositions
using Structured Random Matrices

Grey Ballard

Abstract

Tensor decompositions are generalizations of low-rank matrix approximations to higher dimen-
sional data. They have become popular for their utility across applications—including blind source
separation, dimensionality reduction, compression, anomaly detection—where the original data is
represented as a multidimensional array. In this talk, I will focus on randomized methods for
computing Tucker and Tensor Train (TT) decompositions. The kernel computation is computing
a sketch of an unfolding/matricization of the tensor, and we impose structure on the random ma-
trix in order to exploit structure in the tensor unfolding and reduce computational cost. I will
discuss theoretical results on the accuracy of these approaches, their accuracy in practice, and the
performance improvement they achieve over deterministic methods.
The TT format is useful in particular for tensors of many modes, including representing approxima-
tions to the solution of certain types of parametrized partial differential equations. The fundamen-
tal operation used to maintain feasible memory and computational time is called rounding, which
truncates the internal ranks of a tensor already in TT format. I will present multiple randomized
algorithms for this task that are generalizations of randomized low-rank matrix approximation al-
gorithms and provide significant reduction in computation compared to deterministic TT rounding
algorithms. We achieve computational efficiency by using random matrix sketches that mirror the
TT format of the input tensor. Randomization is particularly effective in the case of rounding a
sum of TT tensors, which is the bottleneck computation in the adaptation of GMRES to vectors
in TT format. In this talk, I will present the randomized algorithms, compare their empirical
accuracy and computational time with deterministic alternatives (including results from [1]), and
discuss recent progress on probabilistic error analysis of the algorithms.
I will present two Tucker decomposition algorithms that scale to large data (and many processors),
significantly reduce both computation and communication cost compared to previous deterministic
and randomized approaches, and obtain nearly the same approximation errors. The key idea in our
algorithms is to perform randomized sketches with Kronecker-structured random matrices, which
reduces computation compared to unstructured random matrices and can be implemented using a
fundamental tensor computational kernel. I will state probabilistic error analysis of our algorithms
and present a new parallel algorithm for the structured randomized sketch. Our experimental
results demonstrate that our combination of randomization and parallelization achieves accurate
Tucker decompositions much faster than alternative approaches. We observe up to a 16× speedup
over the fastest deterministic parallel implementation on 3D simulation data [2].

References

[1] Hussam Al Daas, Grey Ballard, Paul Cazeaux, Eric Hallman, Agnieszka Miedlar, Mirjeta Pasha,
Tim W. Reid, and Arvind K. Saibaba. Randomized algorithms for rounding in the tensor-train
format. SIAM Journal on Scientific Computing, 45(1):A74–A95, 2023.

[2] Rachel Minster, Zitong Li, and Grey Ballard. Parallel randomized Tucker decomposition algo-
rithms. SIAM Journal on Scientific Computing, 46(2):A1186–A1213, 2024.

14



The Akhiezer iteration for matrix functions and Sylvester equations

Cade Ballew, Thomas Trogdon, and Heather Wilber

Abstract

We consider the computation of matrix functions f(A) when the eigenvalues of A are known
to lie on or near a collection of disjoint intervals Σ ⊂ R. The Akhiezer iteration is an inverse-
free iterative method for this task that arises via an orthogonal polynomial expansion of f on Σ.
When Σ consists of two or more intervals, extensions of the Chebyshev polynomials, often called
the Akhiezer polynomials, are employed. This method is an extension of the classical Chebyshev
iteration and an effective implementation of the ideas of Saad [7].
The Akhiezer iteration relies on orthogonal polynomial recurrence coefficients and Cauchy inte-
grals. Importantly, orthonormal polynomials {pj}∞j=0 with respect to a weight function w satisfy a
symmetric three-term recurrence

xp0(x) = a0p0(x) + b0p1(x),

xpj(x) = bj−1pj−1(x) + ajpj(x) + bjpj+1(x), j ≥ 1,
(1)

for some recurrence coefficients {aj}∞j=0, {bj}∞j=0 where bj > 0 for all j. The Cauchy integrals of
these polynomials are defined by

CΣ[pjw](z) =
1

2πi

∫
Σ

pj(s)w(s)

s− z
ds.

As a particular example, consider Σ = [a1, b1] ∪ [a2, b2], b1 < a2. The orthonormal polynomials
with respect to the weight function

w(x) =
1

π
1Σ(x)

√
x− b1√

b2 − x
√
x− a1

√
x− a2

,

were constructed by Akhiezer in [1]. The construction gives an explicit formula for these polynomials
in terms of Jacobi elliptic and theta functions. From this formula and derivation, formulae for their
recurrence coefficients and Cauchy integrals can be derived [2]. When explicit formulae are not
known, e.g., when Σ consists of more than two intervals, N pairs of recurrence coefficients and
Cauchy integrals can be computed in O(N) operations via the numerical method of [3].
Given a function f that is analytic in a region containing Σ, let p0, p1, . . . denote the orthonormal
polynomials with respect to w. Then, for x ∈ Σ, a pj-series expansion for f is given by

f(x) =

∞∑
j=0

αjpj(x), αj =

∫
Σ
f(x)pj(x)w(x)dx.

For a matrix A with eigenvalues on or near Σ, this extends to an iterative method for computing
f(A) by truncating the series:

f(A) =
∞∑
j=0

αjpj(A) ≈
k∑

j=0

αjpj(A) =: Fk+1. (2)
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The coefficients {αj}∞j=0 and polynomials {pj(A)}∞j=0 can be generated via Cauchy integrals and
recurrence coefficients, respectively. Applying (1), the polynomials are generated as follows:

p0(A) = I,

p1(A) =
1

b0
(Ap0(A)− a0p0(A)),

pj(A) =
1

bj−1
(Apj−1(A)− aj−1pj−1(A)− bj−2pj−2(A)), j ≥ 2.

Let Γ be a counterclockwise oriented curve that encloses the spectrum of A such that f is analytic
in a region containing Γ. Then,

αj =

∫
Σ
f(x)pj(x)w(x)dx =

∫
Σ

(
1

2πi

∫
Γ

f(z)

z − x
dz

)
pj(x)w(x)dx.

Applying a quadrature rule with nodes {zℓ}mℓ=1 and weights {wℓ}mℓ=1 to the inner integral, the
coefficients can be approximated via Cauchy integrals as

αj ≈
∫
Σ

1

2πi

m∑
ℓ=1

f(zℓ)

zℓ − x
pℓ(x)w(x)dx = −

m∑
ℓ=1

f(zℓ)CΣ[pjw](zℓ).

Assuming that one has access to such an approximation, the truncated series (2) can be implemented
as an iteration as in Algorithm 1. The resulting method has a computable and provable geometric
rate of convergence that is independent of the dimension of A and governed by the classical exterior
Green’s function with pole at infinity from potential theory. We remark that once the coefficients
αj are known, this algorithm is the same for all matrix functions.

Algorithm 1: Akhiezer iteration for matrix function approximation
Input: f , A, and functions to compute recurrence coefficients ak, bk and pk-series coefficients
αk.

Set F0 = 0.
for k=0,1,… do

if k=0 then
Set P0 = I.

else if k=1 then
Set P1 =

1
b0
(AP0 − a0P0).

else
Set Pk = 1

bk−1
(APk−1 − ak−1Pk−1 − bk−2Pk−2).

end
Set Fk+1 = Fk + αkPk.
if converged then

return Fk+1.
end

end

A particular application pertains to the solution of Sylvester equations of the form

XA−BX = C, (3)
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Runtime (seconds)
n Akhiezer Factored ADI Bartels–Stewart

100 0.0639 0.0116 0.0060
500 0.2263 0.3939 0.2836

1000 0.4947 1.9799 1.8147
1500 0.8297 4.8730 6.5464
2000 1.3224 9.6079 21.3945

Table 1: Runtime for solving (3) to full precision where A ∈ Rn×n has spectrum contained in [2, 3],
B ∈ Rn×n has spectrum contained in [−1.8,−0.5], and C is rank 2.

where the spectra of A ∈ Cn×n and B ∈ Cm×m lie in known intervals. If these intervals are disjoint,
the unique solution X to (3) is the lower left block of the matrix

sign

(
A 0
C B

)
, (4)

where sign evaluates to 1 on the spectrum of A and −1 on the spectrum of B [6].
Algorithm 1 can be directly applied to compute (4); however, its naive use requires the computation
of potentially dense matrix-matrix products and blocks that are irrelevant to the approximate
solution. In the case where C = UV is low-rank, this can be circumvented by deriving an equivalent
iteration for only the relevant block entry, writing updates in block form and compressing at each
iteration.
Such an implementation is effectively O(n2) for A,B ∈ Cn×n, as it requires only matrix-vector
products and the compression of low-rank objects. In contrast, when the coefficient matrices are
dense, rational methods and direct solvers will typically be O(n3). We compare timings of such
an implementation with the Bartels–Stewart algorithm [4] and factored Alternating-Directional-
Implicit (ADI) iterations [5] in Table 1. The lower computational complexity is reflected in these
timings, as the Akhiezer iteration has a shorter runtime than competing methods when n ≥ 500.
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On the Computation of the Maximum Conic Singular Values

Giovanni Barbarino, Nicolas Gillis, David Sossa

Abstract

Let Cd denote the set of nonzero closed convex cones in Rd. Let A ∈ Rm×n and (P,Q) ∈ Cm × Cn.
The nonconvex optimization problem

min
u ∈ P, ∥u∥ = 1,
v ∈ Q, ∥v∥ = 1

⟨u,Av⟩, (1)

has been studied in depth in [1], mainly from a theoretical point of view. Any critical (stationary)
point (u, v) of (1) satisfies the KKT optimality conditions

P ∋ u ⊥ (Av − σu) ∈ P ∗,

Q ∋ v ⊥ (A⊤u− σv) ∈ Q∗,

∥u∥ = 1, ∥v∥ = 1,

(2)

for some real Lagrange multiplier σ, where P ∗ and Q∗ are the dual cones of P and Q, respectively.
Observe that when P = Rm and Q = Rn, (2) provides us the (classical) singular values of A.
The model (1) covers many interesting optimization problems. Some of them are: maximal angle
between two cones [2], obtained when m = n and A = In, expressed by

min
u ∈ P, ∥u∥ = 1,
v ∈ Q, ∥v∥ = 1

⟨u, v⟩;

cone-constrained principal component analysis or Pareto singular values [3, 5], in which the two
cones are the positive orthants of the respective spaces as in P = Rm

+ and Q = Rn
+, formalized as

min
u ≥ 0, ∥u∥ = 1,
v ≥ 0, ∥v∥ = 1

⟨u,Av⟩;

nonnegative rank-one factorization matrix [4], equivalent to the Pareto singular value problem, and
written as

min
u≥0,v≥0

∥M − uv⊤∥F .

The above problems can be proven to be in a descending order of complexity. Since the last
formulation in particular can be used to solve the Maximal Edge Biclique Problem, this leads to
the conclusion that all the above models are NP-hard to solve.
We will discuss the linear algebra techniques used to reduce each problem to the following one,
with a focus on sufficient conditions needed for each problem to be instead solved in polynomial
time.

An exact (and thus necessarily exponential time) brute force active set algorithm is presented. Its
proof of correctness is based on the observation in [1] that when we restrict the problem on the
relative interior of the faces of the cones P and Q, then the relations (2) reduces to a generalized
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eigenvalue problem with additional constraints. This can be solved with classical techniques, with
some careful handling in case of eigenvalues with relative eigenspace of dimension more than one.
We will describe the algorithm with a focus on how to cut computational cost through the study
of the stationary points of the problem in order to distinguish minima from saddle points.
We compare the active set algorithm with an exact non-convex quadratic programming solver, that
relies on the McCornick relaxation to solve the problem, and thus performs well in case of sparse
problems.

Moreover, we show two additional iterative algorithms to solve the general problem, an alternating
method with extrapolation and a fractional programming method. These are methods that are
only guaranteed to converge to stationary points, and cannot certify the minimality of the solution
they find.
We discuss and illustrate the use of these algorithms on several examples, as in the computation
of maximal angles between the Schur cone and other cones or the computation of maximal edge
bicliques.
We show how they can lead to rigorous proofs or new conjectures in special cases, such as the
maximal angle between the cone of positive semidefinite matrices and the cone of nonnegative
symmetric matrices.
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Deflation for the Half-Arrow Singular Value Decomposition

Jesse L. Barlow, Stanley Eisenstat, Nevena Jakovčević Stor, and Ivan Slapničar

Abstract

A half-arrow matrix F has the form

F =

(
Ψ g
0T ρ

)
, g ∈ Rn, ρ ∈ R, (1)

Ψ = diag(ψ1, . . . , ψn), ψ1 ≥ ψ2 ≥ . . . ≥ ψn ≥ 0. (2)

We consider the problem of determining which of the diagonals of Ψ are close to singular values
of F and how these values can be deflated efficiently. Such deflation techniques were explored in
the “conquer” stage of the divide-and-conquer bidiagonal SVD algorithms given by Jessup and
Sorensen [9] and Gu and Eisenstat [7].
A version of the algorithm in [9] is coded in the LAPACK [1] subroutine dlasd2.f [10] as a part of
the bidiagonal SVD subroutine dbdsbc.f [1, p.208].
The SVD version of the Cauchy interlace theorem [6, Corollary 8.6.3] states that the singular values
σ1, . . . , σn+1 of F satisfy

σj ≥ ψj ≥ σj+1, j = 1, . . . , n. (3)

Interpretating a result in [13, p.95], Jessup and Sorensen [9] point to three cases where ψj is a
singular value of F :

• Case I: gj = eTj g = 0, then (ψj , ej , ej) is a singular triplet of F ;

• Case II: ψj = 0, so we let Gn+1,j be a Givens rotation affecting rows j and n + 1 whose
non-trivial part is defined by(

c −s
s c

)(
gj
ρ

)
=

(
0
ρ̂

)
,

c2 + s2 = 1,

ρ̂ = ±
√
g2j + ρ2,

and we have that
F̃ = Gn+1,jF

has the singular triplet (0, ej , ej);

• Case III: ψi = ψj for some i ̸= j, so we let Gij be a Givens rotation affecting rows i and j
where the non-trivial part of Gij is defined by(

c s
−s c

)(
gi
gj

)
=

(
ĝj
0

)
,

c2 + s2 = 1

ĝj = ±
√
g2j + g2j+1

and we have that
F̃ = GijFG

T
ij

has the singular triplet (ψj , ej , ej).
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In all three cases, the computation of the SVD of F is reduced to that of computing the SVD of
a lower dimensional half-arrow matrix. If none of these deflations is possible for any j, then from
[13, p.95], we have the strict interlacing property

σj > ψj > σj+1, j = 1, . . . , n. (4)

The deflation strategies in [9, 7] are based upon the idea that one of these three cases applies
to a matrix near F . We model these strategies as follows: we compute a value γF such that
∥F∥2 ≤ γF ≤

√
2∥F∥2, and let τ be a small value, usually O(εM ) where εM is the machine unit.

In some applications, τ may be an acceptable level of error.
Corresponding to the three cases for when ψj is a singular value of F , we can deflate gj in the
following three cases:

1. If
|gj | ≤ τγF (5)

we simply set gj to zero;

2. If
ψj |gj |√
g2j + ρ2

≤ τγF ,

then we apply the Givens rotation Gn+1,j to rows n+ 1 and j setting gj to zero producing

F̃ + δFn+1,j = Gn+1,jF, ∥δFn+1,j∥2 ≤
√
2τγF (6)

where F̃ is a half-arrow matrix with Ψ unchanged;

3. If
|δij | ≤ τγF , δij =

gjgi
g2i + g2j

(ψi − ψj) (7)

and |gj | ≤ |gi|, then we apply the Givens rotation Gij to rows i and j setting gj to zero
producing

F̃ + δFij = GijFG
T
ij , ∥δFij∥2 ≤

√
2τγF (8)

where F̃ is again a half-arrow matrix with Ψ unchanged. If (7) holds and |gj | > |gi|, we set
gi to zero in an analogous manner.

The deflations (5) and (8) are discussed in [9, 7] and the deflation (6) is discussed in [9].
We enhance the appproach in [9, 7] and in the LAPACK routine dlasd2.f [10] by producing a
better deflation algorithm that is still O(n) operations. We also show that if for a particular value
of j, gj cannot be deflated by (5) or by (6) or by (8) for any i ̸= j, then

σj − σj+1 > τγF /
√
2n+ 1. (9)

However, the only algorithm we give with that guarantee for all j has a worst case complexity
proportional to n2. If we weaken these conditions, so that there is no index i such that |i− j| < q,
and we have (8), then

σj − σj+1 >
√
2τ2qγF +O(τ4q2γF ). (10)
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The algorithm we recommend is a hueristic proposed here with worst case complexity proportional
to n, the same asymtotic complexity as the LAPACK procedure, but with better deflation guaran-
tees. It acheives (10) with q = 2 for all j. Bounds similar to (9) and (10) are not possible for the
singular values of deflated structure matrices, for instance, there are no such bounds for bidiagonal
matrices.
In light of work by Demmel and Gragg [4] that formulated an algorithm to compute the nonzero
singular values of F to near relative accuracy, we formulate and analyze versions of the deflations
in (5) and (8) that preserve relative accuracy in the singular values.
By choosing γF to be within a constant factor of ∥F∥2, these deflations produce no more error in
the singular values than would be expected of a normwise backward stable algorithm for finding
the SVD of F . However, for algorithms to compute the SVD of F , deflation gives us dimension
reduction and speeds up the algorithms in [9] and [7]. The LAPACK routine dlasd2.f uses only
the first and third types of deflation.
Two other applications for this kind of deflation have been investigated. The first is in is SVD-
based regularization approaches given in [8, §4.3] and [11]. The second is in the implementation of
a Krylov-Schur implementation [2, 12] of the Golub-Kahan-Lanczos SVD algorithm [5].
This is a continuation of work in [3].
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Learning Globally Stable Dynamics — a Matrix-theoretic Perspective

Peter Benner, Pawan K. Goyal, Siddarth Mamidisetti, Igor Pontes Duff, Süleyman Yildiz

Abstract

1 Motivation

The identification of dynamical systems from data has been considered for several decades, basi-
cally ever since Cybernetics emerged as a discipline from the wider research area of systems theory
[Wiener (1948)]. In systems and control theory, system identification is an important and widely
used technique in computer-aided control system design, available in any relevant software pack-
age, see, e.g., [Ljung (1999), Sima and Benner (2007), Benner et al. (2010)]. Nevertheless, most
available identification tools are for linear systems, and do not necessarily consider constraints like
stability or other physical properties. On the other hand, due to the advance of machine and deep
learning methods, learning dynamical systems from data, in particular nonlinear systems, has re-
cently become a field of renewed and massively growing interest. This is due, on the one hand,
to the vast availability of measurement data in areas like the Earth system (weather and climate),
biology, sociology, traffic etc., where traditionally no first principle mathematical models are avail-
able, but models are needed for prediction, while, on the other hand, the massive advancement
in computational power nowadays allows to study large data sets using methods from artificial
intelligence.
Nevertheless, the trajectories of time-dependent problems are often constrained by underlying
physical principles that are usually not respected by classical black-box methods in machine and
deep learning. Thus, physics-informed and physics-enhanced or ”scientific” machine learning have
emerged as new subdisciplines in the computational sciences and engineering and applied math-
ematics. Here, we will study in particular the stability of learned dynamical systems. In other
words, we answer the question how to guarantee that the learned model of a dynamical system
has desired stability properties, where we assume that some prior knowledge about the expected
stability class is available. We show that stability constraints can be hard-coded into the learning
model to guarantee, e.g., (asymptotic/Lyapunov/exponential) stability of linear systems, global
asymptotic stability of nonlinear systems, and global stability of Hamiltonian systems. The used
ideas stem from partially simple and obvious results in the theory of matrices and tensors. We will
show that explicit parameterizations of the learned operators (matrices and tensors) defining the
dynamical systems lead to constrained least-squares problems that can be solved using optimization
routines that are now widely available in all software stacks for machine learning.
Exemplarily, we will demonstrate this approach for linear, uncontrolled, systems. In the talk, we
will focus on the more challenging problems for nonlinear systems.

2 Learning Stable Linear Systems

Consider uncontrolled linear systems of the form

ẋ(t) = Ax(t), x(0) = x0, (1)
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where A ∈ Rn×n, x(t) ∈ Rn is the state of the system at time t ≥ 0, ẋ denotes the derivative of x
with respect to time, and x0 ∈ Rn is the initial value.
If time-series data for x(t) and ẋ(t) are available, i.e., we have measured or computed vectors

x0 = x(0), x1 = x(t1), . . . , xℓ = x(tℓ)

and
x′0 = ẋ(0), x′1 = ẋ(t1), . . . , x′ℓ = ẋ(tℓ)

at a sequence of time points t0 = 0 < t1 < t2 < . . . < tℓ, then a very simple way to infer the matrix
A from the available data is to set up a linear least-squares problem using the data matrices

X = [x0, . . . , xℓ] ∈ Rn×ℓ+1,

X ′ =
[
x′0, . . . , x

′
ℓ

]
∈ Rn×ℓ+1.

For (1), a possible formulation of an operator inference problem (OpInf) is then

A∗ := argminA∥X ′ −AX∥2F +R(A) (2)

with a potential regularization term R(A), e.g., for classical Tikhonov regularization (aka “ridge
regression” in the machine learning community) R(A) = β∥A∥2F , where β > 0 would be a regu-
larization parameter. Here, one might also use a sparsity-promoting norm, e.g., R(A) = β∥A∥q,
q = 0, 1. Note that for β = 0, or in general, R(A) ≡ 0, (1) represents a standard linear least-squares
problem, as the Frobenius norm turns into the standard Euclidian vector norm once X ′ − AX is
vectorized. From this, it is also obvious that this becomes a classical overdetermined system once
ℓ ≥ n. Then minimization problem (1) can be solved using classical solution methods for linear
least-squares problems like pivoted QR factorization or singular value decomposition (SVD).
The OpInf framework described so far has seen numerous applications and extensions in recent
years. One of its major drawbacks still is that the inferred models can not be guaranteed to be
stable (regarding local or global, asymptotic or Lyapunov stability) even if it is known that the
data-generating model has a certain stability property. Some stability promoting weak enforcement
strategies have been suggested, see, e.g., [Kaptanoglu et al. (2021)], but so far no certified stable
models could be produced using the OpInf problem (2). Our goal is to introduce a parametrization
of stability directly in the least-squares problem and in this way to obtain guaranteed stable models,
following [Goyal et al. (2023b)]. Note that a very similar idea is also used in model reduction
methods for port-Hamiltonian systems [Schwerdtner and Voigt (2023)].
The inference of asymptotically stable linear models with guarantee is based on the following
somewhat surprising result, that was stated in [Gillis and Sharma (2017)], whereby related partial
results can also be found in earlier literature. First, note that asymptotic stability of linear systems
of the form (1) is fully characterized by the spectrum of A, Λ(A), and in particular by the property
that Λ(A) ⊂ C−, i.e., that the spectrum of A is fully contained in the open left half of the complex
plane. The proof of the theorem is entirely based on this characterization.

Theorem 2.1 ([Gillis and Sharma (2017)]). A matrix A ∈ Rn×n is asymptotically stable (Hurwitz,
Lyapunov stable) if and only if it can be represented as

A = (J −R)Q,

where J = −JT and R = RT , Q = QT are both positive definite.

26



Now, it is straightforward to replace the linear least-squares problem (2) by the following inference
problem:

(J∗, R∗, Q∗) := argmin J=−JT

R=RT≻0
Q=QT≻0

∥X ′ − (J −R)QX∥2F +R(J,Q,R). (3)

Unfortunately, this problem is relatively hard to solve due to the positive definiteness constraints.
Therefore, in [Goyal et al. (2023b)], we suggest to use the following parametrization:

J = S − ST , R = LTL, Q = KTK,

where S ∈ Rn×n is a general square matrix and L,K ∈ Rn×n are upper-triangular matrices (or
Cholesky factors). Then the OpInf problem for linear systems becomes

(S∗, L∗,K∗) := argminL,K upper
triangular

(
∥X ′ − (S − ST − LTL)KTKX∥2F +R(L,K, S)

)
. (4)

If this problem can be solved, the obtained matrix

A∗ =
(
S∗ − ST

∗ − LT
∗ L∗

)
KT

∗ K∗

is guaranteed to be asymptotically stable due to Theorem 2.1 and solves (2) under the asymptotic
stability constraint. The price paid for inferring a model with stability certificate is that even for
a zero regularizer, the inference problem (4) is nonlinear in the entries of L,K. Fortunately, with
the advance of machine learning methods, such problems can be solved using (stochastic) gradient
descent methods implemented in tools like PyTorch.1

In our talk, we will describe how this result and the related stability-guaranteed OpInf problem can
be extended to controlled systems ẋ = Ax+Bu, where u is a control input [Pontes Duff et al. (2024)]
and to parameter dependent systems, where A = A(µ) depends on a parameter vector µ ∈ Rq.

3 Outlook: Nonlinear Systems

While for linear systems, local and global stability as well as asymptotic, Lyapunov, and exponential
stability concepts are equivalent, these have to be distinguished for nonlinear systems. Obviously,
using the parametrization of A from (4) to an operator inference problem for a nonlinear system
with linear part Ax(t), the inferred system will be locally Lyapunov stable with Lyapunov function

V (x) :=
1

2
xTQx.

In [Goyal et al. (2023a)], we additionally study the identification of globally Lyapunov stable
quadratic systems as well as systems with bounded domain of attraction. This is again based
on explicit parameterizations of matrices and tensors. These results will be presented in the talk as
well as ideas on how to guarantee global stability of Hamiltonian systems, where we employ tech-
niques from deep learning and elementary properties of symplectic matrices [Goyal et al. (2023c)].
The theoretical findings will be illustrated by several numerical examples.

1https://pytorch.org/
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Improved Spectral Density Estimation via Explicit and Implicit Deflation 1

Rajarshi Bhattacharjee, Rajesh Jayaram, Cameron Musco, Christopher Musco, Archan Ray

Abstract

We study algorithms for approximating the spectral density of a symmetric matrix A ∈
Rn×n that is accessed through matrix-vector products. By combining an existing Chebyshev
polynomial moment matching method with a deflation step that approximately projects off the
largest magnitude eigendirections of A before estimating the spectral density, we give an ϵσℓ(A)
error approximation in the Wasserstein-1 metric using O(ℓ log n+ 1/ϵ) matrix-vector products,
where σℓ(A) is the ℓth largest singular value of A. When A exhibits fast singular value decay,
this can be much stronger than prior work, which gives error ϵσ1(A) using O(1/ϵ) matrix-vector
products. We also show that our bound is nearly tight: Ω(ℓ + 1/ϵ) matrix-vector products are
required to achieve error ϵσℓ(A).

We further show that the popular Stochastic Lanczos Quadrature (SLQ) method matches
the above bound, even though SLQ itself is parameter-free and performs no explicit deflation.
This explains the strong practical performance of SLQ, and motivates a simple variant that
achieves an even tighter error bound. Our error bound for SLQ leverages an analysis that views
it as an implicit polynomial moment matching method, along with recent results on low-rank
approximation with single-vector Krylov methods. We use these results to show that SLQ can
perform implicit deflation as part of moment matching.

1 Introduction

Given a symmetric matrix A ∈ Rn×n with eigenvalues λ1(A), . . . λn(A), the spectral density of A
is defined as:

sA(x) =
1

n

n∑
i=1

δ(x− λi(A)),

where δ(.) is the Dirac delta function. The spectral density sA can be computed directly by
performing a full eigendecomposition of A in O(nω) time, for ω ≈ 2.37 being the exponent of fast
matrix multiplication. However, when A is very large or where A can only be accessed through a
small number of queries, we often want to approximate sA by some s̃A such that s̃A and sA are
close in some metric. Spectral density estimation is applied throughout the sciences [Ski89, SR94,
STBB17, SRS20], network science [FDBV01, EG17, DBB19], machine learning and deep learning
in particular [RL18, PSG18, MM19, GKX19], numerical linear algebra [DNPS16, LXES19], and
beyond. In this work, we focus on the Wasserstein-1 (i.e., earth mover’s) distance, W1(sA, s̃A),
which has been studied in a number of recent works giving formal approximation guarantees for
SDE [CTU21, BKM22, CTU22]. Moreover, A will be accessed only through matrix vector queries
of the form Av for any query vector v. Most state-of-the-art matrix-vector query algorithms for
SDE are based on Krylov subspace methods that fall into two general classes.
Moment Matching. The first class of methods approximates sA by approximating its polynomial
moments. I.e., EsA [p(x)] =

1
n

∑n
i=1 p(λi(A)) = 1

n tr(p(A)), where p is a low-degree polynomial.
We can employ stochastic trace estimation methods like Hutchinson’s method [Gir87, Hut90] to
approximate this trace using just a small number of matrix-vector products with p(A) and in turn

1Based on paper to appear at SODA 2025. Preprint available at [BJM+24]
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A, since if p has degree k, a single matrix-vector product with p(A) can be performed using k matrix
vector products with A. After approximating the moments for a set of low-degree polynomials (e.g.,
the first k monomials, or the first k Chebyshev polynomials), we can let s̃A be a distribution that
matches these moments as closely as possible, and thus should closely match sA. Moment matching
methods include the popular Kernel Polynomial Method (KPM) [SR94, Wan94, WWAF06] and
its variants [CPB10, LSY16, BKM22, Che23]. Braverman et al. [BKM22] analyze a Chebyshev
Moment Matching method, which can be thought of as a simple variant of KPM, showing that
the method can compute s̃A satisfying W1(sA, s̃A) ≤ ϵ · ∥A∥2 with probability ≥ 1 − δ using just
O(b/ϵ) matrix vector products, where b = max(1, 1

nϵ2
log2 1

ϵδ log
2 1

ϵ ). Note that b = 1 in the common
case when ϵ = Ω̃(1/

√
n). Here ∥A∥2 denotes the spectral norm of A – i.e., its largest eigenvalue

magnitude. They prove a similar guarantee for KPM itself, but with a worse dependence on ϵ.
Lanczos-Based Methods. This class of methods computes a small number of approximate
eigenvalues of A using the Lanczos method, and lets s̃A be a distribution supported on these
eigenvalues, with appropriately chosen probability mass placed at each. The canonical method of
this form is Stochastic Lanczos Quadrature (SLQ) [CTU21, GM09]. Many other variants have also
been studied. Some place probability mass not just at the approximate eigenvalues, but on Gaussian
or other simple distributions centered at these eigenvalues [LG82, BRP92, LSY16, HHK72]. Chen
et al. [CTU21, CTU22] prove that the Lanczos-based SLQ method gives essentially the same
approximation bound as [BKM22]: error ϵ · ∥A∥2 using O(1/ϵ) matrix-vector products when ϵ =
Ω̃(1/

√
n)2.

2 Our Results

Our main contribution is to show that both moment matching and Lanczos based methods for
SDE can achieve improved bounds on W1(sA, s̃A) that depend on σl+1(A), the (l + 1)st largest
singular value of A for some parameter l, instead of ∥A∥2. For matrices that exhibit spectral
decay and thus have σl+1(A) ≪ σ1(A) = ∥A∥2, our bounds can be much stronger than the
bound W1(sA, s̃A) ≤ ϵ · ∥A∥2 achieved in prior work, which roughly corresponds to estimating each
eigenvalue to average error ϵ · ∥A∥2. We also provide a lower bound showing that our bounds are
near optimal upto some logarithmic factors.

2.1 Improved SDE via Moment Matching with Explicit Deflation

Our first contribution is a modification of the moment matching method of [BKM22] that first
‘deflates’ off any eigenvalue of A with magnitude significantly larger than σl+1(A), before estimating
the spectral density. Eigenvalue deflation is widely applied throughout numerical linear algebra to
problems like linear system solving [BEPW98, FV01, GOSS16, FTU23], trace estimation [GSO17,
Lin17, MMMW21], norm estimation [MNS+18], and beyond [CS97]. Specifically, the method uses
a block Krylov subspace method to first compute highly accurate approximations to the p largest
magnitude eigenvalues of A, for some p ≤ l, along with an orthonormal matrix Z ∈ Rn×p with
columns approximating the corresponding eigenvectors. It uses moment matching to estimate the
spectral density of A projected away from these approximate eigendirections (I−ZZT )A(I−ZZT ),
achieving error ϵσl+1(A) since this matrix has spectral norm bounded by O(σp+1(A)) = O(σl+1(A))
if Z is sufficiently accurate. It then modifies this approximate density to account for the probability

2The notations Õ and Ω̃ means some logarithmic factors are present.
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mass at the top p eigenvalues. While block Krylov methods are well understood for related tasks like
eigenvalue and eigenvector computation [Par98, Tro18], low-rank approximation [HMT11, MM15],
singular value approximation [MM15, MNS+18, BN23], linear system solving [LSY98, Saa03], our
work requires a careful analysis of eigenvalue/eigenvector approximation with these methods that
may be of independent interest. Overall, the above approach gives the following result:

Theorem 1 (SDE with Explicit Deflation). For any ϵ ∈ (0, 1), l ∈ [n], and any constants c1, c2 >
0, Algorithm 1 of [BJM+24] performs O

(
l log n+ b

ϵ

)
matrix-vector products with A where b =

max
(
1, 1

nϵ2
log2 n

ϵ log
2 1

ϵ

)
and computes a probability density function s̃A such that, with probability

at least 1− 1
nc1 ,

W1(sA, s̃A) ≤ ϵ · σl+1(A) +
∥A∥2
nc2

.

The additive error ∥A∥2
nc2 can be thought of as negligible – comparable e.g., to round-off error when

directly computing sA using a full eigendecomposition in finite precision arithmetic [BGVKS22].
We further show that our algorithm is optimal amongst all matrix-vector query algorithms, up to
logarithmic factors and the negligible additive error term. Our proof leverages an existing lower
bound for distinguishing Wishart matrices of different ranks, previously used to give matrix-vector
query lower bounds for the closely related problem of eigenvalue estimation [SW23]. Formally:

Theorem 2 (SDE Lower Bound). Any (possibly randomized) algorithm that given symmetric A ∈
Rn×n outputs s̃A such that, with probability at least 1/2, W1(sA, s̃A) ≤ ϵσl+1(A) for ϵ ∈ (0, 1) and
l ∈ [n] must make Ω

(
l + 1

ϵ

)
(possibly adaptively chosen) matrix-vector queries to A.

2.2 Implicit Deflation Bounds for Stochastic Lanczos Quadrature

Our second contribution is to show that the popular Stochastic Lanczos Quadrature (SLQ) method
for SDE [LSY16, CTU21] nearly matches the improved error bound of Theorem 1 for any choice
of l, even though SLQ is ‘parameter-free’ and performs no explicit deflation step. This result helps
to justify the strong practical performance of SLQ and the observed ‘spectrum adaptive’ nature of
this method as compared to standard moment matching-based methods like KPM [CTU21].
A key idea used to achieve this bound is to view SLQ as an implicit moment matching method
as in [CTU21, CTU22], and to analyze it similarly to KPM and other explicit moment matching
methods. We combine this analysis approach with recent work on low-rank approximation with
single-vector (i.e., non-block) Krylov methods [MMM24] to show that SLQ can perform ‘implicit
deflation’ as part of moment matching to achieve the improved error bound. Formally, we have:

Theorem 3 (SDE with SLQ). Let l ∈ [n], and ϵ, δ ∈ (0, 1). Let gmin = mini∈[l]
σi(A)−σi+1(A)

σi(A) and
κ = ∥A∥2

σl+1(A) . SLQ run for m = O(l log 1
gmin

+ 1
ϵ log

n·κ
δ ) iterations performs m matrix vector products

with A and outputs a probability density function s̃A such that, with probability at least 1− δ,

W1(sA, s̃A) ≤ Õ

(
ϵ · σl+1(A) +

σl+1(A)√
n

+
l

n
∥A∥2

)
.

Theorem 3 essentially matches our result for moment matching with explicit deflation (Theorem
1) up to some small caveats, discussed below. First, the number of matrix vector products has
a logarithmic dependence on the minimum gap gmin amongst the top l singular values as well as
the condition number κ = ∥A∥2

σl+1(A) . The dependence on the minimum gap is inherent, as non-block
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Krylov methods like SLQ require a dependence on gmin in order to perform deflation/low-rank
approximation [MMM24]. We note that, in practice, gmin is generally not too small. Also, by
adding a random perturbation to A with spectral norm bounded by ∥A∥2

poly(n) , one can ensure that
both gmin ≥ 1

poly(n) and κ ≤ poly(n) with high probability, and thus replace the O(l log 1
gmin

) term
with an O(l log n) and the O( log(nκ)ϵ ) term with O( lognϵ ), matching Theorem 1. See e.g., [MMM24].

Second, Theorem 3 has an additional error term of size Õ(σl+1(A)/
√
n). This term is lower order

whenever ϵ = Ω̃(1/
√
n). Further, we believe that this term, along with the dependence on gmin can

be removed by using a variant on SLQ that is popular in practice, where the densities output by
multiple independent runs of the method are averaged together to produce s̃(A).
Finally, Theorem 3 has an additional error term of size Õ(∥A∥2 · l/n). In the natural case when we
run for m ≪ n iterations and thus l ≪ n, this term will be small. However, it cannot be avoided:
even for a matrix with rank ≤ l with well-separated eigenvalues, while the Lanczos method will
converge to near-exact approximations to these eigenvalues (with error bounded by ∥A∥2

nc ), the
probability distribution output by SLQ will not place mass exactly 1/n at these approximate
eigenvalues and thus will not achieve SDE error O(∥A∥2

nc ).
This limitation motivates us to introduce a simple variant of SLQ, which we call variance reduced
SLQ, which places mass exactly 1/n at any eigenvalue computed by Lanczos that has converged to
sufficiently small error. This variant gives the following stronger error bound:

Theorem 4 (SDE with Variance Reduced SLQ). Let l ∈ [n], and ϵ, δ ∈ (0, 1). Let gmin =

mini∈[l]
σi(A)−σi+1(A)

σi(A) and κ = ∥A∥2
σl+1(A) . Algorithm 5 of [BJM+24] run for m = O(l log 1

gmin
+

1
ϵ log

n·κ
δ ) iterations performs m matrix vector products with A and outputs a probability density

function s̃A such that, with probability at least 1− δ, for some fixed constant c > 0,

W1(sA, s̃A) ≤ Õ

(
ϵ · σl+1(A) +

σl+1(A)√
n

+
l

n
σl+1(A)

)
+

∥A∥2
nc

.

3 Future Work

There are a number of directions inspired by our work which can be pursued in the future.
Lanczos based Matrix Function Approximation. Variants of SLQ and Lanczos have been
used to obtain algorithms for estimating general functions of the trace of A, tr(f(A)) [UCS17,
CTU22, CH23]. The Lanczos method itself can approximate different matrix functions like rational
functions very accurately [ACG+24]. Our deflation based analysis, particularly that of the variance
reduced SLQ, could be used to give improved spectrum adaptive bounds for all these methods.
Numerical stability. The Lanczos algorithm is known to suffer from numerical stability issues
when implemented in finite precision arithmetic [Che24]. A more careful analysis of how the
algorithms perform under finite precision arithmetic will be interesting. However, we note that our
experiments (Section 6 of [BJM+24]) show that our algorithms work pretty well in practice.
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Birkhoff Averages, Invariant Sets, and Adaptive Filtering

David S. Bindel, Maximillian E. Ruth

Abstract

In the design of magnetic confinement fusion devices (and many other applications), one is interested
in classifying the trajectories of symplectic maps. That is, we consider discrete dynamical systems

xt+1 = F(xt)

where the map F : X → X is symplectic. We are interested in classifying such trajectories as
quasiperiodic orbits (invariant circles, islands) or as chaotic, and finding simple parameterizations
of any quasiperiodic structures. In this talk, we describe a simple approach to these tasks by
building a linear time-invariant system representation of the dynamics from a given starting point
with a palindromic characteristic polynomial. This allows us to find a Fourier parameterization of
invariant circles and islands from a single trajectory, as well as classifying trajectories as regular or
chaotic. We connect our approach to ideas from extrapolation methods, adaptive filter design, and
Birkhoff averages, and show examples of Birkhoff RRE on the standard map and magnetic field
line dynamics.
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Parallelization of all-at-once preconditioned solvers for time-dependent
PDEs

Matthias Bolten, Ryo Yoda

Abstract

Modern high performance computers provide tremendous compute power by utilizing large amounts
of cores. As a consequence, traditional spatial parallelization schemes lead to a saturation of the
speedup more often. This motivated the use of parallelization in the time diretion, as well. Various
approaches exist and often two- and multilevel approaches like parareal or space-time multigrid are
chosen that introduce a coarse level—or multiple coarse levels—to propagate information faster in
time, usually in a serial manner. An alternative that is very natural from a numerical linear algebra
viewpoint is to consider all-at-once systems. Consider a linear time dependent PDE:

∂u(x, t)

∂t
= Lu(x, t) + f(x, t), (x, t) ∈ Ω× (0, T ],

u = g, (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = u0(x), x ∈ Ω.

Discretization using finite elements and denoting the mass matrix by M and the stiffness matrix
by K in each time step with step width τ = T

n yields

M

(
u(k+1) − u(k)

τ

)
= Ku(k+1) + f (k+1),

writing the resulting n linear systems into one finally gives
M − τK
−M M − τK

. . . . . .
−M M − τK



u(1)

u(2)

...
u(n)

 =


f (1) +Mu0

f (2)

...
f (n)

 .

This large system can be solved iteratively using, e.g., GMRES. Further, when M and K are
symmetric or can be made symmetric simultaneously and when they are not changing like in the
example provided, the matrix can be symmetrized by applying a reordering technique allowing to
use methods like MINRES. If M and K do not change over time preconditioners for block Toeplitz
or block Hankel matrices can be used in both cases. The GMRES case has been studied, e.g., in
[3], the MINRES case was considered, e.g., in [2, 4, 5, 6]. The preconditioners studied are either
block circulant or block ϵ-circulant and thus multiplication and inversion can be carried out in
almost optimal, i.e., O(n log n), complexity by using the FFT. Additionally, the blocks have to
be solved efficiently which is usually carried out using the method used for the sequential time-
stepping. While the study of the preconditioners is extensive, the actual parallel implementation
is studied very little. One option to implement these kinds of methods is the usage of a parallel
FFT as studied in [1]. Yet, an efficient parallelization of the FFT is relatively difficult given that
it requires a lot of communication in comparison to very few arithmetic operations. This is one
reason why multi-dimensional FFTs usually transpose the data such that the individual 1D-FFTs
can be carried out sequentially. For the preconditioners considered in this case, in general only
1D-FFTs are needed.
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Given the results obtained using efficient multi-dimensional FFTs on parallel computers as an
alternative to a direct parallelization of the FFT we propose to transpose the data such that
sequential 1D-FFTs can be used and to transpose it back before solving the individual blocks. The
method resulting from a parallel implementation of the method proposed in [3] in this way provides
an excellent scaling behavior, yielding an additional speedup after saturation of pure time-stepping
with parallel solves of the spatial problem alone.
The applications of the preconditioners require the solution of usually complex block system that
have the dimension of the spatial problem. Our implementation currently uses smoothed aggre-
gation multigrid from Trilinos to solve these systems. We have used this approach on machines
based on CPUs as well as on clusters with GPUs. In all cases we can achieve good scaling results,
providing efficient parallelization in time by using preconditioning.
We will provide an overview over the different preconditioners that can be implemented in the
proposed way, present the parallelization approach in detail, discuss the solution of the blocks and
demonstrate the achieved performance.
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Parallel Incomplete Factorization Preconditioners

Erik G Boman1, Marc A. Tunnell2

Abstract

Incomplete factorizations are popular preconditioners and are well known to be effective for a wide
range of problems. Additionally, these preconditioners can be used as a “black box” and do not rely
on any a priori knowledge of the problem. However, traditional algorithms for computing these
incomplete factorizations are based on Gaussian elimination and do not parallelize well. Recently,
a more parallel incomplete factorization algorithm was proposed by Chow and Patel [4], where
the factors are computed iteratively. Here we propose a new iterative approach that is based on
alternating triangular solves of L and U . We develop two versions: ATS-ILU for a static sparsity
pattern, and ATS-ILUT for a dynamic pattern (using thresholding). We show that this new method
is similar to the fine-grained iterative ILU method by Chow but has the added advantage that it
allows greater reuse of memory and is fully deterministic in parallel, meaning the results do not
depend on scheduling. We evaluate the new method on several test matrices from the SuiteSparse
collection and show that it is competitive with current ILU methods. When short setup time is
important, it is typically better than other methods.

1 Introduction

Preconditioning is well known to be essential for improving the speed of convergence of Krylov
methods such as Conjugate Gradient (CG) and Generalized Minimal Residual (GMRES) [8]. In-
complete Lower-Upper (ILU) factorizations are a popular class of preconditioners as they can be
used as a “black box” on a wide range of problems. There are two main types of ILU factorizations,
level-based ILU(k) [3, 6, 7] and threshold-based ILUT [9]. However, these methods are inherently
sequential and do not parallelize well.
There has been interest in the parallelization of these more classical interpretations of ILU, largely
through graph partitioning schemes. These graph partition-based methods, such as [5], offer a
promising approach to parallelizing classical ILU methods. By decomposing the graph correspond-
ing to the matrix and determining variables that can be eliminated in parallel, these methods aim to
distribute the computational load more evenly across processors. While these strategies have shown
effectiveness for certain types of problems [3], their implementation can be highly complex. Ad-
ditionally, their performance can be problem-dependent, requiring consideration of the underlying
graph structure when choosing a parallelization strategy.
More recently, there have been strides into methods of computing ILU factors iteratively, poten-
tially giving up some of the robustness of the classical methods for better parallel properties [4].
Iterative ILU methods, such as those introduced by Chow [4], offer significant advantages in terms
of scalability on modern parallel architectures. For the remainder of this paper, we refer to the
method introduced by Chow as ParILU and its thresholded counterpart as ParILUT [1, 4]. These
methods approximate the ILU factors through a series of iterative updates, which can be more
easily distributed across multiple processors or offloaded to accelerators.

1Sandia National Labs, egboman@sandia.gov
2Purdue University, mtunnell@purdue.edu
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By breaking down each iterative update into smaller approximate subproblems and solving them
independently, different parts of the factorization can be computed in parallel without the need for
complex graph-partitioning algorithms. This approach allows for the use of iterative ILU methods
on a wide range of problems, including those with complex or irregular graph structures that may
preclude high levels of parallelism in the graph-partitioned classical ILU methods.
Furthermore, iterative ILU methods are adaptable to various hardware accelerators such as graphics
processing units (GPUs) [2], which are increasingly important for high-performance computing.
By leveraging the parallel processing capability of these accelerators, iterative ILU methods can
significantly reduce the real-world time required to compute the ILU factors for large-scale problems,
thereby speeding up the overall solution process.
In this paper, we propose a new class of iteratively-computed ILU preconditioners, which we call
Alternating triangular Solves ILU (ATS-ILU). This method builds upon the strengths of existing
iterative ILU approaches while leveraging improved memory reuse and determinism in parallel. We
provide an analysis of the method and evaluate its performance compared to the state of the art
on a variety of test matrices. We show that our method is competitive with current ILU methods
and has the potential to be a powerful tool for solving large-scale problems on modern parallel
architectures.

2 Alternating Triangular Solves Method

In this section, we introduce our new method for computing ILU factors, ATS-ILU. This method
is based on the idea of alternating iterative updates to the L and U factors of the matrix A. The
basic idea is the same as before, where we iteratively update the factors L and U until convergence,
but where the updates are performed in an alternating manner. This general process is a common
method for solving bilinear systems and is outlined in 1.

Algorithm 1 Alternating ILU
U (0) ← triu(A)
k ← 0
while not converged do

Solve L(k)U (k) ≈ A for L(k)

Solve L(k)U (k+1) ≈ A for U (k+1)

Check convergence
k ← k + 1

end while

One way to perform this procedure would be to perform a triangular solve with the entirety of
U (k) and let A be the right-hand side vector to solve for L(k+1), and similar to solve for U (k+1).
This entire process can largely be performed in parallel as each row of L and column of U can
be solved independently. Despite the potential for high levels of parallelism, it is still extremely
computationally expensive and likely suffers from significant levels of fill-in during intermediate
steps. The computational cost could be reduced by using an approximation.
Additionally, the algorithm as stated above does not guarantee that L and U remain lower and
upper triangular, respectively. One method to address this issue would be to solve for L only in
the lower triangular part of A and for U only in the upper triangular part of A. This would ensure
that the factors remain lower and upper triangular, respectively, but would still leave the problem

41



of significant levels of fill-in. Instead, we suggest a more practical approach where we impose a
sparsity pattern on L and U , namely L and U , respectively. This sparsity pattern can be chosen
to be the same as the sparsity pattern of A, which is the choice we make in this paper.
In order to get around the issue of fill-in, we propose a method where we approximately solve for
L and U along their given sparsity patterns, which we discuss next.

2.1 Alternating Triangular Solves ILU Algorithm

The ATS-ILU algorithm is based on the idea of approximately solving for L and U in an alternating
fashion along only their given sparsity patterns. Again, the rows of L and the columns of U can
be solved independently, allowing for a high level of parallelism. The algorithm is shown in 2. We
present the algorithm for a general pattern S but in practice, this will correspond to the pattern
of Ak for some small power k.

Algorithm 2 ATS-ILU
1: Input: Sparse matrix A, sparsity pattern S, starting factors L and U
2: while not converged do
3: for i ∈ {1 2 . . . n} do
4: idx← {j ∈ N | (i, j) ∈ S, j ≤ i}
5: ℓi,idx ← ai,idx (Uidx,idx)

−1

6: end for
7: for j ∈ {1 2 . . . n} do
8: idx← {i ∈ N | (i, j) ∈ S, i ≥ j}
9: uidx,j ← (Lidx,idx)

−1 aidx,j
10: end for
11: end while

In this algorithm, we solve for each row of L and each column of U independently. Recall that the
notation ai,idx refers to the ith row of A restricted to the indices in idx, and similarly for Uidx,idx
and Lidx,idx. These submatrices can be viewed as the (dense) non-contiguous submatrices of L and
U that correspond to the sparsity pattern S along the given row or column.
Our method can be extended to do thresholding to maintain a certain fill level. We call this
extension ATS-ILUT, and defer the details to the full paper.

3 Results

We implemented the ATS-ILUT algorithm in C++ with Kokkos for parallel performance portability.
We show some preliminary results in Table 3.

4 Conclusions

We have developed a new parallel iterative ILU algorithm ATS-ILU and a thresholded version ATS-
ILUT. Experiments show it performs similarly to the ParILU(T) method, but it often provides a
better quality preconditioner after just one or two steps (updates) of the setup. This is an advantage
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Table 1: Comparison of ATS-ILU Variants with PAR-ILUT across Different Matrices, Fill Levels,
and Iterations. The best at each iteration is bolded.

Matrices: abnormal_sandia af_shell3 G3_circuit parabolic_fem

Method Fill
Iterations

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

ATS-ILUT
(a)

1.0 54 44 42 42 42 905 723 594 605 568 1169 1140 1148 1133 1131 1183 1089 1090 1083 1071

2.0 51 33 25 24 23 872 564 395 334 299 860 639 467 426 396 765 561 464 492 444

3.0 51 31 22 18 17 872 559 378 308 258 860 638 448 373 318 765 551 422 434 381

ATS-ILUT
(b)

1.0 50 45 45 46 45 797 657 638 625 631 1153 1186 1189 1187 1183 1261 1192 1224 1220 1201

2.0 42 29 27 27 27 651 402 319 289 274 690 520 408 424 414 729 719 505 547 446

3.0 42 24 20 20 20 651 397 290 226 204 690 520 357 326 305 729 715 681 525 378

ParILUT
1.0 54 45 45 45 45 822 597 581 616 592 1188 1170 1180 1215 1217 1232 1168 1190 1201 1197

2.0 49 32 26 25 25 752 415 311 279 268 758 531 390 365 360 864 482 379 353 354

3.0 49 30 21 18 17 752 415 293 234 204 758 531 379 295 269 864 479 320 219 191

if setup time is important, e.g., when solving a sequence of linear systems. Also, it is naturally
deterministic (though an asynchronous version is also possible).
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Operator Learning without the Adjoint

Nicolas Boullé, Diana Halikias, Samuel Otto, Alex Townsend

Abstract

There is a mystery at the heart of operator learning: how can one recover a non-self-adjoint
operator from data without probing its adjoint? Current practical approaches suggest that one can
accurately recover an operator while only using data generated by the forward action of the operator
without access to the adjoint [5]. However, naively, it seems essential to sample the action of the
adjoint for learning solution operator of time-dependent partial differential equations (PDEs) [3].
This motivates a fundamental question in numerical linear algebra: can one approximate a non-
symmetric low-rank matrix without sketching its adjoint?
In this talk, we will explore the limits of adjoint-free low-rank matrix recovery and propose an
approach that could help analyze the behavior of structured matrix recovery algorithms. Then,
we will show that one can approximate a family of non-self-adjoint infinite-dimensional compact
operators via projection onto a Fourier basis without querying the adjoint. We will apply the
result to recover Green’s functions of elliptic partial differential operators and derive an adjoint-
free sample complexity bound. While existing infinite-dimensional numerical linear algebra theory
justifies low sample complexity in operator learning [2, 4], ours is the first adjoint-free analysis that
attempts to close the gap between theory and practice [1].

Limits of adjoint-free low-rank matrix recovery. We start in the fundamental setting of
recovering a low-rank matrix by querying the map x 7→ Fx but without access to x 7→ F ∗x. We
show that querying x 7→ F ∗x is essential for recovering F and prove rigorous guarantees on the
quality of the reconstruction in terms of how close F is to a symmetric matrix. Thus, we conclude
that without prior knowledge of the properties of the adjoint, one must have access to its action.
We assume that F is δ-near-symmetric (i.e., its left and right singular subspaces are δ-close), but
we only have access to partial information regarding the symmetry of F , namely that F is ϵ-near-
symmetric for some ϵ ≥ δ, and sketching constraint FX. To quantify the resulting uncertainty
about F , we define the set of possible matrices one could recover given this prior knowledge as

Ωϵ
F,X = {A ∈ Mn(C) : rank(A) = k, AX = FX, ∃Q ∈ O(k), ‖U∗

AVA −Q‖2 ≤ ϵ}, (1)

where A = UASAV
∗
A is the singular value decomposition of A, O(k) is the group of k × k orthog-

onal matrices, and ‖ · ‖2 denotes the spectral norm. Hence, given some tolerance ϵ, Ωϵ
F,X is the

set of ϵ-near-symmetric matrices that can be returned by any low-rank recovery algorithm when
approximating F , such as the randomized SVD [6, 7] or the Nyström method [8].
The size of Ωϵ

F,X is measured by its diameter in the spectral norm and determines the maximum ac-
curacy of any reasonable reconstruction. If the diameter is large, one cannot estimate F accurately,
as one cannot distinguish between any candidate matrix in Ωϵ

F,X . This is because any matrix in
Ωϵ
F,X satisfies the sketching constraint and is near-symmetric. On the other hand, a small diameter

guarantees the fidelity of the reconstruction. We provide sharp upper and lower bounds on the
size of Ωϵ

F,X , i.e., determine how far apart any two matrices in Ωϵ
F,X can be from each other, with

respect to ϵ, which measures our prior knowledge of F ’s symmetry. The upper and lower bounds
on the diameter of Ωϵ

F,X reveal that the uncertainty about F given queries of its action is directly
related to the uncertainty about the symmetry of its left and right singular subspaces. For example,
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our ability to recover a symmetric rank-k matrix using k ≤ s < n queries is fundamentally limited
by our prior knowledge about the proximity of Range(F ) and Range(F ∗) because there are many
asymmetric matrices with the same rank that satisfy the same sketching constraints. This result is
a fundamental limitation of adjoint-free low-rank matrix recovery in numerical linear algebra and
has implications for operator learning.

An adjoint-free operator learning approach. To provide an operator learning approach that
does not need access to the adjoint, we exploit regularity results from PDE theory to estimate the
range of the adjoint of the solution operator. This allows us to prove the first guarantees on the
accuracy of adjoint-free approximations. Our key insight is to leverage the favorable properties
of a prior self-adjoint operator, such as the Laplace–Beltrami operator, to use as an operator
preconditioner in the approximation problem. In particular, we query the action of the solution
operator on the eigenfunctions of the prior self-adjoint operator, yielding an approximation with an
error that decays at a rate determined by the eigenvalues of the prior. This is remarkable because
common operator learning techniques always seem to plateau; yet, we construct a simple algorithm
that provably converges.

The effect of non-normality on sample complexity. We derive a sample complexity bound
for our algorithm when applied to second-order uniformly-elliptic PDEs that are perturbed away
from self-adjointness by lower-order terms. We show that for small perturbations, our bound on
the approximation error grows linearly with the size of the perturbation, and we conjecture that
this linear growth continues for large perturbations as well. This aspect of the error growth is also
present in common operator learning techniques, as our numerical experiments illustrate. With
respect to our operator learning algorithm, this means that the number of samples required to
achieve a fixed error tolerance grows algebraically with the perturbation size.

References
[1] N. Boullé, D. Halikias, S. E. Otto, and A. Townsend, Operator learning without the adjoint,

arXiv preprint arXiv:2401.17739, (2024).

[2] N. Boullé, D. Halikias, and A. Townsend, Elliptic PDE learning is provably data-efficient, Proc.
Natl. Acad. Sci. USA, 120 (2023), p. e2303904120.

[3] N. Boullé, S. Kim, T. Shi, and A. Townsend, Learning Green’s functions associated with time-
dependent partial differential equations, J. Mach. Learn. Res., 23 (2022), pp. 1–34.

[4] N. Boullé and A. Townsend, Learning elliptic partial differential equations with randomized linear
algebra, Found. Comput. Math., 23 (2023), pp. 709–739.

[5] N. Boullé and A. Townsend, A mathematical guide to operator learning, in Handbook of Numerical
Analysis, vol. 25, Elsevier, 2024, ch. 3, pp. 83–125.

[6] N. Halko, P.-G. Martinsson, and J. A. Tropp, Finding structure with randomness: Probabilistic
algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011), pp. 217–288.

[7] P.-G. Martinsson and J. A. Tropp, Randomized numerical linear algebra: Foundations and algo-
rithms, Acta Numer., 29 (2020), pp. 403–572.

[8] E. J. Nyström, Über die praktische Auflösung von Integralgleichungen mit Anwendungen auf Randw-
ertaufgaben, Acta Math., 54 (1930), pp. 185–204.

45



Streaming the Bidiagonal Factorization

Johannes J. Brust and Michael A. Saunders

Abstract

Frequently in online or data-driven applications, new information becomes available in the form of
a stream (Syamantak et al. [KS24]). Because processing the data for analysis or inference often
involves matrix factorizations like the SVD or an eigendecomposition, we develop new updating
methods. As repeatedly refactoring a large matrix is expensive, we propose low-rank updates to a
previous factorization. Thus we consider the model

Ā = A+ CW T ,

where the previous data A is m × n, and the updates C and W are m × t and n × t. Simply
computing Ā costs mnt multiplications, which we therefore regard as an optimal complexity. For
some well known factorizations, efficient updating methods are known. For instance, the methods
of Gill et al. [GGMS74] update the Cholesky or LDLT factorization in O(mnt) flops, while Golub
and Van Loan [GV13, Sec 12.5] describe a method for updating the QR factorization. Also, Bunch
et al. [BNS78] describe an algorithm for updating the eigendecomposition, while Brand [Bra06] and
Moonen et al. [MVDV92] develop methods for the SVD. The complexity of the latter methods also
scales as O(mnt), but updating an eigendecomposition or SVD typically involves iterative nonlinear
equation solves. In SVD computation, the first step is to reduce the matrix to (upper) bidiagonal
form before computing the singular values of the bidiagonal (e.g., implemented in LAPACK’s bdsqr
and gebrd [ABB+99]). Since the bidiagonalization and SVD are closely related, it is not surprising
that attempts have been made to replace the SVD with the bidiagonalization for low-rank matrix
approximations (Simon and Zha [SZ00]). Even though the SVD guarantees the best low-rank
approximation, the bidiagonalization can be computed with a predetermined number of orthogonal
transformations, making it computationally attractive.
The most stable method for computing a bidiagonal factorization uses sequences of orthogonal
Householder reflectors. Because this requires and overwrites the matrix elements in memory, it
is best suited for dense systems. Its complexity scales as O(mn2) flops and mn memory and it
is therefore limited to small or medium problems. A second approach accesses the data only via
matrix-vector products within a short two-vector recursion. This Golub-Kahan bidiagonalization
(GKB) produces a partial bidiagonalization after k iterations. For a general A the GKB complexity
is O(kmn). When the data is sparse or otherwise structured, GKB can exploit the structure
with potentially much fewer flops (but without further modifications suffers from rapid loss of
orthogonality). Our algorithms reuse an existing bidiagonal factorization A = QBP T to compute
the next factorization

Q̄B̄P̄ T = QBP T + CW T

at reduced cost. To exploit previous information fully, we develop sparsity-exploiting bidiagonal-
ization algorithms. One method is gk-bidiag, which we compare to LAPACK’s bidiagonalization
functions (Table 1). We also propose methods such as a compact representation of products of
Householder matrices combined with the GKB iteration.
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Problem m n
gk-bidiag LAPACK

error secs error secs
GL7d12 8899 1019 0.96 0.031 0.97 26
ch6-6-b2 2400 450 1.6 0.0051 0.94 1.2
ch7-6-b2 4200 630 1.1 0.012 0.95 3.9
ch7-7-b2 7350 882 1.3 0.023 0.97 16
cis-n4c6-b2 1330 210 2.7 0.0017 0.91 0.3
mk11-b2 6930 990 1.2 0.02 0.97 16
n4c6-b2 1330 210 2.9 0.0017 0.91 0.3
rel6 2340 157 0.7 0.0028 0.71 0.56
relat6 2340 157 0.74 0.0029 0.74 0.71

Table 1: Updating a rank r = 50 truncated bidiagonal factorization Q̄1:rB̄1:rP̄
T
1:r when a rank-one

update is added to a previous factorization. LAPACK subroutines and the sparsity-preserving solver
gk-bidiag are applied to 9 SuiteSparse matrices [DH11]. The error is ∥Ā− Q̄1:rB̄1:rP̄

T
1:r∥F /∥A∥F .
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Streaming low-rank approximation of tree tensor networks

Alberto Bucci, Gianfranco Verzella

Abstract

Low-rank tensor approximation has emerged as a powerful tool in scientific computing, enabling
the efficient handling of large-scale linear and multilinear algebra problems that would otherwise
be computationally infeasible with classical methods. By exploiting the inherent low-dimensional
structure within high-dimensional data, these techniques reduce storage costs and computational
complexity, making it possible to approximate solutions to problems in fields as diverse as quantum
physics, machine learning, and computational biology.
Recent advances in randomized techniques for low-rank matrix approximations, including methods
like randomized SVD [1] and the generalized Nyström method [2, 3], have paved the way for
substantial progress in tensor approximation as well. A range of specialized randomized methods
have emerged for tensor decompositions. For instance, the randomized higher-order SVD and its
sequential truncated version [4] provide efficient tools for approximating tensors in Tucker format.
Likewise, randomized adaptations of TT-SVD [5] extend matrix-based techniques to the tensor
train format, enabling the approximation of high-dimensional data while mitigating the curse of
dimensionality.
The multilinear Nyström method [6], its sequential counterpart [7], and the streaming tensor train
approximation [8] further advance this field, allowing for the streaming low-rank approximation of
a given tensor A in the Tucker or Tensor-Train format respectively.
Both methods build on the generalized Nyström approach, accessing the tensor A exclusively via
two-sided random sketches of the original data, making them single-pass and facilitating parallel
implementation.
Tucker and tensor train decompositions are specific instances of the more general tree tensor network
(TTN) decomposition, where the underlying tree structure takes the form of either a star or chain
configuration.
By combining the multilinear Nyström method [6] with the streaming tensor train approximation
[8], we introduce the tree tensor network Nyström algorithm [9] (TTNN): a novel approach for the
streaming low-rank approximation of tensors in the tree tensor network format. We also introduce a
sequential variant of the algorithm that operates on increasingly compressed versions of the tensor,
while remarkably preserving streamability. We also provide a detailed analysis of the accuracy of
both methods.
However, in practical applications, tensors are often provided in a low-rank TTN format, as working
with the full tensor would be computationally prohibitive. In these cases, the challenge lies in
achieving further compression or rounding of these representations.
We demonstrate that our algorithm can be readily adapted to this specific setting by leveraging
structured embeddings.
Our results indicate that TTNN is capable of achieving nearly optimal approximation error when the
sizes of the sketches are appropriately selected. A series of numerical experiments further illustrate
the performance of TTNN in comparison to existing deterministic and randomized methods.
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Krylov Subspace Recycling With Randomized Sketching For Matrix
Functions

Liam Burke, Stefan Güttel

Abstract

I will discuss the importance of randomization in the development of Krylov subspace recycling
algorithms for the efficient evaluation of a sequence of matrix function applications on a set of
vectors [5]. Recycling methods are a special class of augmented Krylov subspace methods where
the augmentation subspace for each problem is constructed or recycled from the Krylov subspace
used to solve a previous problem in the sequence [4]. If selected appropriately, the presence of the
recycled subspace can aid in accelerating the convergence of the iterative solver, thereby reducing
the overall computational cost and runtime required to solve the full sequence of problems.
I will present the work in [1], where the recycled Full Orthogonalization Method (rFOM) for func-
tions of matrices was shown to reduce the computational overhead and runtime required to evaluate
a sequence of matrix function applications, when compared to the standard FOM approximation.
I will discuss the development of rFOM, and show how it is not possible to develop a restarted im-
plementation, resulting in excessive storage and orthogonalization costs as the number of iterations
grows large.
As an alternative to restarts, I will introduce sketched-recycled FOM (srFOM), which incorpo-
rates randomized sketching [2, 3] into rFOM in order to avoid excessive orthogonalization costs
when working with non-Hermitian matrices. I will show results of numerical experiments which
demonstrate the kind of performance gains we can achieve through sketching.
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Robust Spectral Clustering with Rank Statistics

Joshua Cape, Xianshi Yu, Jonquil Zhongling Liao

Abstract

This talk investigates the performance of a robust spectral clustering method for latent structure
recovery in noisy data matrices. We consider eigenvector-based clustering applied to a matrix
of nonparametric rank statistics that is derived entrywise from the raw, original data matrix.
This approach is robust in the sense that, unlike traditional spectral clustering procedures, it
can provably recover population-level latent block structure even when the observed data matrix
includes heavy-tailed entries and has a heterogeneous variance profile. Here, the raw input data
may be viewed as a weighted adjacency matrix whose entries constitute links that connect nodes
in an underlying graph or network.
Our main theoretical contributions are threefold and hold under flexible data generating conditions.
First, we establish that robust spectral clustering with rank statistics can consistently recover latent
block structure, viewed as communities of nodes in a graph, in the sense that unobserved community
memberships for all but a vanishing fraction of nodes are correctly recovered with high probability
when the data matrix is large. Second, we refine the former result and further establish that,
under certain conditions, the community membership of any individual, specified node of interest
can be asymptotically exactly recovered with probability tending to one in the large-data limit.
Third, we establish asymptotic normality results associated with the truncated eigenstructure of
matrices whose entries are rank statistics, made possible by synthesizing contemporary entrywise
matrix perturbation analysis with the classical nonparametric theory of so-called simple linear
rank statistics. Collectively, these results demonstrate the statistical utility of rank-based data
transformations when paired with spectral techniques for dimensionality reduction. Numerical
examples illustrate and support our theoretical findings. Additionally, for a dataset consisting
of human connectomes, our approach yields parsimonious dimensionality reduction and improved
recovery of ground-truth neuroanatomical cluster structure. We conclude with a discussion of
extensions, practical considerations, and future work.
Reference: https://arxiv.org/abs/2408.10136, to appear in Journal of Machine Learning Research.

Author’s note: As a statistician working on entrywise eigenvector perturbation analysis and with
a background in applied mathematics, I am eager to engage with the numerical linear algebra
community towards advancing research on topics of shared interest.
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The Stability of Split-Preconditioned FGMRES in Four Precisions

Erin Carson, Ieva Daužickaitė

Abstract

We consider the problem of solving a linear system of equations Ax = b, where A ∈ Rn×n is
nonsymmetric and x, b ∈ Rn. When A is large and sparse, the iterative generalized minimal residual
method (GMRES) or its flexible variant (FGMRES) are often used. In these and other Krylov
subspace methods, preconditioning is an essential ingredient. Given a preconditioner P =MLMR,
the original problem is transformed to

M−1
L AM−1

R x̃ = M−1
L b, where M−1

R x̃ = x.

The emergence of mixed precision hardware has motivated work in developing mixed precision
algorithms for matrix computations; see, e.g., the recent survey [4]. Modern GPUs offer double,
single, half, and even quarter precision, along with specialized tensor core instructions; see, e.g.,
[5]. The use of lower precision can offer significant performance improvements, although this comes
at a numerical cost. With fewer bits, we have a greater unit roundoff and a smaller range of
representable numbers. The goal is thus to selectively use different precisions within algorithms
such that performance is potentially improved without adversely affecting the desired numerical
properties.
In this talk, based on the published work [3], we consider the split-preconditioned FGMRES method
in a mixed precision framework, in which four potentially different precisions can be used for com-
putations with the coefficient matrix A (unit roundoff uA), left-preconditioner ML (unit roundoff
uL), right-preconditioner MR (unit roundoff uR), and all other computations (unit roundoff u).
Our analysis is applicable to general preconditioners with minimal assumptions. Briefly, following
the strategy of [6], we assume that the application of M−1

L and M−1
R can be computed such that

fl(M−1
L wj) =M

−1
L wj +∆ML,jwj , |∆ML,j | ≤ c(n)uLEL,j ,

f l(M−1
R wj) =M

−1
R wj +∆MR,jwj , |∆MR,j | ≤ c(n)uRER,j ,

where fl(·) denotes the quantity computed in floating point arithmetic, EL,j and ER,j have positive
entries, wj ∈ Rn, and c(n) is a constant that depends on n only. Note that a particular strength
of FGMRES is that it allows the right preconditioner to change throughout the iterations; for
simplicity, we consider the case here where the preconditioners are static, although our results
could be extended to allow dynamic preconditioning.
We define Ã ≡ M−1

L A and b̃ ≡ M−1
L b and assume that matrix-vector products with Ã can be

computed so that
fl(Ãzj) = (M−1

L +∆ML,j)(A+∆Aj)zj .

Denoting

uAψA,j =
∥M−1

L ∆Ajzj∥
∥Ã∥∥zj∥

and uLψL,j =
∥∆ML,jAzj∥
∥Ã∥∥zj∥

,

where ∥ · ∥ denotes the 2-norm, and ignoring the second order terms, we can write

fl(Ãzj) ≈ Ãzj + fj , where ∥fj∥ ≤ (uAψA,j + uLψL,j)∥Ã∥∥zj∥.
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We first present general bounds on the backward and forward errors in split-preconditioned FGM-
RES, which is based on the previous works [1] and [2]. Our analysis provides guidance on how the
precisions should be set when the target backward error is of order u. To summarize, the precision
for applying ML must be chosen in relation to u, uA, and the required backward and forward
errors, because uL heavily influences the achievable backward error. We can be more flexible when
choosing uR as it does not influence the backward error directly. Our analysis holds under a suf-
ficient but not necessary assumption on uR in relation to MR. As long as MR is not singular in
precision uR (note that scaling strategies may be used to ensure this), setting uR to a low precision
is sufficient. Very low precisions uL and uR may delay the convergence, but setting uL ≤ u or
uR ≤ u does not improve the convergence in general. Note that these conclusions apply to the full
left- and right-preconditioning cases as well.
We observe that the forward error is determined by the backward error and the condition number
of the left-preconditioned coefficient matrix. This motivates concentrating effort on constructing an
appropriate left-preconditioner when aiming for a small forward error: the preconditioner should
reduce the condition number sufficiently and needs to be applied in a suitably chosen precision.
We further provide insights on which preconditioning strategy (left, right, or split) may be preferred
under certain objectives related to the desired the backward and forward errors. To summarize,
if a small backward error is the main concern and A is ill-conditioned, and we have a ‘good’
preconditioner, so that κ(Ã) is small and we can afford setting uA and uL to precisions that are high
enough to neutralize the ψA and ψL terms, then left-preconditioning should be used. If however,
we cannot afford setting uA and uL to high precisions but can construct a split-preconditioner
such that κ(ML) is small, then split-preconditioning (note that in this case ψA and ψL may be
smaller too) or full right-preconditioning may be preferential. If our main concern is applying the
preconditioner in lower than the working precision (which may be relevant, for example, when A
is very sparse and the preconditioner uses some dense factors), the bounds suggest that full left-
preconditioning should not be used as uAψA and uLψL may be large. Full right-preconditioning
may be most suitable in this case.
We present a suite of numerical experiments which support our theoretical results. Essentially,
the experiments confirm that the precision in which the left preconditioner is applied has a signifi-
cant effect on the forward and backward errors, but very little effect on the number of FGMRES
iterations required for convergence. Conversely, the precision in which the right preconditioner
is applied has almost no effect on the resulting forward and backward errors, but can affect the
FGMRES convergence.
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A low-memory Lanczos method with rational Krylov compression for
matrix functions

Angelo A. Casulli, Igor Simunec

Abstract

A fundamental problem in numerical linear algebra is the approximation of the action of a matrix
function f(A) on a vector b, where A ∈ Cn×n is a matrix that is typically large and sparse, b ∈ Cn

is a vector and f is a function defined on the spectrum of A. In this work, we focus on the
case of a Hermitian matrix A. We recall that when A is Hermitian, given an eigendecomposition
A = UDUH , the matrix function f(A) is defined as f(A) = Uf(D)UH , where f(D) is a diagonal
matrix obtained by appliying f to each diagonal entry of D. We refer to [12] for an extensive
discussion of matrix functions.
Popular methods for the approximation of f(A)b are polynomial [16, 13, 8, 7, 11] and rational
Krylov methods [6, 15, 9, 1, 3]. The former only access A via matrix-vector products, while the
latter require the solution of shifted linear systems with A. When the linear systems can be solved
efficiently, rational Krylov methods can be more effective than polynomial Krylov methods since
they usually require much fewer iterations to converge. However, there are several situations in
which rational Krylov methods are not applicable, either because the matrix A is only available
implicitly via a function that computes matrix-vector products, or because A is very large and the
solution of linear systems is prohibitively expensive.
When A is Hermitian, the core component of a polynomial Krylov method is the Lanczos algo-
rithm [14], which constructs an orthonormal basis QM = [q1 . . . qM ] of the polynomial Krylov
subspace KM (A, b) = span{b, Ab, . . . , AM−1b} by exploiting a short-term recurrence. The prod-
uct f(A)b can then be approximated by the Lanczos approximation

fM := QMf(TM )e1∥b∥2, TM := QH
MAQM , (1)

where e1 denotes the first unit vector. The Lanczos algorithm uses a short-term recurrence in the
orthogonalization step, so each new basis vector is orthogonalized only against the last two basis
vectors, and only three vectors need to be kept in memory to compute the basis QM . Although
the basis QM and the projected matrix TM can be computed by using the short-term recurrence
that only requires storage of the last three basis vectors, forming the approximate solution fM still
requires the full basis QM . When the matrix A is very large, there may be a limit on the maximum
number of basis vectors that can be stored, so with a straightforward implementation of the Lanczos
method there is a limit on the number of iterations of Lanczos that can be performed and hence on
the attainable accuracy. In the literature, several strategies have been proposed to deal with low
memory issues. See the recent surveys [10, 11] for a comparison of several low-memory methods.
In this presentation we propose a new low-memory algorithm for the approximation of f(A)b. Our
method combines an outer Lanczos iteration with an inner rational Krylov subspace, which is used
to compress the outer Krylov basis whenever it reaches a certain size.
The fundamental insight underlying this method is that, leveraging the results presented in [2], the
vector fM defined in (1) (for simplicity, assuming ∥b∥2 = 1) can be approximated by

fM ≈ QM

[
f(T1)e1 − U1f(U

H
1 T1U1)U

H
1 e1

0

]
+QM

[
U1

I

]
f

([
UH
1

I

]
TM

[
U1

I

])[
UH
1 e1
0

]
,

55



where T1 is an m × m leading principal submatrix of TM , and U1 is an orthonormal basis of a
rational Krylov subspace generated using the small matrix T1. One can observe that the first
summand of this expression can be computed after m steps of the Lanczos algorithm. Moreover,
once the first term has been computed, it is no longer necessary to keep all the first m columns of
the matrix QM in memory, since computing the second term only requires the few vectors obtained
by multiplying the first m columns of QM on the right by the matrix U1. Finally, the second term
can be computed by recursively applying the same procedure.
Similarly to [4], the inner rational Krylov subspace does not involve the matrix A, but only small
matrices. This is fundamental, since constructing a basis of the inner subspace does not require the
solution of linear systems with A, and hence it is cheap compared to the cost of the outer Lanczos
iteration. Theoretical results show that the approximate solutions computed by our algorithm
coincide with the ones constructed by the outer Krylov subspace method when f is a rational
function, and for a general function they differ by a quantity that depends on the best rational
approximant of f with the poles used in the inner rational Krylov subspace.
If the outer Krylov basis is compressed every m iterations and the inner rational Krylov subspace
has k poles, our approach requires the storage of approximately m + k vectors. Additionally, due
to the basis compression, our approximation involves the computation of matrix functions of size
at most (m+k)× (m+k), so the cost does not grow with the number of iterations. This represents
an important advantage with respect to the Lanczos method, since when the number of iterations
is very large the evaluation of f on the projected matrix can become quite expensive.
Numerical experiments show that the proposed algorithm is competitive with other low-memory
methods based on polynomial Krylov subspaces.
The content of this presentation draws on the findings presented in [5].
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Convergence Behavior of GMRES on Tridiagonal Toeplitz Systems

Fei Chen, Kirk M. Soodhalter

Abstract

Discretizing PDEs leads to linear systems with large, sparse coefficient matrices. When linear,
constant-coefficient PDEs with Dirichlet boundary conditions are discretized on uniform meshes,
one can obtain Toeplitz, multilevel Toeplitz and/or block Toeplitz systems [1, 2]. Toeplitz matrices
have constant diagonals, and multilevel and block Toeplitz matrices have related structures, that
can be exploited to speed up GMRES, and aid convergence analysis. Such systems are widely
solved by Krylov subspace methods.

Let
Ax = b, (1)

where the matrix A is Toeplitz, b is a known right-hand side, and x is the unknown solution. GM-
RES starts with an initial guess, x0, and select xk, k = 1, 2, · · · , such that xk−x0 ∈ Kk(A, r0) :=span
{r0, Ar0, · · · , A(k−1)r0}, where r0 = A(x− x0).

Let Y be the reverse identity matrix, then Y A is symmetric Hankel. One can solve (1) through

Y Ax = Y b, (2)

by applying MINRES [3], which is mathematically equivalent to GMRES for a symmetric system.
Through our experiments, we find that MINRES on (2) requires about twice as many iterations as
GMRES on (1) to converge, especially when preconditioned.

For a symmetric system such as (2), the convergence behavior of MINRES can usually be charac-
terized by the eigenvalues and the RHS. However, when A is nonsymmetric, GMRES convergence
behavior is much more complicated to describe; in extreme cases the spectrum bears no relation
to the convergence rate. In [4], the authors prove that any nonoincreasing convergence curve is
possible for GMRES by constructing a linear system of prescribed nonzero eigenvalues with a given
convergence curve.

In this work, we explore the convergence behavior of GMRES when applied to real tridiagonal
Toeplitz systems, where the matrix

A =


α γ 0 · · · 0
β α γ · · · 0
... . . . . . . . . . ...
0 0 β α γ
0 0 0 β α

 , (3)

α, β, and γ ∈ R.

We show that different GMRES convergence behavior is possible for different Toeplitz systems that
share the same spectra, regardless of their right hand sides. We also explore the connection between
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the GMRES convergence behavior and the singular values of the tridiagonal Toeplitz matrices.

In spite of the difficulties, there has been plenty of work in the literature inspecting the convergence
behavior of GMRES. For instance, in [5], the authors point out that, for a general nonsingluar ma-
trix A, the convergence behavior of GMRES is related to the distribution of eigenvalues of A, and
provide an upper bound. However, each eigenvalue is either treated as a member of some cluster, or
an outlier to any cluster. For the cases where eigenvalues are not spreading out far away from each
other, for example, those of a tridiagonal Toeplitz matrix, or when the clusters are far away from
each other, one fails to find a meaningful upper bound since it become too loose. In [6], Meurant
shows through APS parametrization of A that GMRES could have different convergence behaviors
for two different matrices with the same spectrum. Nevertheless, a reconstructed matrix A in this
case does not preserve the Toeplitz structure in general. As for tridiagonal matrix systems, Liesen
and Strakoš analyze the convergence behavior of GMRES when |α| ≈ |β| ≫ |γ| [7]. For a more
general case where β| ̸= |γ|, Li and Zhang provide upper bounds and asymptotic speeds of the
2-norm of the kth residual via Chebyshev polynomial of the first kind[8] and the second kind[9]. In
our work, we formulate equations based on APS parametrization of A with the constraint that each
diagonal is constant to explore what convergence regimes are possible for a tridiagonal Toeplitz
system.
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Preconditioning without a preconditioner: faster ridge-regression and
Gaussian sampling with randomized block Krylov methods

Tyler Chen, Caroline Huber, Ethan Lin, Hajar Zaid

Abstract

One of the most important tasks in numerical linear algebra is solving the linear system

Ax = b, (1)

where A ∈ Rd×d is symmetric positive definite with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λd > 0. Krylov
subspace methods (KSMs) such as the conjugate gradient method are among the most powerful
methods for this problem and are guaranteed to converge extremely rapidly if the system is well-
conditioned; i.e. if λ1 ≈ λd. For ill-conditioned systems, preconditioning can greatly accelerate
the convergence of KSMs. When A has a rapidly decaying spectrum, a technique called Nyström
preconditioning has proven effective [1].
Consider the Nyström approximation

A⟨Ks⟩ := (AKs)(K
T
s AKs)

†(KT
s A), (2)

where Ω ∈ Rd×(r+2) is a matrix of independent standard normal random variables and Ks :=
[Ω AΩ · · · As−1Ω] ∈ Rd×s(r+2). It can be guaranteed that if s = O(log(d)), then with high
probability, A⟨Ks⟩ approximates A with spectral-norm error comparable to the best-possible rank-
r approximation to A; i.e. ∥A−A⟨Ks⟩∥ = O(λr+1) [3]. Define a preconditioner

P :=
1

λr+1
UDUT + (I−UUT), (3)

where UDUT is the eigendecomposition of A⟨Ks⟩. Following the approach of [1], we show that if
θ ∈ [λd, λr+1] and s = O(log(d)), then with high probability, then

κ(P−1/2AP−1/2) = O(λr+1/λd). (4)

As a result, preconditioned-CG with the preconditioner (3) converges at a rate depending on√
λr+1/λd [2]. If A has just r large eigenvalues, the convergence of preconditioned-CG will be

extremely rapid.
One downside to Nyström preconditioning is the need to choose hyperparameters such as θ and
s. Our observation is that, after t iterations, block-CG with a starting block [b Ω] has error at
most that of Nyström preconditioned CG after t − s − 1 iterations. Thus, block-CG enjoys the
effects of (Nyström) preconditioning, without the need for constructing a preconditioner or choose
parameters.1 This allows us to prove the following convergence guarantee.2

Theorem 1. Fix a value r ≥ 0 and let b2, . . . ,br+2 be independent standard Gaussian vectors.
Then after t iterations the block-CG iterate xb-CG

t corresponding to a starting block [b b2 · · · br+2]
satisfies, with probability at least 99/100,

∥A−1b− xb-CG
t ∥A

∥A−1b∥A
≤ 2 exp

(
− t− (3 + log(d)/2)

3
√

λr+1/λd

)
.

1We are assuming iterations, not matrix-vector products, are the dominant cost.
2This bound is reminiscent of the “killing off the top eigenvalues” bounds for CG. However, instead of a burn-in

period of r iterations, we require a burn-in period of O(log(d)) iterations (independent of r).
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More generally, for any µ ≥ 0, block-CG (and Nyström preconditioned CG) can be used to solve
the regularized linear system

(A+ µI)x = b. (5)

Systems of the form (5) arise in a variety of settings, but we are particularly motivated by two
critical tasks in machine learning and data science: solving ridge-regression problems and sampling
Gaussian vectors. By adapting our bound Theorem 1 for block-CG, we obtain state-of-the-art
convergence guarantees for existing Lanczos-based methods used to solve these tasks.
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Surrogate-based Autotuning for Randomized Numerical Linear Algebra

Younghyun Cho, James W. Demmel, Michał Dereziński, Haoyun Li, Hengrui Luo,
Michael W. Mahoney, Riley J. Murray

Abstract

The field of Randomized Numerical Linear Algebra (RandNLA) has made significant developments
and shown high quality empirical performance in some scenarios (e.g., overdetermined least-squares
solvers). However, the practical performance of a RandNLA method usually hinges on the careful
selection of multiple algorithm-specific tuning parameters. In addition, such a parameter selection
would affect both the runtime of the algorithm and the accuracy of the result, which makes the
parameter selection even harder. This motivates us to develop an automated process that helps find
the (near-)optimal parameters for practical performance, with a focus on the applications relevant
to RandNLA practitioners.
This extended abstract, which is based on our ongoing work [1], presents a surrogate-based au-
totuning approach for tuning RandNLA algorithms. We present a tuning pipeline that is built
based on Bayesian optimization (BO) with Gaussian Process (GP) regression, which is an empiri-
cal approach where we aim to find the optimal parameter selection for a given tuning budget. At
a high level, our pipeline follows the typical BO procedure, where we evaluate several parameter
configurations, (iteratively) build a surrogate performance model based on the obtained evaluation
results, and then find the next sample to evaluate until we reach the given tuning budget, along
with an objective function to minimize the runtime of the algorithm while providing a satisfactory
accuracy. Furthermore, we also apply a transfer learning approach to further reduce the tuning
cost, especially when there are previously collected evaluation data from other similar but different
tasks (e.g., the same algorithm but solving with different input data matrices). This makes the
tuning approach more cost efficient and practical for RandNLA practitioners. The tuning pipeline
uses GPTune [11] as the BO framework. GPTune is an open-source autotuner that was origi-
nally designed for tuning large-scale high-performance computing codes but is also general and can
support tuning other domains of codes.
In particular, we show the efficacy of our tuning pipeline, in the context of sketch-and-precondition
(SAP) based randomized least squares methods in solving large-scale overdetermined problems,
minimizing ∥Ax− b∥22, where A is with the size of m by n with m ≫ n, as SAP-based randomized
least squares solvers that have been one of the successful applications in RandNLA. The SAP least
squares approach can be summarized into following five steps: (1) Construct a sketching matrix
S (with size of d by m; multiple schemes exist such as Sparse Johnson–Lindenstrauss Transform
(SJLT) [5] and LessUniform [6, 7] to form a sketching matrix) to approximate the input data
matrix A, (2) Compute Â = SA, (3) Generate a preconditioner matrix M from Â (e.g., using
QR or SVD), (4) Use an iterative method for the preconditioned least squares for minimizing
∥AMz = b∥22 (e.g., using preconditioned LSQR or preconditioned gradient descent (PGD)), and
finally (5) Compute the result vector, Mz.
We observe that the SAP-based least squares solver has multiple types of parameters to be tuned.
The possible tuning parameters include some categorical variables to choose what the sparse sketch-
ing operator and the iterative solver for the preconditioned least squares to be used, as well as
continuous/integer parameters to configure the size of the sketching matrix (d of S) as well as the
sparsity of the sketching matrix (i.e., number of nonzero elements per row or column of S). In our
experiments, we search this categorical space, using several implementations that are motivated by
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the well-known works such as Blendenpik [2], LSRN [3], and NewtonSketch [4]. Then, we search a
certain range of continuous/integer parameters to configure the sketching matrix, in terms of the
size of the sketching matrix and the sparsity of the sketching matrix. In addition, the iterative
solvers such as LSQR [8] and PGD finish their iterations based on the termination criteria with a
desired level of accuracy (which we call “safety factor”). We regard that as a tuning parameter, and
our tuning pipeline computes a relative residual error by comparing the results of the SAP least
squares solver and the result obtained from a traditional direct solver. The relative error is used as
the key indicator to quantify the quality of the SAP least squares solver for a given parameter con-
figuration as well as the running time of the algorithm. For the SAP least squares solvers, we used
a Python version prototype RandNLA package, PARLA [9], that provides the implementations for
the SAP least squares solvers with the interface to control the abovementioned parameters.
We use multiple synthetic matrices and several real-world input matrices to test the efficacy of our
tuning pipeline [1]. Our experimental results show promising results that GP-based BO approach
is effective in tuning the parameters for RandNLA algorithms, in comparison with other primitives
such as random search or grid search. Moreover, we also show that transfer learning can further
improve the tuning efficiency by leveraging the data obtained from other input data matrices.
For transfer learning, within the Bayesian optimization process, our tuner chooses the categorical
variable, i.e., the SAP algorithm and the sketching operator, using the Upper Confidence Bound
(UCB) bandit function, and then we apply a GP-based multitask learning technique [12], called
Linear Coregionalization Model (LCM), in order to learn from historical samples within the same
chosen category from the source matrices. That improves the tuning quality and cost, compared to
non transfer learning-based tuning. Overall, the success of the empirical tuning approach suggests
possible practical use cases. For example, users can use our autotuning pipeline in order select
the parameters for running a RandNLA algorithm. If the user has a larger dataset size, the user
can down-sample their input data and perform autotuning (with or without transfer learning), and
then use the chosen parameter configuration to run the algorithm on a larger dataset.
For future work, our tuning pipeline can be extended or tested for other RandNLA problems. While
our experiments have primarily focused on the problem of overdetermined least squares, the basic
lessons from our work are applicable in other contexts, such as low-rank approximation, and also for
tuning large-scale high-performance computing applications. In addition, our tuning pipeline can
further be improved to be even more robust and effective in tuning RandNLA workloads that are
hard to achieve valid parameter configurations for a given residual accuracy requirement. From a
theoretical perspective, the integration of surrogate-based optimization techniques with RandNLA
algorithms opens up new avenues for research at the intersection of machine learning and numerical
linear algebra. We can also explore how these autotuning techniques could be incorporated directly
into adaptive algorithms, allowing numerical methods to automatically adjust their behavior based
on the properties of the input data. In conclusion, the development of these surrogate-based
autotuning techniques represents a significant step forward in bridging the gap between theoretical
advances in RandNLA and their practical performance engineering.
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Online Machine Learning for Solving a Sequence of Linear Systems

Mikhail Khodak, Edmond Chow, Maria-Florina Balcan, Ameet Talwalkar

Abstract

Machine learning is often presented as an alternative to well-established and effective numerical
methods. In this work, we present an example where machine learning is used to augment existing
numerical methods.
Consider solving a sequence of linear systems

Atx = ft, t = 1, . . . , T

with SOR(ω), or some other preconditioner–solver combination in general, where we need to choose
a parameter for the preconditioner or solver for each system. We are to solve each system before
the next system is presented to us. Our goal is to choose the SOR parameter ω for each system to
minimize the total number of iterations. To accomplish this, we can make use of the information
about the number of iterations used to solve previous systems.
There must be some assumptions for us to do anything interesting. We could assume, for example,
that the sequence of matrices {At} changes slowly. This type of assumption could be useful if we
are further allowed to use a method to obtain a good estimate of ω, when needed. Then, we could
use this value of ω for solving several linear systems until the number of iterations required for
a system becomes so large that it becomes profitable to estimate a new value of ω. This kind of
strategy has appeared in various guises in the literature and is perhaps the best competitor strategy
to what we will present here.
In this work, we consider using multi-armed bandits from online machine learning to select the
value of ω for solving each system. Such algorithms are very effective for the following class of
practical problems. Suppose every time a user visits your web page, you have the choice of showing
an advertisement in one of four locations: top, bottom, left, and right. You wish to choose the
location each time to maximize the total number of times users visiting your web page will click
on the advertisement. The underlying assumption is that there is an unknown probability that a
user will click on the advertisement in each of the four cases. Your problem is to discover the case
that has the highest such probability (exploration), while also trying to maximize the number of
clicks (exploitation) by not wasting time on low probability cases, and possibly not knowing the
number of users your web page will ultimately have. Formally, the multi-armed bandit problem is
the following:
Multi-armed bandit problem

for t = 1, . . . , T do
Choose and perform action at from {1, . . . , d}
Receive reward (or loss) yt

Different actions lead to different rewards.
Do not see rewards for actions not taken.

end for

The actions are choosing among the four locations where we can place the advertisement. For our
sequence of linear systems, the actions are choosing a (discretized) value of ω. The goal is to choose
the actions such that the cumulative regret is minimized. The cumulative regret is the difference
between the expected reward for the single best action and the expected reward for our choice of
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actions, summed over t rounds. In particular, the goal is to obtain strategies that give cumulative
regret that is sublinear in t.
We address two types of assumptions about our sequence of linear systems: (1) the optimal ω
follows a fixed distribution and (2) the optimal ω follows a distribution that changes. Case (1) can
be handled with stochastic bandits such as UCB1, an upper confidence bound algorithm. Case
(2) can be handled with adversarial bandits such as Exp3, the exponential-weight algorithm for
exploration and exploitation. We further look at sequences of matrices of the form At = A + ctI
where the scalar shift ct is known before ω is chosen. This case can be handled by contextual
bandits.
The simplest contextual bandit algorithm will discretize the contexts (shifts) into intervals and use
an adversarial bandit separately on each interval. However, we want an approach that exploits the
smoothness of the optimal mapping from the context (shift c) to the action (ω). For this, we reduce
the online contextual bandit problem to a problem of online regression to finding a weight vector
w given observations that arrive in sequence:
Online regression protocol for y = f(x;w)

Initialize regression weights w
for t = 1, . . . , T do

Observe xt
Predict ŷt = f(xt;w)
Observe yt and suffer loss (ŷt − yt)

2

Update w
end for

In online regression, the goal is to choose the weights to minimize the cumulative loss. For our
contextual bandit, we assume we have a good method for solving this problem (the oracle). In
particular, in our contextual bandit, we use online regression to fit the loss vs. (context, action),
i.e., y = number of iterations vs. x = (c, ω).
An example of such an approach is the SquareCB algorithm (Foster and Rakhlin, 2020):
SquareCB algorithm

Input: learning rate η > 0, exploration parameter µ > 0
for t = 1, . . . , T do

Observe context ct
Compute ŷt,a = f(ct, a;w) for all possible a
bt = argmina ŷt,a
pt,a = 1

µ+η(ŷt,a−ŷt,bt )
, ∀a ̸= bt

pt,bt = 1−
∑

a ̸=bt pt,a
Sample at ∼ pt and perform action at
Observe actual loss yt
Update the online regression oracle with example ((ct, at), yt)

end for

Above, the action a can be associated with possible values of ω for our setting of solving a sequence
of linear systems.
We develop a contextual bandit called ChebCB, a contextual bandit using Chebyshev regression.
For each action (possible ω) separately, we fit the loss vs. context c using regularized polyno-
mial regression. In particular, we use polynomials in a Chebyshev basis with coefficients for each
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Chebyshev polynomial constrained to be small.
We do not show the results here, but tests on a 2-D heat equation with time-dependent coeffi-
cients and time-dependent forcing show that the ChebCB contextual bandit method asymptotically
achieves the performance of the instance-optimal policy, which selects the best ω for each instance.
In summary, this work shows the potential of using well-understood learning algorithms to aug-
ment and speed up linear system solvers, without sacrificing the ability to obtain high accuracy.
Additional information can be found in the reference below.

[1] M. Khodak, E. Chow, M.-F. Balcan, and A. Talwalkar, Learning to Relax: Setting Solver Parameters
Across a Sequence of Linear System Instances, Proceedings of the 12th International Conference on
Learning Representations (ICLR), 2024. Spotlight. https://arxiv.org/abs/2310.02246
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Efficient sample average approximation techniques for hyperparameter
estimation in Bayesian inverse problems

Julianne Chung, Malena Sabaté Landman, Scot M. Miller, Arvind K. Saibaba

Abstract

Inverse problems arise in many important applications, where the aim is to estimate some un-
known inverse parameters from given observations. For large-scale problems where the number of
unknowns can be large (e.g., due to the desire to reconstruct high-resolution images or dynamic
image reconstructions) or for problems where observational datasets are huge, estimating the in-
verse parameters can be a computationally challenging task. Although there have been significant
advancements in solving inverse problems, many of these approaches rely on a pre-determined,
carefully-tuned set of hyperparameters (e.g., that define the noise and prior models) that must
be estimated from the data. The need to estimate these hyperparameters further exacerbates the
problem, often requiring repeated solves for many combinations of hyperparameters. In this work,
we propose a sample average approximation (SAA) method that couples a Monte Carlo estimator
with a preconditioned Lanczos method for the efficient estimation of hyperparameters in Bayesian
inverse problems.
We are interested in linear inverse problems that involve recovering the parameters s ∈ Rn from
measurements d ∈ Rm, which have been corrupted by additive Gaussian measurement noise, η ∈
Rm, and takes the form

d = As+ η, η ∼ N (0,R(θ))

where A ∈ Rm×n represents the forward map and θ ∈ RK
+ , represents the (nonnegative) hyperpa-

rameters. In the hierarchical Bayes approach, we treat θ as a random variable, which we endow
with prior density πhyp(θ). We assume that the noise covariance matrix R : RK

+ → Rm×m, where
R(·) is symmetric and positive definite (SPD), and has an inverse and square root that is compu-
tationally easy to obtain for any input (e.g., a diagonal matrix or a scalar times the identity). We
assume that the prior distribution for the parameters s is also Gaussian of the form N (µ(θ),Q(θ)),
where µ : RK

+ → Rn and Q : RK
+ → Rn×n, where Q(·) is assumed to be SPD.

With the above assumptions, we obtain the marginal posterior density,

π(θ |d) ∝ πhyp(θ) det(Ψ(θ))−1/2 exp

(
−1

2
∥Aµ(θ)− d∥2Ψ−1(θ)

)
, (1)

where Ψ(θ) = AQ(θ)A⊤ +R(θ). One goal would be to draw samples (e.g., using Markov Chain
Monte Carlo) from (1), and using the samples to quantify the uncertainty in the hyperparameters.
However, this may be prohibitive for large-scale problems because evaluating the density function
(or its logarithm) requires evaluating the determinant of and multiple solves with the matrix Ψ that
depends on θ, which can be expensive. To compound matters, hundreds of samples are required to
get accurate statistics, which can involve several hundred thousand density function evaluations.
Instead, we follow an empirical Bayes approach and focus on computing the maximum a posteriori
(MAP) estimate, that is, the point estimate that maximizes the marginal posterior distribution
or, equivalently, minimizes the negative log of the marginal posterior. That is, the problem of
hyperparameter estimation becomes solving an optimization problem:

min
θ∈RK

+

F(θ) ≡ − log πhyp(θ) +
1

2
logdet(Ψ(θ)) +

1

2
∥Aµ(θ)− d∥2Ψ(θ)−1 . (2)
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Notice that solving (2) is a computationally intensive task since it involves computing log deter-
minants. To address this challenge, we consider an SAA method for computing the MAP estimate
of the marginalized posterior distribution that combines a stochastic average approximation of the
objective function and the preconditioned Lanczos method to compute efficient approximations of
the function and gradient evaluations. The novel contributions of this work are as follows.

1. The method to estimate the objective function combines a Monte Carlo estimator for the
log-determinant of the matrix with a preconditioned Lanczos approach to apply the matrix
logarithm. We analyze the impact of the number of Monte Carlo samples and Lanczos
iterations on the accuracy of the log-determinant estimator.

2. We use a novel preconditioner to accelerate the Lanczos iterations. The preconditioner is
based on a parametric low-rank approximation of the prior covariance matrix, that is easy to
update for new values of the hyperparameters. In particular, no access to the forward/adjoint
solver is needed to update the preconditioner, and only a modest amount of precomputation
is needed as a setup cost (independent of the optimization).

3. We also use a trace estimator to approximate the gradient that has two features: first, it
works with a symmetric form of the argument inside the trace, and second, it is able to reuse
Lanczos iterates from the objective function computations. Therefore, the gradient can be
computed essentially for free (i.e., requiring no additional forward/adjoint applications).

Related works. The methods we describe here have some similarity to existing literature and
share certain techniques in common. The problem of optimizing for hyperparameters is closely
related to parameter estimation in Gaussian processes on maximum likelihood (we may think of it
as setting the forward operator as the identity matrix). The literature on this topic is vast, but
we mention a few key references that are relevant to our approach. In [3], the authors propose
a matrix-free approach to estimate the hyperparameters and also use an SAA for optimization.
In [2], the authors propose a reformulation of the problem that avoids computing the inversion of
the (prior) covariance matrix. Approaches based on hierarchical matrices are considered in [8, 10, 1].
Preconditioned Lanczos methods for estimating the log-determinant and its gradient are considered
in [6, 7]. However, the main difference is that the Gaussian process methods do not involve forward
operators. This raises two issues: first, we have to account for the problem structure which is
different from Gaussian processes, and second, we have to account for the computational cost of
the forward operator (and its adjoint), which may be comparable or greater than the cost of the
covariance matrices.
On the inverse problem side, there have been relatively few works on computing the hyperparam-
eters by optimization. Several works (e.g., [4]) instead use sampling methods (e.g., Markov Chain
Monte Carlo), but these methods are extremely expensive since they require several thousand eval-
uations of the likelihood to achieve accurate uncertainty estimates. In [9], we developed efficient
methods for hyperparameter estimation based on low-rank approximations using the generalized
Golub-Kahan iterative method. A brief review of other techniques is also given in the same paper.
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Bridging Linear Algebra and Autoencoders

Matthias Chung

Abstract

In recent years autoencoders – mappings Aθ : X → X parameterized by θ ∈ Rℓ – have emerged
as a cornerstone of machine learning and data science, playing a pivotal role in numerous applica-
tions. Their ability to learn efficient low-dimensional representations of data has led to significant
advancements in fields such as image and natural language processing, anomaly detection, and
generative modeling.
While universal approximation theorems provide a general theoretical foundation of autoencoder,
various analytical aspects such as interpretability, robustness, network design, and hyperparameter
selection remain relatively unexplored. Numerical linear algebra has played a fundamental and
crucial role in the development of modern science and technology and its impact on autoencoders
remains under-utilized.
The connection between linear autoencoder and singular value decomposition/principal component
analysis has been laid out in various works. Recognizing the connection between linear autoencoders
and singular value decomposition has sparked novel research utilizing autoencoders in fields such as
matrix factorizations, model reduction, denoising, spectral clustering, and low-rank approximations
to name a few.
In this work, we aim to investigate and initiate discussions on how tools from the numerical linear
algebra community may provide fundamental and novel results for autoencoders, scientific machine
learning, and beyond. We will discuss fundamental connections between matrix factorizations,
classical inverse problems, and autoencoders in the field of signal compression and inverse problems.
In the following, we provide details on the formulation of linear autoencoders through the Bayes
risk formulation and the linear algebra involved in its analysis.
Linear autoencoder. Autoencoders are neural networks that learn to encode input data x into
a compressed representation (latent representation) and then decode it back to reconstruct the
original data x ∈ Rn. Let us consider a linear autoencoder A ∈ Rn×n, where each element in A
represents a trainable parameter. Assuming we have an ℓ-dimensional latent space we may compute
a generic optimal autoencoder by minimizing the Bayes risk, i.e.,

min
rank(A)≤ℓ

f(A) = E ∥(A− I)x∥22 , (1)

given a distribution of the random variable x and where E denotes the expectation and I the
identity mapping. Assuming the random variable x has symmetric positive definite second moment
E xx⊤ = Γ with Cholesky decomposition Γ = BB⊤, then

E ∥(A− I)x∥22 = tr((A− I)Γ(A⊤ − I)) = ∥AB −B∥2F (2)

and (1) is equivalent to
min

rank(A)≤ℓ
∥AB −B∥2F . (3)

For ℓ = n the identity mapping A = I is an optimal solution. For rank constraint problems ℓ < n
an optimal low-rank solution can be found using the following generalization of the Eckart–Young–
Mirsky theorem.
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Theorem 1. Let matrix B ∈ Rn×n have full row rank with SVD given by B = UΣV ⊤. Then

Â = UℓU
⊤
ℓ

is a solution to the minimization problem

min
rank(A)≤ℓ

∥AB −B∥2F ,

having a minimal Frobenius norm ∥Â∥F =
√
ℓ and ∥ÂB − B∥2F =

∑n
k=ℓ+1 σk(B). This solution is

unique if and only if either ℓ = n or 1 ≤ ℓ < n and σℓ(B) > σℓ+1(B).

Following this result, the natural choice for the autoencoder Â to be decomposed into an encoder
and a decoder is Â = D̂Ê, with encoder and decoder being Ê = U⊤

ℓ and D̂ = Uℓ, respectively. Note
that this decomposition is not unique, e.g., let K be any n × n invertible matrix then Ê = U⊤

ℓ K

and D̂ = K−1Uℓ, are valid choices.
Sparse autoencoder. While for small latent spaces ℓ ≪ n one obtains a low-rank approximation and
a compressed approximation on the original signal x. However, compression can also be obtained
utilizing a compressed sensing framework. Let us consider the problem of finding an optimal linear
autoencoder A with the decomposition A = DE into encoder E ∈ Rℓ×n and D ∈ Rn×ℓ where ℓ > n
by minimizing L1-regularized optimization problem

min
D∈Rn×ℓ,E∈Rℓ×n

E ∥(DE − I)x∥2 + λ∥Ex∥1 (4)

with λ > 0. Autoencoders with ℓ > n are referred to as overcomplete autoencoders. Such sparsity-
promoting overcomplete autoencoders were first been introduced in the 2010s with pioneering work
from various research groups but are not commonly utilized. The generalized lasso approach (4) may
generate sparse vectors Ex while maintaining the same expected squared error as an undercomplete
linear autoencoder where ℓ < n.
Numerical results. We present our analytical findings and confirm them through numerical exam-
ples. We approach linear inverse problems using linear autoencoder approximations with theoret-
ical guarantees. Here, we illustrate this with medical tomography, deblurring, and a classic heat
equation. Furthermore, we analyze small angle scattering (SAS) data – a technique from material
science to obtain information about the size, shape, and arrangement of material – via the proposed
sparse autoencoder. We are able to obtain superior compression rates compared to state-of-the-art
approaches.
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Fast Randomized Column Subset Selection Using Strong Rank-revealing QR

Alice Cortinovis and Lexing Ying

Abstract

Many large-scale matrices arising in applications have a low numerical rank, and while the trun-
cated singular value decomposition gives a way to construct the best low-rank approximation with
respect to all unitarily invariant norms, this is often too expensive to compute. For this reason, dif-
ferent types of low-rank approximation strategies have been analyzed in the literature, for example,
approximations constructed from some rows and columns of the matrix. In practice, the strategy
for choosing rows and columns depends on the properties and the size of the matrix. Several de-
terministic and randomized strategies for selecting rows and columns for CUR approximation have
been developed; see, e.g., [1] for an overview.
This talk is concerned with the analysis of a randomized algorithm that selects suitable rows and
columns. The algorithm is based on an initial uniformly random selection of rows and columns,
followed by a refinement of this choice using a strong rank-revealing QR factorization. We show
bounds on the error of the corresponding low-rank approximation (more precisely, the CUR ap-
proximation error) when the matrix is a perturbation of a low-rank matrix that can be factorized
into the product of matrices with suitable incoherence and/or sparsity assumptions. The talk is
based on the paper [2].

The column subset selection problem

Let A ∈ Rn×n be the matrix we want to approximate (the discussion easily generalizes to rectangular
matrices). Let us denote by I, J ∈ {1, . . . , n}ℓ ordered index sets that correspond to rows and
columns of A, respectively, for some ℓ ≪ n, and let us denote by A(I, :) ∈ Rℓ×n and A(:, J) ∈ Rn×ℓ

the submatrices of A corresponding to the rows indexed by I and the columns indexed by J ,
respectively. An approximation of A using these rows and columns has the form

A ≈ A(:, J)MA(I, :),

for some matrix M ∈ Rℓ×ℓ. The choice of M that minimizes the low-rank approximation error
∥A−A(:, J)MA(I, :)∥F in the Frobenius norm is the orthogonal projection M = A(:, J)†AA(I, :)†,
where † denotes the Moore-Penrose pseudoinverse of a matrix. The resulting approximation is
usually called a “CUR approximation”.
The quality of the low-rank approximation, that is, the norm of the error matrix A−A(:, J)MA(I, :),
depends on the choice of rows and columns, and can be bounded, in the spectral norm, by

∥A−A(:, J)MA(I, :)∥2 ≤ ∥A−A(:, J)A(:, J)†A∥2 + ∥A−AA(I, :)†A(I, :)∥2, (1)

where the two terms on the right-hand-side are the column and row subset selection error, respec-
tively. For the remaining part of the talk, we focus on the problem of choosing columns, because
the rows can be selected in the same way and the error of the corresponding CUR approximation
is bounded as in (1).
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The proposed strategy

The simplest method to select columns is to choose some columns uniformly at random, which gives
good low-rank approximations in many cases of interest. In [3], it was shown that if A is a rank-k
matrix that admits a low-rank decomposition with incoherent factors, uniform sampling of rows
and columns allows to recover the matrix. Given a matrix X ∈ Rn×k with orthonormal columns,
the coherence of X is defined as

µ := n max
1≤i≤n
1≤j≤k

|xij |2,

and we say that X is µ-coherent. We say that a matrix is incoherent when µ is small. The concept
of incoherence informally means that the information about the matrix is “evenly spread out” across
all rows and columns.
The favorable property of uniform sampling can be extended to matrices that have low numerical
rank [4]. When the matrix A does not satisfy these incoherence assumptions, heuristic approaches
were considered, e.g., in [5, 6], where the idea is to refine the choice of the uniform sampled columns
using a rank-revealing decomposition. The algorithm that we consider is the following.

Algorithm 1 Proposed algorithm for column subset selection
Require: Matrix A, number of indices ℓ0, ℓa, ℓb
Ensure: Column index set J of cardinality ℓa + ℓb

1: Select ℓ0 rows of A uniformly at random (index set I0)
2: Select ℓa columns of A(I0, :) by sRRQR (index set Ja)
3: Select another ℓb columns of A uniformly at random (index set Jb)
4: Return the column index set J = (Ja, Jb)

Here, sRRQR denotes the strong rank-revealing QR factorization [7]. Informally, this is a partial
pivoted QR factorization that ensures that the first ℓa columns of A(I0, :) are a good approximation
of the range of the columns of A(I0, :). A rank-k sRRQR factorization for an m × n matrix
can be computed in time O(mnk log n), therefore the algorithm runs in time O(nℓ2 log n), where
ℓ = max{ℓ0, ℓa, ℓb}; in particular, the cost is sublinear with respect to the size of the matrix.

When is there hope for Algorithm 1 to work?

Let us look at a few illustrative examples to see when Algorithm 1 is likely to return a good column
set for low-rank approximation purposes. For example, if A is a matrix of all ones (and thus has
rank 1), uniformly sampling just one single column gives a vector that spans the range of A. The
singular vectors of A are as incoherent as they could possibly be. Now consider, instead, a matrix B
which is made of zeros except for one entry: in this case, neither uniform sampling nor Algorithm 1
will be able to correctly locate the only important column with high probability. The singular
vectors of B have coherence n, the highest possible value.
There is some interesting middle ground in which uniform sampling alone is not good enough, but
the combination with sRRQR gives us a good column subset. For example, consider the case of a
rank-2 matrix C ∈ Rn×n that has entries c1j = cj1 = 1 for 1 ≤ j ≤ n and zeros elsewhere. The row
set I0, chosen uniformly at random, will likely not include the first row. However, when looking at
the matrix C(I0, :), the sRRQR algorithm will select a set Ja containing the first column, plus some
other ℓa − 1 columns sampled uniformly at random. Now, the set J will contain the first column
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and at least another column; therefore, it is enough to span the range of C. We can decompose

C =



1√
n

1
1√
n

0
1√
n

0
...

...
1√
n

0


[√

n 0
0

√
n− 1

] [
1 0 0 · · · 0
0 1√

n−1
1√
n−1

· · · 1√
n−1

]
= XZY T .

Note that, for each j = 1, 2, one between the j-th column of X and the j-th column of Y is
sparse and the other one is incoherent. This example suggests that when a matrix has a rank-k
decomposition XZY T (possibly, up to an additive error E), there is hope for Algorithm 1 to work
when, for each i = 1, . . . , k, one between the i-th columns of X and of Y is sparse, and the other
is incoherent.

Analysis of column quality

Our analysis considers the case in which A has rank exactly k and the case in which A is a
small perturbation of the exact case. For simplicity, we state our results in the perturbed case,
with slightly simplified assumptions, and we omit explicit constants; the precise results are in our
paper [2].

Assumptions. We assume that A admits an approximate rank-k factorization A = XZY T +E,
for some X ∈ Rn×k and Y ∈ Rn×k, where X and Y have orthonormal columns, Z ∈ Rk×k is
diagonal, and the corresponding pairs of vectors of X and Y are either both incoherent (µ-coherent
with a small value of µ) or one is sparse and the other one is incoherent. Moreover, we assume that
∥E∥2 ≤ ε.

Main theorem. If the assumptions hold and we take ℓ0, ℓa, ℓb to be a small multiple of µk, then
the column index J returned by Algorithm 1 satisfies

∥A−A(:, J)A(:, J)†A∥2 ≤ O

(
εn

√
k

ℓ
· σ1(XZY T )

σk(XZY T )

)

with high probability.

Sketch of proof ingredients. One important ingredient in the proof of our main result is the
fact that selecting uniformly random rows from a matrix with orthonormal columns gives, with
high probability, a well conditioned matrix [8]. The second ingredient is the sRRQR, which allows
us to determine what are the most “important” columns in a given matrix (since this is used on a
rectangular matrix which is much smaller than A, this is fast to do).
Intuitively, the columns corresponding to the index set Ja generated by lines 1 and 2 of Algorithm 1
are a good approximation to the part of A that corresponds to the pairs of vectors of X and Y that
are of type (incoherent,incoherent) or (incoherent,sparse). The additional selection of ℓb uniformly
random columns in line 3 ensures that, with high probability, also the information from the pairs
of vectors of X and Y of type (sparse,incoherent) is taken care of.
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Take-away messages and open questions

The analysis of Algorithm 1 shows that this combination of randomness and sRRQR is able to
combine the speed of randomized algorithms with the reliability of sRRQR, for the matrices that
admit a decomposition with the assumptions above. While it is difficult, in general, to check
whether a matrix A admits a decomposition satisfying these assumptions, the objective of this talk
is to shed some light on the excellent practical performance of simple sublinear-time algorithms for
column and row subset selection. It is easier to think of XZY T as the singular value decomposition
of A or its best rank-k approximation, but actually, we do not require X and Y to have orthonormal
columns, as long as they are well-conditioned. This flexibility allows us to apply our bounds to a
larger class of matrices.
Our results do not cover all the matrices for which there is hope. For example, a scenario that is
not covered by the current theory and is left for future work consists of matrices that have some
pairs of vectors of X and Y for which one of them is incoherent and the other one does not have
any specific assumption (that is, it may be coherent but not sparse).
It is possible to formulate an iterative version of Algorithm 1, such as the one considered in [6],
in which one, after line 3, again performs an sRRQR factorization, adds some uniformly sampled
rows, and then repeats this procedure a couple of times alternating between the selection of rows
and columns. While the practical benefits of this “iterative refinement” for many matrices have
been well documented, a theoretical analysis is still lacking and is an interesting direction for future
research.
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Rank-revealing QR factorizations: applications, algorithms, and theory

Anil Damle

Abstract

Rank-revealing factorizations, e.g., [2, 7], have a long history in numerical linear algebra. We con-
tinue this story in multiple directions by discussing recent highlights of their development and use.
This starts with a discussion about how pivoted QR factorizations play a central role in techniques
for compressing modern, large-scale deep learning models [3, 5]. Motivated by that work we briefly
highlight recent advances in computational methods for computing interpolative decompositions
that leverage tools from randomized numerical linear algebra [1] and discuss associated theoretical
developments that more clearly capture the behavior of low-rank matrix approximations derived
from pivoted factorizations
Modern deep learning models are often vastly overparametrized for their desired task; it is difficult
to determine a optimal model size based on a description of the problem and/or training data.
However, this has consequence as it leads to large models that are expensive to store and run
inference on. We show that given a small amount of (potentially unlabeled) data we can compress
a given model into one of smaller size that retains the same structure as the original model—it is
just smaller. To illustrate this process we can consider a one-hidden layer neural network

f(x) = σ(xTW )α,

where x ∈ Rd represents a data point, W ∈ Rd×n is the weight matrix, α ∈ Rn is a linear last
layer, and σ is a non-linear function applied entrywise. Our task is to compute Ŵ d×m and α̂m with
m < n such that f(x) ≈ σ(xT Ŵ )α̂ to the desired accuracy and for all sensible x.

Given some small amount of data points, which we encode as the columns of XC , we accomplish
this goal by computing an interpolative decomposition [4] of Z = σ(XT

CW )α as

Z ≈ Z(: C)T,

where C represents a subset of the columns of Z. Because the non-linear function is applied entrywise
it commutes with subset selection and we have that

f(x) ≈ σ(xTW (:, C))(Tα).

Letting Ŵ = W (:, C) and α̂ = Tα accomplishes our goal. This idea can be extended to multiple
layers and more complicated layer types.
In the preceding use case, the matrices that we have to compute interpolative decompositions of
can be quite large. However, the final quality of the process is not typically dependent on the
exact subset of columns chosen—we just need a sufficiently good subset. This motivates the use of
randomized algorithms to rapidly compute a suitable C. Numerous algorithms exist for this task, and
we provide a novel randomized version of the Golub-Klema-Stewart subset selection algorithm [6]
that performs admirably in practice. In particular, we observe that its performance (and that
of alternatives) depends on properties of singular vectors and we derive theoretical bounds that
highlight this fact [1].
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On Minimizing Arithmetic and Communication Complexity of Jacobi’s
Eigenvalue Method: Review and Beyond

Yifu Wang, James Demmel, Hengrui Luo, Ryan Schneider

Abstract

Jacobi’s method iteratively computes the eigenvalues and eigenvectors of a symmetric matrix.
Remarkably simple to implement, Jacobi’s method is a compelling candidate for use on large-scale
applications. On the other hand, matrix multiplication is fundamental in numerical linear algebra,
often regarded as a building block for other matrix computations.
With these in mind, we establish theoretical bounds on the asymptotic complexity of Jacobi’s
method in both arithmetic and communication, aiming for efficiency comparable to matrix multi-
plication.
We not only analyze the complexity of sequential and parallel Jacobi using classical O(n3) matrix
multiplication, but also introduce recursive Jacobi’s methods that leverage Strassen-like O(nω0)
matrix multiplication to achieve optimal arithmetic and communication lower bounds. We also
offer rigorous proofs of convergence for the recursive algorithms. The main contributions are as
follows:

1. Starting from a dense real symmetric matrix A ∈ Mn(R) (without loss of generality, we
only consider the real case), the Classical Jacobi’s method sequentially rotates all off-
diagonal entries of A in some given ordering. We denote one sweep as rotating through all
off-diagonal entries of A once. Since Classical Jacobi almost always converges, we assume
that the algorithm converges in O(1) sweeps and the corresponding total arithmetic cost is
O(1) ·Θ(n3) = Θ(n3).
For estimating the lower bound on the communication cost, assume for now that we could
only change the ordering of rotations. We denote the size of fast memory by M . Then when
M1/2 < n < M , we can attain a lower bound of Ω(n4/M) reads and writes to slow memory,
asymptotically exceeding the O(n3/

√
M) cost of classical matrix multiplication. To attain

the cost of matrix multiplication requires more changes to the algorithm.

2. Allowing ourselves more freedom than just choosing the ordering of to-be-rotated entries, we
next consider the Block Jacobi’s method, in which we rotate 2b-by-2b blocks instead of one
off-diagonal entry each time. We still assume O(1) sweeps for the algorithm to converge and
choose b to be able to fit three 2b-by-2b sub-matrices into the fast memory, i.e. b = Θ(

√
M).

In this case, the algorithm attains the communication lower bound Ω(n3/
√
M) with O(n3)

matrix multiplication.

3. The highlight of this paper is the Recursive Jacobi’s method we introduce, along with a
series of its variations. To the best of our knowledge, this is the first work which can asymptot-
ically attain the arithmetic and communication costs of Strassen-like matrix multiplication,
including a convergence proof.
We first propose a “vanilla” recursive algorithm, in which we apply a divide-and-conquer
strategy, where the algorithm recursively partitions the input n-by-n matrix into smaller 2b-
by-2b blocks, until the size of the to-be-rotated sub-matrices reach a certain threshold, where
b = nf and 0 < f < 1 is the block parameter. We show that under the assumption that the
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outermost sweep is executed O(1) times, the arithmetic complexity is F (n) = O(n3(1−f)+ω0f ),
which asymptotically approaches O(nω0) as f approaches 1.
Convergence analysis for Jacobi’s methods has been widely discussed, taking into account
various pivoting strategies (such as rotation orderings and the choice between block and cyclic)
as well as processing architectures (sequential or parallel). We refer readers to [7, 8, 10, 14] for
further details. A key ingredient in [7] towards convergence of Classical Jacobi is to restrict
the rotation angles of off-diagonal entries in a proper open subset of (−π

2 ,
π
2 ). An analog of

this for block Jacobi is the uniformly bounded cosine transformations [6]. By reordering the
columns of the orthogonal rotation matrix Q via applying QR decomposition with column
pivoting (QRCP for short) to the first-half leading rows of Q, [6] successfully addressed
convergence proof for the block cyclic Jacobi. We leverage this idea and introduce our first
variant of the recursive Jacobi method with a convergence guarantee, the Recursive Jacobi
with QRCP. This approach achieves convergence at the expense of a slight trade-off between
the optimal arithmetic complexity lower bound and the added cost of QRCP, which has an
O(n3) computational cost.
The key of ensuring convergence in [6, 7] is to bound the cosines of rotation angles away
from zero, which could also be done by applying LU decomposition with partial pivoting
(LUPP for short). Unlike QRCP, LU decomposition can be implemented recursively with
complexity of O(nω0) [2, Section 4.2], and adding partial pivoting to the algorithm won’t
harm the arithmetic complexity. By applying LUPP to the transpose of the first-half leading
columns of Q, we introduce the Recursive Jacobi with LUPP, which enjoys both optimal
O(n3(1−f)+ω0f ) arithmetic complexity and convergence.
In the sequential case, for 2 < ω0 ≤ 3, the recursive Jacobi is shown to analogously get close to
attaining the expected communication lower bound Ω(nω0/Mω0/2−1) [13]. In practical terms,
recursive Jacobi should be considered as a “galactic algorithm” since the size n where the
algorithm shows benefits grows rapidly as f approaches 1.

4. In addition to the sequential cases, we also studied parallel block Jacobi with O(n3) matrix
multiplication, in which the algorithm simultaneously rotates off-diagonal blocks in different
columns and rows [1, 9, 12]. We store the n-by-n matrix A on a

√
P ×

√
P grid of P

processors, with block sizes b = n/
√
P , which we assume to be an integer for simplicity.

Under this scenario, the arithmetic complexity is O(n3/P ), which demonstrates the optimal
linear speedup, and the communication complexity is O(n2/

√
P ) words and O(

√
P logP )

messages, which attains the communication lower bound (except for the logP factor) for
classical matrix multiplication using the minimum amount of memory.

One remark is that the above studies and estimates readily extend to the SVD due to its strong
connection with Jacobi’s method [4, 5]. Furthermore, by not restricting ourselves to Jacobi-like
methods, our recursive algorithm technique can also benefit non-Jacobi methods, for example com-
bined with QDWH (QR-based dynamically weighted Halley algorithm) [11].
Additionally, since all our recursive algorithms follow a divide-and-conquer paradigm utilizing
O(nω0) matrix multiplication, it follows from the analysis in [2, 3] that all the proposed algorithms
are backward stable.
In conclusion:

1. We have demonstrated an asymptotic approach to make the Jacobi’s eigenvalue method and
SVD nearly as fast as matrix multiplication, in terms of both arithmetic and communication
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complexity, across several scenarios. For O(n3) matrix multiplication, we analyzed both
sequential and parallel Jacobi’s methods.
A remaining open question is whether the (better) lower bound and communication complexity
for matrix multiplication using more than the minimum memory is attainable for Jacobi.

2. For O(nω0) matrix multiplication, we introduced a series of recursive Jacobi’s methods, fo-
cusing on minimizing arithmetic cost while also ensuring the convergence of the proposed
algorithms.
Another remaining open question is whether these asymptotically faster recursive Jacobi’s
methods can be parallelized and attain both the arithmetic and communication complexity
lower bounds of matrix multiplication.

References

[1] M. Berry and A. Sameh. An overview of parallel algorithms for the singular value and sym-
metric eigenvalue problems. J. Comp. Appl. Math., 27:191–213, 1989.

[2] James Demmel, Ioana Dumitriu, and Olga Holtz. Fast linear algebra is stable. Numerische
Mathematik, 108(1):59–91, 2007.

[3] James Demmel, Ioana Dumitriu, Olga Holtz, and Robert D. Kleinberg. Fast matrix multipli-
cation is stable. Numerische Mathematik, 106:199–224, 2006.

[4] K. Drmač and K. Veselić. New fast and accurate Jacobi SVD algorithm, I. SIAM J. Mat.
Anal. Appl., 29(4):1322–1342, 2008.

[5] K. Drmač and K. Veselić. New fast and accurate Jacobi SVD algorithm, II. SIAM J. Mat.
Anal. Appl., 29(4):1343–1362, 2008.

[6] Zlatko Drmač. A Global Convergence Proof for Cyclic Jacobi Methods with Block Rotations.
SIAM Journal on Matrix Analysis and Applications, 31(3):1329–1350, 2010.

[7] G. E. Forsythe and P. Henrici. The Cyclic Jacobi Method for Computing the Principal Values
of a Complex Matrix. Transactions of the American Mathematical Society, 94(1):1–23, 1960.

[8] V. Hari. Convergence to diagonal form of block Jacobi-type methods. Numer. Math., 129:449–
481, 2015.

[9] Franklin T. Luk and Haesun Park. A Proof of Convergence for Two Parallel Jacobi SVD
Algorithms. IEEE Trans. Computers, 38:806–811, 1989.

[10] W. Mascarenhas. Convergence of the Jacobi method for arbitrary orderings. SIAM J. Mat.
Anal. Appl., 16(4):1197–1209, Oct 1995.

[11] Yuji Nakatsukasa and Nicholas J. Higham. Stable and Efficient Spectral Divide and Conquer
Algorithms for the Symmetric Eigenvalue Decomposition and the SVD. SIAM Journal on
Scientific Computing, 35(3):A1325–A1349, 2013.

[12] A. Sameh. On Jacobi and Jacobi-like algorithms for parallel computers. Math. Comp.,
25(115):579–590, July 1971.

81



[13] Jacob Scott. An I/O-Complexity Lower Bound for All Recursive Matrix Multiplication Algo-
rithms by Path-Routing. PhD thesis, UC Berkeley Mathematics PhD thesis, 2015.

[14] G. Shroff and R. Schreiber. On the convergence of the cyclic Jacobi method for parallel block
orderings. SIAM J. Mat. Anal. Appl., 10(3):326–346, 1989 1989.

82



Randomized Algorithms for Solving Linear Systems
with Low-rank Structure

Michał Dereziński, Daniel LeJeune, Christopher Musco,
Deanna Needell, Elizaveta Rebrova, and Jiaming Yang

Abstract

We consider the task of solving a large system of linear equations Ax = b, where for simplicity, we
will assume that A is real, square, and full-rank. Iterative algorithms, such as LSQR, Conjugate
Gradient and other Krylov subspace methods, are a powerful tool for solving such linear systems.
Yet, the convergence properties of these methods are highly dependent on the singular value struc-
ture of the matrix A, and characterizing these properties effectively requires going beyond the usual
notion of condition number. In this talk, we will consider this problem in the context of linear sys-
tems whose singular values exhibit a low-rank structure, in the sense that A can be decomposed
into a low-rank ill-conditioned matrix (the “signal”) and a full-rank well-conditioned matrix (the
“noise”). Such linear systems are motivated by a range of problem settings, including in statistics,
machine learning, and optimization, where the “signal” is often low-rank due to inherent struc-
ture of the data, while the “noise” may be coming from measurement error, data transformations,
or an explicit regularizer imposed by the user. We will show how randomized sketching tech-
niques, including our recent works on randomized preconditioning [DMY25] and stochastic solvers
[DR24, DY24, DLNR24], can be used to exploit this low-rank structure in order to accelerate linear
system solving in ways that go beyond what is possible with Krylov subspace methods.
Linear systems with low-rank structure. Consider the following linear system task:

Solve Ax = b, given A ∈ Rn×n and b ∈ Rn,

where A is a full-rank matrix with singular values σ1 ≥ σ2 ≥ ... ≥ σn. For a given low-rank
parameter k ∈ {1, ..., n}, we will allow the top-k part of the singular values to be very ill-conditioned,
but assume that the tail is moderately well-conditioned, as measured by κk = σk+1/σn. For
example, if the matrix A is explicitly regularized, e.g., A = B + λIn as in ridge regression [AM15]
or cubic-regularized Newton’s method [NP06], then k may correspond to the number of singular
values above the λ threshold. Similar regularization effect occurs when A is distorted by isotropic
noise, A = B+δN , e.g., where N is Subgaussian [Joh01], or it is the error from stochastic rounding
[DBM+24]. Also, A may exhibit a power law singular value distribution (σi ∝ i−β), e.g., due to a
data transformation with the Matérn kernel function [RW06]. Here, different values of k capture
different signal-to-noise trade-offs. Our goal is to describe the convergence and computational cost
of iterative algorithms for solving Ax = b in terms of the parameters n, k, and κk. One can also
consider the sparsity of A, but for simplicity, we will focus on the dense setting.
Effectiveness and limitations of Krylov subspace methods. A careful analysis of Krylov
subspace methods such as LSQR and CG for solving linear systems with low-rank structure [AL86]
shows that they need k iterations to capture the top-k singular vectors, and then O(κk log(1/ϵ))
iterations to converge at a rate that depends only on κk (with κk replaced by √

κk when A is positive
definite). Thus, for a dense A, before reaching a fast convergence rate of O(n2κk log 1/ϵ) operations,
Krylov methods require an initial O(n2k) cost (corresponding to roughly k matrix-vector products)
to capture the low-rank structure of A, which is expensive for large k. This n2k bottleneck can
be established as a lower bound not just for Krylov methods but for any algorithms that access A
only through matrix-vector products [DLNR24].
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Given the above problem formulation and discussion, the central question of this talk is:
Can the n2k bottleneck in solving linear systems with low-rank structure be overcome,

when given direct access to A and allowing randomization?

Randomized preconditioning via sparse sketching. Randomized sketching offers a powerful
set of tools for accelerating linear solvers. While these approaches have traditionally focused on very
tall least squares problems [AMT10], linear systems with low-rank structure offer another setting
where sketching can be beneficial. Such an algorithm starts by applying a random matrix S ∈ Rs×n

(e.g., Gaussian) to the matrix A, producing a smaller sketch Ã = SA ∈ Rs×n, where s ≪ n is the
sketch size. This sketch can now be used to construct an approximate low-rank decomposition of
A, e.g., by orthonormalizing the columns of Ã⊤ to obtain an n × s matrix Q and projecting A
onto the subspace defined by those columns, Â = AQQ⊤ ≈ A [HMT11]. The intuition here is that
Â approximates A reasonably well in the top-k singular directions as long as the sketch size s is
sufficiently larger than k, and this approximation can be further boosted via subspace iteration.
If implemented naïvely, sketching does not appear to overcome the O(n2k) computational barrier
exhibited by Krylov methods, due to three bottlenecks: (1) applying the sketching matrix S,
(2) projecting via the orthogonal matrix Q, and (3) performing subspace iteration. Each of these
require at least k matrix-vector products to produce a decent preconditioner for a linear system
with rank k structure. However, given direct access to A, the sketching cost (bottleneck 1) can
be reduced by using fast sketching methods, e.g., by making S extremely sparse, which is known
to retain similar guarantees as a Gaussian matrix. Moreover, recent works have shown that a
careful construction of the preconditioner can avoid the full projection step (bottleneck 2): in the
positive definite case, by relying on Nyström approximations [FTU23], and in the general case,
by using an inner solver to construct the preconditioner implicitly [DMY25]. In the latter work,
we showed that this approach can be used to solve a linear system in Õ(n2κk

√
n/k log 1/ϵ + k3)

operations (up to minor logarithmic factors), where the term
√
n/k comes as a trade-off from

omitting subspace iteration (bottleneck 3). When k is sufficiently large and κk small enough, this
overcomes the n2k barrier.

Stochastic solvers via Sketch-and-Project. Another class of methods that use randomized
sketching and/or sub-sampling to go beyond matrix-vector products are stochastic iterative solvers
such as randomized Kaczmarz and coordinate descent, among others. Viewed in the context of
sketching, many of these methods can be unified under the framework of Sketch-and-Project [GR15].
Here, we consider a solver that updates an iterate xt by repeatedly sketching the system Ax = b
and projecting xt onto the solutions of the sketched system:

xt+1 = arg min
x∈Rn

∥xt − x∥ subject to SAx = Sb.

While stochastic solvers have traditionally been considered effective primarily in specialized settings
where we may not be able to perform full matrix-vector products with A (e.g., due to memory or
bandwidth constraints), we have shown in recent works that these methods can also be particularly
effective for linear systems with low-rank structure. Here, the intuition is that the sketched system
SAx = Sb retains the information about the top-k singular directions of A, which gives the Sketch-
and-Project solver a convergence rate akin to being preconditioned with a rank k approximation
[DR24]. We have adapted this approach to a simple Randomized Block Kaczmarz method [DY24],
as well as a variant with Nesterov’s acceleration [DLNR24], showing that these algorithms can solve
a linear system in Õ((n2+nk2)κk log 1/ϵ) operations. This recovers the fast Krylov convergence of
Õ(n2κk log 1/ϵ) operations for up to k = O(

√
n), while entirely avoiding the n2k bottleneck.

84



References

[AL86] Owe Axelsson and Gunhild Lindskog. On the rate of convergence of the preconditioned
conjugate gradient method. Numerische Mathematik, 48:499–523, 1986.

[AM15] Ahmed El Alaoui and Michael W. Mahoney. Fast randomized kernel ridge regression
with statistical guarantees. In Proceedings of the 28th International Conference on
Neural Information Processing Systems, pages 775–783, 2015.

[AMT10] Haim Avron, Petar Maymounkov, and Sivan Toledo. Blendenpik: Supercharging la-
pack’s least-squares solver. SIAM Journal on Scientific Computing, 32(3):1217–1236,
2010.

[DBM+24] Gregory Dexter, Christos Boutsikas, Linkai Ma, Ilse CF Ipsen, and Petros Drineas.
Stochastic rounding implicitly regularizes tall-and-thin matrices. arXiv preprint
arXiv:2403.12278, 2024.

[DLNR24] Michał Dereziński, Daniel LeJeune, Deanna Needell, and Elizaveta Rebrova. Fine-
grained analysis and faster algorithms for iteratively solving linear systems. arXiv
preprint arXiv:2405.05818, 2024.

[DMY25] Michał Dereziński, Christopher Musco, and Jiaming Yang. Faster linear systems and
matrix norm approximation via multi-level sketched preconditioning. ACM-SIAM Sym-
posium on Discrete Algorithms (SODA), 2025.

[DR24] Michał Dereziński and Elizaveta Rebrova. Sharp analysis of sketch-and-project meth-
ods via a connection to randomized singular value decomposition. SIAM Journal on
Mathematics of Data Science, 6(1):127–153, 2024.

[DY24] Michał Dereziński and Jiaming Yang. Solving dense linear systems faster than via
preconditioning. In 56th Annual ACM Symposium on Theory of Computing, 2024.

[FTU23] Zachary Frangella, Joel A Tropp, and Madeleine Udell. Randomized Nyström precon-
ditioning. SIAM Journal on Matrix Analysis and Applications, 44(2):718–752, 2023.

[GR15] Robert M Gower and Peter Richtárik. Randomized iterative methods for linear systems.
SIAM Journal on Matrix Analysis and Applications, 36(4):1660–1690, 2015.

[HMT11] Nathan Halko, Per-Gunnar Martinsson, and Joel A Tropp. Finding structure with ran-
domness: Probabilistic algorithms for constructing approximate matrix decompositions.
SIAM review, 53(2):217–288, 2011.

[Joh01] Iain M Johnstone. On the distribution of the largest eigenvalue in principal components
analysis. The Annals of Statistics, 29(2):295–327, 2001.

[NP06] Yurii Nesterov and Boris T Polyak. Cubic regularization of newton method and its
global performance. Mathematical Programming, 108(1):177–205, 2006.

[RW06] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006.

85



Sketched GCRODR and its Convergence Analysis

Eric de Sturler and Fei Xue

Abstract

We develop a sketched version of the GCRODR algorithm for the solution of a sequence of linear
systems. The recycling approach in GCRODR with an approximate invariant subspace allows
us to derive upperbounds on the convergence of GCRODR based on the field of values of the
projected system (see below). We extend this convergence result to upperbounds on the convergence
of a sketched GCRODR (S-GCRODR). The bounds for S-GCRODR deteriorate from those for
GCRODR as a function of the subspace embedding distortion ϵ, and we provide expressions for
this relation.
Sketching offers the opportunity to substantially reduce the high orthogonalization cost in long-
recurrence solvers like GMRES. Several approaches have been explored. Balabanov and Grigori
[1] replace the inner products in the orthogonalization by sketched inner products, replacing an
orthogonal projection by a oblique projection (but typically close to orthogonal), which maintains
the stability of the Arnoldi process. While they demonstrate good performance improvements on
HPC architectures, the approach does not reduce the computational complexity, O(nm2) for m
iterations with A ∈ Cn×n. On the other hand, Nakatsukasa and Tropp [5] generate the Krylov
space with truncated Arnoldi and use sketching for the LS solution of the resulting, potentially very
ill-conditioned, system. This approach has the significant advantage that it drastically reduces the
computational complexity to O(nm logm) for m iterations. However, the severe ill-conditioning of
the basis vectors typically leads to some deterioration of the convergence. We propose an efficient
and convergence-wise effective combination of the two approaches.
We consider the solution of a sequence of linear systems, A(j)x(j) = b(j), where A ∈ Cn×n, and
where the matrices change slowly. We aim for robustness and reduced iterations as well as a signif-
icant reduction in the average cost per iteration. Recycling Krylov subspaces from previous linear
solves can drastically reduce the total number of iterations, which suggests that the approximate
orthogonalization by sketching of new Krylov vectors against the recycle space is important. This
introduces only a linear cost in the number of iterations. In addition, we substantially reduce
the computational complexity by using only selective orthogonalization with a fixed number of or-
thogonalizations when we extend the (augmented) Krylov search space and solve the least squares
problem in a sketched fashion following the approach proposed in [5].

GCRODR and S-GCRODR Consider a recycle space of dimension k, defined by (range) R(U),
where U ∈ Cn×k such that (for convenience) C = AU has orthonormal columns, C∗C = I. We
define the (orthogonal) projection Φ = CC∗. We also define C⊥ such that the matrix [C C⊥] ∈ Cn×n

is unitary. We assume here, for simplicity, that U has been selected such that R(U) is a low accuracy
approximation (see below) to an invariant subspace with eigenvalues near the origin. As shown in
[7], using the recycle space R(U), we can update the initial solution, x̃0, and residual, r̃0, as x0 =
x̃0+UC∗r̃0, and r0 = (I−Φ)r̃0, and subsequently solve the projected system (I−Φ)Az = (I−Φ)r̃0
with GMRES. For this (consistent) system, the right hand side (I − Φ)r̃0 ∈ R(C)⊥ = R(C⊥) and
(I − Φ)Az : R(C⊥) → R(C⊥). So, we can analyze the convergence for GMRES for the linear
operator (I − Φ)A over the space R(C⊥).
After defining a sketching matrix S ∈ Cs×n, which provides an ℓ2 embedding of a suitable vector
space V, which contains the right hand side or residual, the R(C), and a suitable Krylov space, we
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let SC = Y RY and S∗Y = QRQ be reduced QR decompositions. In S-GCRODR the orthogonal
projection I−Φ in GCRODR is replaced by the (oblique) projection I−Φ̂, with range R(Φ̂) = R(C)
and null space N(Φ̂) = R(Q)⊥ = R(Q⊥), where [Q Q⊥] is a unitary matrix. This implies that
(I − Φ̂) = Q⊥(C

∗
⊥Q⊥)

−1C∗
⊥. After computing the updates to the initial guess and residual, S-

GCRODR solves the projected system (I − Φ̂)Az = (I − Φ̂)r̃0 using GMRES.

Convergence We give bounds on the convergence for GCRODR while recycling an approxi-
mate invariant subspace and compare these with convergence bounds for the sketched version,
S-GCRODR, recycling the same invariant subspace. We show that the convergence bounds for
S-GCRODR can deteriorate due the oblique projection; however, the deterioration can be bounded
in terms of the embedding subspace distortion ϵ.
We can analyze the convergence of GCRODR by considering convergence bounds for GMRES for
the linear operator (I − Φ)A restricted to the space R(C⊥), which can derived using the field of
values (FOV) [4, 3] of C∗

⊥AC⊥. Now let A have the block Schur decomposition (with unitary
[V V⊥] ∈ Cn×n)

A = [V V⊥]

[
T11 T12

0 T22

]
[V V⊥]

∗, (1)

where the eigenvalues of T11 are near the origin (possibly surrounding the origin) and ∥T11∥2 is small,
and the eigenvalues of T22 are further away in the right half plane, and let ∥(I−Φ)V ∥2 = δ < 1. In
the derivation of FOV bounds, we use the following notation. We use calligraphic script to denote
sets: F(T11) denotes the field of values of T11, F(T22) denotes the field of values of T22 and D
denotes the unit disk. Set addition is defined in the usual way, and for a scalar τ and set S, the
set τS is defined as τS = {τx | x ∈ S} and [τ1, τ2]S = {τx | x ∈ S and τ ∈ [τ1, τ2]}. We can then
bound the FOV of the linear operator (I − Φ)A restricted to the space R(C⊥), F(C∗

⊥AC⊥) as

F(C∗
⊥AC⊥) ⊂ [1− δ2, 1]F(T22) + [0, δ2]F(T11) + δ(1− δ2)1/2∥T12∥2D. (2)

This equation shows that even for δ not very small, say δ = 10−2 (which can be achieved with
modest effort [6]), F(C∗

⊥AC⊥) is only slightly large than F(T22), unless ∥T12∥2 is (relatively) large.
We can now bound the convergence of GCRODR for A with the recycle space R(U) using the FOV
convergence bounds for GMRES with the FOV bounds from (2).
We can bound the convergence of S-GCRODR in a similar fashion as for GCRODR using bounds
on the FOV of (I−Φ̂)A restricted to the space R(Q⊥), that is the set {z∗(I−Φ̂)Az : z = Q⊥ζ, ζ ∈
Cn−k, ∥ζ∥2 = 1}, which is also given by F(Q∗

⊥Q⊥(C
∗
⊥Q⊥)

−1C∗
⊥AQ⊥) = F( (C∗

⊥Q⊥)
−1C∗

⊥AQ⊥ ).
To understand the relation between the FOV bounds for GCRODR and S-GCRODR, we consider
the singular values of C∗

⊥Q⊥. We assume k ≪ n. Let λ1 ≥ λ2 ≥ · · · ≥ λk be the singular
values of C∗Q. Then we can derive the singular values of C∗

⊥Q⊥ from the CS-decomposition of
[C C⊥]

∗[Q Q⊥]: σ(C∗
⊥Q⊥) ∈ {1, λ1, . . . , λk}. Furthermore, we can prove, based on the ϵ-embedding,

that λk ≥
√
(1− ϵ)/(1 + ϵ), and therefore, for ϵ → 0, R(Q⊥) → R(C⊥). This in turn implies

that (C∗
⊥Q⊥)

−1C∗
⊥AQ⊥ → C∗

⊥AC⊥, and hence the FOVs that govern the convergence bounds for
GCRODR and S-GCRODR get closer and closer as ϵ becomes small.
We can describe the dependence of F( (C∗

⊥Q⊥)
−1C∗

⊥AQ⊥ ) on ϵ in substantial detail by deriving
detailed expressions of the type (for unit vectors ζ)

ζ∗Q∗
⊥Q⊥(C

∗
⊥Q⊥)

−1C∗
⊥AQ⊥ζ =

(
η1(ϵ)
η2(ϵ)

)∗(
T11 T12

O T22

)(
η1(ϵ)
η2(ϵ)

)
, (3)
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and analyze how close bounds for (3) are to (2) as a function of ϵ. These bounds clarify how
the convergence of S-GCRODR may deteriorate as a function of the distortion parameter ϵ as a
consequence of how far the oblique projection I − Φ̂ deviates from the orthogonal projection I −Φ.

A Numerical Experiment We present one set of numerical results to compare several sketched
variants of GMRES and GCRODR. The results are derived from solving the following nonlinear
Helmholtz equation on the 2D domain Ω = (0, 1)× (0, 1),

∆u+ κ2(1 + ϵ|u|2)u = 0,
ux + iκu = 2iκ, at x = 0, y ∈ (0, 1)
ux − iκu = −iκ, at x = 1, y ∈ (0, 1)
periodic boundary condition at y = 0, 1, x ∈ (0, 1),

(4)

using Anderson acceleration (AA). We take ϵ = 0.40 and κ = 12. We discretize Ω using a uniform
mesh with n + 1 equispaced nodes in the x and in the y directions, respectively. We also use the
standard 2nd order finite difference to approximate the Laplacian operator, and use ghost nodes at
the left (x = 0) and the right (x = 1) boundaries. We let n = 512 so that the number of elements in
the u vectors is n(n+1) = 262656. To set up the corresponding nonlinear system, define Ix = In+1,
Iy = In, D2x = tridiag(1,−2,1) ∈ R(n+1)×(n+1), except that D2x(1, 1) = D2x(n + 1, n + 1) =
2(−1 + iκh), and D2x(1, 2) = D2x(n + 1, n) = 2, D2y = tridiag(1,−2,1) ∈ Rn×n, except that
D2y(1, n) = D2y(n, 1) = 1, F (u) = 1

h2 (Iy ⊗D2x +D2y ⊗ Ix) + κ2diag(1 + ϵ|u|2) − fbdy, where
fbdy = 1n ⊗ [2(2)iκh ;0n−1;

2(−1)iκ
h ], so that the nonlinear system is F (u)u = 0. To define the Picard

iteration, we let the squared term of u be the current iterate u(k) and solve for the next iterate
u(k+1). That is, at each step we solve the linear system(

1

h2
(Iy ⊗D2x +D2y ⊗ Ix) + κ2diag(1 + ϵ|u(k)|2)

)
u(k+1) = fbdy (5)

for u(k+1). The initial vector u(0) is the vectorization of u(x, y) = ei(2πy+κx) on the mesh. To set
up AA, we let the damping parameter be 1, the optimization involve all previous iterates u(k), and
the iteration is terminated when ∥u(k+1) − u(k)∥∞ ≤ 10−6.
At each step of AA, the linear system (5) is solved by the following methods, and a new ILUTP
preconditioner is constructed using approximate minimum degree ordering and drop tolerance 0.002.
We compare GMRES(120), the sketched version S-GMRES(120) as proposed in [5], (standard)
GCRODR(120,20) and the sketched version S-GCRODR(120,20) discussed above, and two versions
of the method GMRES-SDR(120,20) proposed in the recent paper [2], where the authors combine
a sketched version of GMRES with deflated restarting. This approach differs from S-GCRODR in
that the authors apply the deflated restarting by augmenting the search space with the deflation
vectors, using truncated/selective orthogonalization when generating new Krylov search directions,
and then using sketching to solve the least squares problem over both deflation and new Krylov
vectors. In this approach, the new Krylov space that extends the solution search space is not
generated (approximately) orthogonal to (the image under A of) the recycle space. This may lead
to less effective search spaces and hence a reduced convergence rate. On the other hand, for the
same total search space dimension in a cycle, it leads to a further reduction in complexity compared
with the method we propose.
In Table 1, for each linear solver, we give the total and average runtime and number of precondi-
tioned matrix-vector products for solving the sequence of linear systems (5) arising from Anderson
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Table 1: Total and average numbers of preconditioned matrix-vector products and runtimes for
several methods solving the sequence of linear systems (5) arising from Anderson acceleration for
a nonlinear Helmholtz equation.

GCRO- S-GCRO- (m) GMRES- (s) GMRES-
GMRES(120) DR(120,20) S-GMRES(120) DR(120,20) SDR(120,20) SDR(120,20)

matvecs 9014 (361) 2794 (121) 10319 (382) 2819 (123) 10144 (423) 6037 (232)
time (secs) 1374.3 (55.0) 343.8 (14.9) 691.3 (25.6) 183.2 (8.0) 622.5 (25.9) 393.4 (15.1)

acceleration for the nonlinear system (4). For all linear solvers, we let the maximum dimension
of the subspace be m = 120 and let the recycle space dimension be k = 20. Due to the irregular
convergence behavior of Anderson acceleration with the linear systems (5) solved approximately,
it takes Anderson acceleration a slightly different number of steps to satisfy the stopping criterion
∥u(k+1) − u(k)∥∞ ≤ 10−6 for each solver. AA based on GCRO-DR and S-GCRO-DR takes 23
(the fewest) steps, whereas AA based on S-GMRES takes 27 (the most) steps to converge. In the
column ‘(m) GMRES-SDR(120,20)’ we report results when GMRES-SDR recycles search spaces
from one linear system to the next, whereas under the column ‘(s) GMRES-SDR(120,20)’ we re-
port results with GMRES-SDR starting each linear system without a recycle space (which seems
to work better). Finally, we note that, while for this system S-GCRODR is the clear winner, by a
large margin, in terms of the runtime, for other test problems GMRES-SDR was competitive and
sometimes faster.
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CASPR: Combining Axis Preconditioners using Kronecker Sums/Products
for Training Large Neural Networks

Inderjit S. Dhillon, Sai S. Duvvuri

Abstract

Deep Neural Networks (DNNs) have transformed fields like computer vision, natural language pro-
cessing, and scientific research by enabling systems to learn complex patterns, make high-level
predictions, and analyze large data sets. DNNs have driven advancements in material sciences,
chemistry, and physics, significantly aiding scientific discovery. However, they are difficult to op-
timize due to their large parameter spaces and can require extensive computational resources, and
thus effectively training DNNs is a contemporary challenge.
Most DNNs, including Large Language Models, are trained using adaptive regularization methods
such as Adam, which can be regarded as diagonally preconditioned stochastic gradient descent.
This diagonal preconditioner comes from a diagonal approximation of the gradient outer product
matrix. However, a recent open competition called “AlgoPerf: Training Algorithms benchmark
competition” [1] revealed an intriguing discovery: a non-diagonal preconditioning method called
Shampoo [2], which uses a Kronecker product approximation of the outer-product matrix, was
found to be the best method on a varied suite of benchmark problems.
In this talk, I will introduce adaptive methods and show how Kroencker products can be used to
get a computationally efficient preconditioner. I will then talk about a general technique called
Combining AxeS PReconditioners (CASPR) [3], which optimizes matrix-shaped DNN parameters
by finding different preconditioners for each mode/axis of the parameter and combining them
using a Kronecker-sum based approximation. The Kronecker-sum based combination allows us to
show that CASPR is ordered between the Kronecker product based combination, Shampoo, and
full-matrix “Adagrad” preconditioners in Loewner order, and as a result it is nearer to full-matrix
Adagrad than Shampoo. Experimental results demonstrate that CASPR approximates the gradient
second-moment matrix more accurately, and shows improvement in training and generalization
performance compared to the existing practical adaptive regularization methods in a variety of
tasks including graph neural network on OGBG-molpcba, Transformer on a universal dependencies
dataset and auto-regressive large language modeling on the C4 dataset.
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General Methods for Sparsity Structure Description and Cost Estimation

Grace Dinh, James Demmel, Zhiru Zhang

Abstract

Sparse tensor operations (especially matrix multiplications and tensor contractions in general)
can be used to represent many problems in diverse fields such as genomics, machine learning,
network analysis, and electronic design automation. Casting a domain-specific problem as a sparse
linear algebra operation allows domain experts to leverage existing optimized software libraries and
hardware. However the cost (in terms of flops, data movement/accesses, or memory footprint) of a
sparse operation can vary significantly depending on the sparsity structure of its input, making the
development of general high-performance tools for sparse linear algebra challenging. Estimating and
bounding these costs is important for many applications: coming up with a performance objective
for optimizing a software or hardware implementation, developing a notion of “peak performance”
to compare a benchmark against, determining how much space to allocate for scratch or for the
output of an operation, load balancing, and many more.
Cost estimation is straightforward for dense linear algebra, as the exact set of arithmetic instructions
is always the same and known ahead of time. However, in the sparse case, this is not possible
unless the exact sparsity structure (i.e. the locations of every nonzero) of the inputs is known. As
a result, previous cost modeling approaches, e.g. [12], tend to either require that users provide a
specific input matrix (precluding their use to develop and evaluate general tools) or provide results
restricted to specific sparsity structures (e.g. uniformly distributed sparsity, block sparsity, band
matrices). For input matrices that do not neatly fit into one of these predetermined categories,
however, significant case-by-case work is required on the part of users to develop statistical models
that both describe their matrices and provide good cost estimates and bounds.
This abstract sketches out an approach to generalize and automate the construction of such sparsity
models, and to build cost estimates and bounds that take them into account, building on techniques
from database and information theory. In Section 1, we describe a way to describe sparsity structure
using matrix statistics. We then describe how to use these statistics to bound and estimate costs
in Section 2, and to optimize storage formats for sparse matrices in Section 3.

1 Characterizing Sparsity Structure

Our goal in this section is to describe a framework for matrix statistics - quantities describing
the sparsity structure of a matrix that are (a) well-defined for any sparse matrix, regardless of
structure, and (b) can be effectively used to predict the performance of a tensor operation. The
most well known matrix statistic is the number of nonzeros (nnz) of a matrix. However, nnz alone
is clearly insufficient for the cost estimation problem. Consider, for instance, the square matrix A
whose first column is nonzero and whose other columns are all zero. Despite having the same input
nnzs, ATA and AAT differ drastically in output memory footprint (and therefore data movement).
As a result, accurate performance modeling requires additional statistics to describing a matrix’s
sparsity structure in more detail.
One way to do so is to count the number of nonzeros in each row and column, which we refer to as
the row and column counts, as in [6]. These statistics require significantly more space to store than
the nnzs (as they are vectors with length equal to the number of columns and rows, respectively, of
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a matrix), but provide significantly more information: taking the dot product the column count of
A and row count of B gives the exact number of flops required to compute A× B . Furthermore,
row and column counts can be summarized using by taking Lp norms for a few small p. These
norms provide a compact, easily generalizable way to represent how “skewed” the sparsity structure
of a matrix is (e.g. how heavy-tailed the distribution of connections is in a social network graph)
which can also be used to derive bounds on the cost of a matrix multiplication, as we will briefly
discuss in Section 2 (see [1] for a discussion of these bounds from a database point of view).
However, row and column counts alone are insufficient to describe many forms of commonly seen
sparsity patterns, e.g. band and block-sparse matrices. To represent these patterns, we will extend
the notion of indices to functions of the rows and column index. For a concrete example, consider
a tridiagonal matrix A indexed by (i, j). All of the locations of its nonzeros take on only three
distinct values of i − j; as a result, “number of distinct values of i − j” is a useful statistic that
allows us to encapsulate tridiagonal matrices (and band matrices in general).
To formalize and generalize, let us view a sparse matrix A indexed by (i, j) as a set consisting of
the location of its nonzeros: {(i, j) : Aij ̸= 0}. Let e1,... : Z2 → Z be some functions (such as i− j
in the above example), which we will refer to as index maps. Define the following two operations:

Definition 1. The projection operation πek projects its input onto dimension ek - that is, πek(A) has
a nonzero at location l if there exists some nonzero value in A at location i, j such that ek(i, j) = l.

Definition 2. The selection operation σek=η returns the subset of nonzero locations (i, j) in A
such that ek(i, j) = η. When no value for η is given, the selection operator σek will be used to
represent the list (σek=η : η ∈ Im(ek)).

Let ◦ represent function composition. If the output of g is a vector, let f ◦⃗g denote the vector
obtained by applying f to every element of the output of g. Then many natural matrix statistics
can be represented by choosing appropriate index maps ek:

• Row counts: first select each row (i), then count the number of nonzeros in each (|·|): |·| ◦⃗σi.
Column counts are identical, with j replacing i.

• Band width of a band matrix: first project onto i− j, then count: |·| ◦ πi−j

• Number of nonzero blocks in a block-sparse matrix with block size b: project onto blocks
(⌊i/b⌋ , ⌊j/b⌋), then count: |·| ◦ π⌊i/b⌋,⌊j/b⌋

• Fine-grained structured sparsity (maximum number of nonzeros in each block): for each block
(i.e. selection operator on ⌊i/b⌋ , ⌊j/b⌋), count the number of nonzeros, then take the max:
max ◦ |·| ◦⃗σ⌊x1/b⌋,⌊x2/b⌋

Furthermore, appropriately chosen index maps can be used to characterize matrices with sparsity
structures that do not align with “standard” patterns. For example, the Tuma11 matrix could be
decomposed into several components, each of which would have a very small value for |·| ◦ παi−j

(for some constant α). Preliminary experiments show that computer vision methods such as Hough
transforms [7] as well as modern machine learning methods such as symbolic regression [9] can be
used to extract descriptive index maps from many real-world matrices that can be used to derive
useful bounds; we leave further experimentation to future work.

1https://sparse.tamu.edu/GHS_indef/tuma1
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2 Bounds from Matrix Statistics

This section describes approaches to deriving cost bounds from matrix statistics derived in Section
1. While we focus on matrix multiplication here, our approach can generalize to most “nested
loop” style programs acting on sparse data; we leave such generalization to future work. As in the
previous section, we will view a sparse matrix as a set whose elements are its nonzero indices. Then
a sparse matrix multiplication A×B, where A is indexed by (i, j) and B by (j, k), can be viewed as
the set of nontrivial arithmetic instructions - that is, {(i, j, k) : Aij ̸= 0, Bjk ̸= 0}, which we denote
T . Note that this matrix multiplication tensor can be viewed as the database join A(i, j)∧B(j, k).
Several cost functions immediately fall from this representation:

• The number of flops required to compute A × B is simply the cardinality of the matrix
multiplication tensor |A(i, j) ∧B(j, k)|.

• The size of the output is the size of the projection of the matrix multiply tensor onto the i, k
face |πi,k (A(i, j) ∧B(j, k))|.

• The arithmetic intensity of A × B on a system with fast memory M can upper bounded by
computing the maximum number of elements for any subset of of T subject to the constraint
that the projections of that subset onto the (i, j) and (j, k) dimensions are bounded by M .
In previous work focusing on dense linear algebra [8, 5], this immediately provides a data
movement lower bound of (M × #total flops) / (max T -subset size); however, the number of
flops may not be exactly known in the sparse setting, so we will focus on upper bounding the
arithmetic intensity instead.

One approach we can take to bounding these quantities is to transform the indices of the nested
loops in such a way that the resulting loop nest, when treated as a dense operation, produces useful
bounds. For instance, suppose we wish to multiply two band matrices A and B, which have band
width w1 and w2 respectively:

for i, j, k ∈ [0, N)3

C(i, k)+ = A(i, j)×B(j, k)

As the two matrices are banded, we know that |·| ◦ πi−j = w1 and |·| ◦ πk−j = w2. As a result, if
we let e1 = i− j and e2 = k − j, we can rewrite this nested of loops as:

for e1 ∈ [0, w1), e2 ∈ [0, w2), j ∈ [0, N)

C(e1 + j, e2 + j)+ = A(e1 + j, j)×B(j, e2 + j)

which provides an upper bound for flops of w1w2N . Furthermore, using Brascamp-Lieb inequalities
[5, 10, 4] provides an arithmetic intensity upper bound (on a system with cache size M) of

√
M/2.

Unfortunately, this method is not easily generalized: we were able to transform indices i and k
into new indices that could easily be bounded using the given matrix statistics because A and B
shared band structure; this would not be possible if they were not. To address this problem, we
adapt information-theoretic techniques previously used for database cardinality estimation [3, 2].
Specifically, given any probability distribution over set of arithmetic instructions T in the sparse
matrix multiplication, let h denote the Shannon entropies of its marginal distributions h (e.g.
use h(ij) to denote the entropy of the marginal distribution over i,j). Clearly, h(ijk) is upper
bounded by lg |T |, the number of flops of the matrix multiplication. Furthermore, notice that for
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an instruction (i, j, k) to be in T , Aij and Bjk must both be nonzero; as a result, the entropies
h(ij) and h(jk) are upper bounded by lg nnz(A) and lg nnz(B) respectively. These inequalities can
be combined with those inherent to entropy (nonnegativity, submodularity, and subadditivity) to
produce bounds on cost.
For example, it can be shown that for any distribution on i, j, k:

3h(ijk) ≤ h(i, j) + h(j, k) + h(i, k) + h(j|i) + h(k|j) + h(i|k)

Letting the distribution be the uniform distribution over T sets the left side of the above inequality
to lg

(
#flops3

)
, while h(i, j), h(j, i), and h(i, k) are upper bounded by lg nnzA, lg nnzB, and lg nnzC

respectively. Furthermore, h(j|i) is upper bounded by the log of the maximum number of nonzero
elements in any row of A (similarly for the remaining terms), giving an inequality that ties together
computation cost, output size, and memory footprint. In this framework, all of the cost functions
above can be described: number of flops and output size are immediately derivable from entropic
inequalities, and arithmetic intensity can be found by adding constraints the entropies h(ij) and
h(jk) are upper bounded by lgM . In order to adapt matrix statistics using arbitrary index maps
(e.g. e1 = i−j), we can add additional constraints: specifically that h(e1|ij) = h(i|je1) = h(j|ie1) =
0. This allows for the automated construction of new lower bounds for, say, the cost of multiplying
of a band matrix by a block-sparse one, based on statistics such as the number of dense blocks
sharing an index with a given band.

3 Matrix Format Optimizations

We also wish to find efficient ways to store sparse matrices. Consider, for example, a band matrix
with a small band width. Standard sparse matrix formats, such as CSR, would require significantly
more storage for metadata (row pointers and column indices) than a similar format indexed by i−j
and j [11]. Furthermore, the order in which the indices are stored can significantly affect size and
performance too - just as (i, j) (CSR) and (j, i) (CSC) are significantly different formats, so would
(i− j, j) and (j, i− j).
The choice of data structures and layouts directly impacts computing performance. For instance, to
efficiently use the Gustavson algorithm, the operand tensors should ideally be stored in row-major
formats. We will describe how entropic bounds (specifically, the chain bound) can suggest optimal
orderings and data structures for sparse matrix storage formats.
However, performance is often heavily affected by the underlying hardware architecture. For parallel
processing systems like GPUs, maintaining workload balance often outweighs achieving a high
compression ratio in terms of format selection. As a result, formats with zero padding, such as
ELLPACK, are commonly preferred over those that store only non-zero elements. Blocking formats,
while introducing additional memory access and metadata overhead on architectures with a unified
memory model, are well-suited for many-core architectures with banked memory. Work is ongoing
to extend our cost models to account for hardware-specific performance factors.
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Toward Fast and Provable Data Selection under Low Intrinsic Dimension
Yijun Dong, Per-Gunnar Martinsson, Qi Lei, Hoang Phan, Xiang Pan, Chao Chen, Katherine

Pearce

Abstract

As the data volume and model size explode with the unprecedented successes of modern machine
learning algorithms, high dimensionality is turning to the major computational bottleneck that
impedes the development and democratization of large models. Since redundancies in high dimen-
sions are ubiquitous in most real-world learning problems, the notion of low intrinsic dimension
is introduced to characterize the minimal size of any low-dimensional manifolds that can encapsu-
late the essential information in the learning problem. Leveraging such low intrinsic dimensions is
crucial for designing fast and sample-efficient learning algorithms for large-scale problems.
Fine-tuning that adapts powerful pre-trained models to specific downstream tasks is arguably one
of the most common examples of efficient learning through low intrinsic dimensions. Intuitively,
with the general knowledge encoded in the pre-trained model with high-dimensional parameters,
fine-tuning within a low-dimensional parameter subspace is usually sufficient for adapting the model
to new tasks. Leveraging such low intrinsic dimensions allows learning with much fewer samples
(than the high parameter dimension, i.e., in the overparametrized setting) and computational
resources.
In practice, natural data generally come with heterogeneous qualities and considerable redundan-
cies, which brings about a critical question:

How to select the most informative data for sample-efficient learning under low intrinsic
dimension?

Answers to this question are highly objective-dependent. This talk aims to provide an overview of
some recent progress in two common objectives for data selection:
(i) row (or column) subset selection for low-rank interpolative decomposition, and
(ii) data selection for statistical learning models in kernel regime (e.g., fine-tuning).

By diving into a few randomized algorithms for interpolative (or CUR) decompositions and data
selection based on random pivoting and sketching, we will unveil the power of randomization in
fast and robust data selection, from both the empirical and theoretical perspectives.

Data Selection for Low-rank Interpolative Decompositions
The interpolative decomposition (ID) aims to construct a low-rank approximation formed by a basis
consisting of row (or column) skeletons in the original matrix and a corresponding interpolation
matrix. We explore fast and accurate ID algorithms from five essential perspectives for empirical
performance:
(i) skeleton complexity that measures the minimum possible ID rank for a given low-rank ap-

proximation error,
(ii) asymptotic complexity in floating point operations (FLOPs),
(iii) parallelizability of the computational bottleneck, i.e., whether the steps with dominant cost

can be cast into matrix-matrix, instead of matrix-vector, multiplications,
(iv) error-revealing property that enables automatic rank detection for given error tolerances with-
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out prior knowledge of target ranks,
(v) ID-revealing property that ensures efficient construction of the optimal interpolation matrix

after selecting the skeletons.
While many algorithms have been developed to optimize parts of the aforementioned perspectives,
practical ID algorithms proficient in all perspectives remain absent. To fill in the gap, we introduce
robust blockwise random pivoting (RBRP) that is parallelizable, error-revealing, and exactly ID-
revealing, with comparable skeleton and asymptotic complexities to the best existing ID algorithms
in practice. Through extensive numerical experiments on various synthetic and natural datasets,
we demonstrate the appealing empirical performance of RBRP from the five perspectives above, as
well as its robustness to adversarial inputs.
In a nutshell, random pivoting for interpolative decomposition involves adaptively sampling rows
(or columns) according to their squared ℓ2-norm and updating the data matrix by projecting
the remaining rows (or columns) onto the orthogonal complement of the current basis. Such an
adaptive sampling scheme ensures that the selected rows (or columns) are informative and diverse,
leading to a small skeleton complexity for given low-rank approximation errors. However, the
sequential nature of random pivoting compromises its parallelizability and empirical efficiency.
Alternatively, the sequential random pivoting can be naïvely extended to a faster blockwise version
that samples a block of b > 1 points according to the current squared ℓ2-norm in each step and
updates the data matrix blockwisely. However, such plain blockwise random pivoting tends to
suffer from unnecessarily large skeleton complexity under adversarial inputs due to the lack of local
adaptiveness within each block. As a remedy, RBRP leverages robust blockwise filtering—applying
CPQR to every small sampled block locally and discarding the potentially redundant points through
a truncation on the relative residual of the CPQR. By choosing a reasonable block size, such robust
blockwise filtering effectively resolves the inefficiency in skeleton complexity encountered by the
plain blockwise random pivoting, with negligible additional cost.

Data Selection for Statistical Learning Models in Kernel Regime
Fine-tuning can be viewed as learning with a good pre-trained initialization that lies in some
neighborhood of an optimal solution, whose dynamics fall into the kernel regime. Therefore, fine-
tuning a regression task (under Tikhonov regularization with a suitable hyperparameter) can be
well approximated by
(i) a linear regression problem in the low-dimensional (overdetermined) setting, or
(ii) a ridge regression problem in the high-dimensional (overparametrized) setting1.

For overdetermined linear regression in low dimension, data selection falls in the classical frames
of coreset selection for linear regression and optimal experimental design where the generaliza-
tion gap can be reduced by selecting data that minimize the associated variance. However, for
overparametrized problems, variance minimization alone is insufficient to characterize the gener-
alization. In particular, when the parameter dimension r is higher than the coreset size n, the
selected data necessarily miss a parameter subspace of dimension at least r − n, leading to errors
in addition to variance.
Nevertheless, the prevailing empirical and theoretical evidence on the ubiquitous intrinsic low-
dimensional structures in high-dimensional problems motivates a natural question:

1We refer to “low-dimension” as the setting where the number of parameters r is smaller than the selected
downstream sample size n, while “high-dimension” refers to the opposite, r > n.
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Can the low intrinsic dimension be leveraged in data selection for high-dimensional fine-tuning?
We provide a positive answer to this question through a variance-bias tradeoff perspective. Intu-
itively, we consider a low-dimensional subspace S in the fine-tuning parameter space where the
model learns the necessary knowledge for the downstream task. The generalization gap can be con-
trolled by simultaneously reducing the bias (redundant information) by “exploring” the parameter
space to find a suitable S and the variance by “exploiting” the useful knowledge in S.
Given the high-dimensional nature of the parameter space, a direct search for such suitable subspace
S is computationally infeasible in general. This leads to a follow-up question:

How to explore the intrinsic low-dimensional structure efficiently for data selection?
We propose Sketchy Moment Matching (SkMM), a two-stage solution for this question:
(i) Gradient sketching for bias reduction: First, we construct a low-dimensional parameter

subspace S by sketching the model gradients. Sketching is a well-established dimensionality
reduction tool known for affordable and accurate low-rank approximations. In deep learning,
sketching recently extends its empirical applications to scalable estimations of influence func-
tions for data selection. We make a first step toward the theoretical guarantee of gradient
sketching for data selection: gradient sketching efficiently finds a low-dimensional subspace
S with small bias such that selecting n samples by reducing variance over S is sufficient
to preserve the fast-rate generalization O(dim(S)/n), linear in the low intrinsic dimension
dim(S) while independent of the high parameter dimension r.

(ii) Moment matching for variance reduction: Second, we select data that reduce variance
in the low-dimensional subspace S via moment matching. The variance of data selection is
characterized by matching between the sketched gradient moments of the original and se-
lected datasets, Σ̃, Σ̃S , respectively. The objective tr(Σ̃Σ̃†

S) takes the form of V-optimality
in optimal experimental design, whose exact minimization is computationally intractable.
Existing polynomial-time heuristics for V-optimality are generally based on the continuous
relaxation of the V-optimality objective followed by a fast rounding process. However, solving
such a continuous relaxation can be challenging in practice, as it involves inverting a poten-
tially ill-conditioned matrix Σ̃S in each iteration. Under a common heuristic assumption that
Σ̃, Σ̃S commute, we introduce a continuous relaxation with a quadratic objective and linear
constraints that is numerically stable (free of inversions) and can be efficiently optimized via
projected gradient descent.

With synthetic mixtures of Gaussian data, we first demonstrate how SkMM balances variance and
bias in data selection for overparametrized ridge regression and leads to sample-efficient learning.
Then, with extensive experiments on fine-tuning CLIP or ImageNet pre-trained vision models for
both regression and classification tasks, we show the appealing sample and computational efficiency
of SkMM, along with its surprising robustness to data heterogeneity.
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Structured rational matrices: properties and strongly minimal linearizations

Froilán Dopico, Vanni Noferini, María C. Quintana and Paul Van Dooren

Abstract

Rational matrices, that is, matrices whose entries are univariate rational functions appear in control
problems and also in the numerical solution of non-linear eigenvalue problems as approximations of
other matrices whose entries are more general univariate functions. Very often the rational matrices
arising in applications have particular structures that should be preserved/used in the numerical
computation of the their poles, zeros and minimal indices.
In this talk, we consider three classes of rational matrices R(z) that are Hermitian upon evaluation
on (a) the real axis, (b) the imaginary axis, or (c) the unit circle. Our goal is to show how
to construct linear polynomial system matrices, i.e., pencils, for those R(z) that preserve the
corresponding structures and are strongly minimal, a property that guarantee that such polynomial
system matrices allow for a complete recovery of the poles, zeros, and minimal indices of R(z). Thus,
structured generalized eigenvalue algorithms applied to these pencils will allow us to compute all
these quantities in a structure preserving manner.
Our goal is fully achieved for the Hermitian structures on the real and on the imaginary axes, but
for the Hermitian structure on the unit circle some obstacles arise, which require to modify the
original problem at some extent and to construct a structured linear polynomial system matrix for
the rational function (1+z)R(z) instead of for R(z). In order to do this, we need to prove a number
of previously unknown properties of rational matrices which are Hermitian on the unit circle.
The results presented in this talk are based on the references [1] and [2].
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Numerical linear algebra for data driven analysis of nonlinear dynamics:
Koopman-Schur Decomposition

Zlatko Drmač, Igor Mezić

Abstract

The Extended Dynamic Mode Decomposition (DMD/EDMD) has become a tool of trade in com-
putational data driven analysis of complex nonlinear dynamical systems, e.g. fluid flows, where
it can be used to reveal coherent structures by decomposing the flow field into component fluid
structures, called DMD modes, that describe the evolution of the flow. The theoretical underpin-
ning of the EDMD is the Koopman composition operator that can be used for spectral analysis
of nonlinear dynamical system [6]. The numerical realization and software implementation pose
several challenges to numerical linear algebra, and this contribution discusses few selected ones.
To set the stage, consider the initial value problem

ẋ(t) = F (x(t)) ≡

(
F1(x(t))

...
FN (x(t))

)
, x(t0) = x0, (1)

with state space X ⊂ RN and vector-valued nonlinear function F : X → RN . The corresponding
flow map ϕt is defined as ϕt(x(t0)) = x(t0 + t) = x(t0) +

∫ t0+t
t0

F (x(τ))dτ.

Instead of the states, consider observables (functions of the states) f : X → C, f ∈ F ; e.g. F =
Lp(X , µ) (1 ≤ p ≤ ∞). Koopman operator semigroup (Uϕt)t≥0 is defined by Uϕtf = f ◦ ϕt, f ∈ F .
The Koopman (composition) operator Uϕt is linear operator that can be considered an infinite
dimensional linearization of (1) that takes the action into the space F of observables.
In the case of discrete dynamical system xi+1 = T (xi), the Koopman operator U ≡ UT is defined
on a space of observables F by Uf = f ◦ T, f ∈ F . In practical computation, one always
works with discrete systems. If we run a numerical simulation of the ODE’s (1) in a time interval
[t0, t∗], the numerical solution is obtained on a discrete equidistant grid with fixed time lag ∆t:
t0, t1 = t0+∆t, . . . , ti−1 = ti−2+∆t, ti = ti−1+∆t, . . . In this case, a black-box software toolbox
acts as a discrete dynamical system zi = T (zi−1) that produces the discrete sequence of zi ≈ x(ti).
For ti = t0 + i∆t we have f(x(t0 + i∆t)) = (f ◦ ϕi∆t)(x(t0)) = (Uϕi∆tf)(x(t0)) = (U i

ϕ∆tf)(x(t0)),
where U i

ϕ∆t = Uϕ∆t ◦ . . . ◦ Uϕ∆t .

On the other hand, using Uf = f ◦ T , zi ≈ x(ti), T 2 = T ◦ T , T i = T ◦ T i−1, f(zi) = f(T (zi−1)) =
. . . = f(T i(z0)) = (U if)(z0). Hence, in a software simulation of (1) with the initial condition
z0 = x(t0), we have an approximation (U if)(z0) ≈ (U i

ϕ∆tf)(z0), f ∈ F , z0 ∈ X , i = 0, 1, 2, . . . ,m.
Such a sequence of values from the trajectory of the system may be also obtained by experimen-
tal measurements (e.g. high speed camera recording, wind tunnel measurements, particle image
velocimetry/thermometry), without using/knowing the governing equations. In general, the ob-
servables are vector valued, f = (f1, . . . , fn)

T , and Uf = (Uf1, . . . ,Ufn)T is defined component-wise.
Often n ≫ m. The acquired numerical values of the observables (data snapshots) are assembled
column-wise into the matrix (column index corresponds to discrete time step)

F =(f(x0) ... f(xm−1) f(xm))=

 f1(x0) ... f1(xm−1) f1(xm)
f2(x0) ... f2(xm−1) f2(xm)

...
...

...
...

fn(x0) ... fn(xm−1) fn(xm)

, f(xi+1)= f(T (xi))=(Uf)(xi)= f(T (T (xi−1))).
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The columns of the data snapshot matrix F can be interpreted as the Krylov sequence f ,Uf , . . . ,Umf ,
evaluated at x0, which motivates looking for approximate eigenvalues and eigenvectors of U .
Why is spectral data of U interesting? If (Uϕi)(s) ≈ λiϕi(s), i = 1, . . . ,m, and if for some carefully
and judiciously selected λi1 , . . . , λiℓ and vector coefficients zij (that must be computed)

f(s) ≈
ℓ∑

j=1

zijϕij (s), then (Ukf)(s) =

(Ukf1)(s)
...

(Ukfn)(s)

 ≈
ℓ∑

j=1

zijϕij (s)λ
k
ij , k = 0, 1, . . . (2)

This decomposition (called the Kopman Mode Decomposition, KMD) reveals the latent structure
of the dynamics (in particular when ℓ is relatively small) and allows for forecasting future values,
because applying the powers of U in (2) means pushing the dynamics forward in time.
In this decomposition, the vector coefficients zi’s are approximate eigenvectors of a matrix A such
that Af(xi) = f(T (xi)) for all i. The matrix A is the DMD matrix – it may not be uniquely
determined by the data and only certain Ritz pairs can be computed by a data driven version of
the classical Rayleigh-Ritz extraction procedure, as in the DMD algorithm [8] and its enhancement
[5] that provides computable residuals and uses them to select physically meaningful eigenvalues
and modes, and to guide sparse representation of the snapshot in the KMD.
But, there is a problem. One of the computational/numerical challenges in the Koopman/DMD
framework is the case of non-normal operators, when the computed (Ritz) eigenvectors of the
DMD matrix become severely ill-conditioned. High non-normality of the eigenmodes is not just
a mathematically manufactured and for the sake of academic exercise contrived misfortune. It
does occur in important applications. For instance, Schmid [7] discusses examples of non-normal
operators in fluid flows, and the impact of non-normality on treatment of stability of such flows.
A well-known and intensively studied example is the formulation of the viscous stability problem
for parallel shear flows, in which linearization of the Navier-Stokes equation leads to the Orr-
Sommerfeld linear partial differential equation whose solutions exhibit highly non-normal behavior.
The severity of the problem can be easily demonstrated by running a numerical simulation and
visualizing the pseudospectrum and computing the angles between the eigenvectors. This issue
is mostly ignored in the DMD literature, but the practitioners have experienced the problem in
applications, and it is listed in [10] as one of the challenges in applications of the DMD.
To alleviate the problem of ill-conditioned eigenvectors in the existing implementations of the
Dynamic Mode Decomposition (DMD) and the Extended Dynamic Mode Decomposition (EDMD,
[9]), in [4] we introduce a Koopman-Schur decomposition – Schur decomposition of a data driven
compression of the Koopman operator onto a subspace FN defined by a given dictionary ψ1, . . . , ψN .
The first step in this approach is as follows. As in the EDMD, compute the data driven compression

PFN
U|FN

(
(
ψ1(x) . . . ψN (x)

) f1
...
fN

)=
(
ψ1(x) . . . ψN (x)

)
(UN

 f1
...
fN

),

where PFN
stands for the algebraic least squares projection using the available data, and UN is the

matrix of the compression. With the notation Ψ(x) = (ψ1(x), . . . , ψN (x))T ∈ CN , the action of U
on FN can be compactly written as U(Ψ(x)T z) = Ψ(x)TUNz + R(x)T z, x ∈ Cn, z ∈ CN , where
R(x) = (ρ1(x), . . . , ρN (x))T ∈ CN is the residual that has been minimized over the available data.
In this setting, a well defined object is, instead of UN , another compression – UN is compressed
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onto a N × r POD basis V (computed using the SVD of a data snapshot matrix, with r < N) and
replaced with the r × r Rayleigh quotient Û . In the proposed approach [4], we compute a Schur
decomposition of Û , Û = QTQ∗, and UNZ = ZT becomes a partial Schur form with Z = V Q. On
the operator level, this becomes

U(
(
ψ1(x) . . . ψN (x)

)
Z) =

(
ψ1(x) . . . ψN (x)

)
UNZ +R(x)TZ

=
(
ψ1(x) . . . ψN (x)

)
ZT +R(x)TZ ⋍

(
ψ1(x) . . . ψN (x)

)
ZT. (3)

If we define a new sequence
(
ζ1(x) . . . ζr(x)

)
=
(
ψ1(x) . . . ψN (x)

)
Z, then (3) reads

U
(
ζ1(x) . . . ζr(x)

)
=
(
ζ1(x) . . . ζr(x)

)
T +R(x)TZ ⋍

(
ζ1(x) . . . ζr(x)

)
T. (4)

Since T is upper triangular, (4) contains a nested sequence of partial triangulations

U
(
ζ1 ζ2 . . . ζi

)
⋍
(
ζ1 ζ2 . . . ζi

)
T (1 : i, 1 : i), i = 1, . . . , r. (5)

This Schur form can be reordered – with a suitable unitary matrix Θ, T̃ = Θ∗TΘ is again upper
triangular with diagonal entries corresponding to the eigenvalues in any given order. The new
partial Schur form of UN becomes UN (V QΘ) = (V QΘ)T̃ , T̃ = Θ∗TΘ, and we replace (4) with

U
(
ζ1(x) ζ2(x) . . . ζr(x)

)
Θ ⋍

(
ζ1(x) ζ2(x) . . . ζr(x)

)
Θ(Θ∗TΘ), (6)

i.e. the new functions are generated using Z̃ = ZΘ = V QΘ (Z̃∗Z̃ = Ir),(
ζ̃1(x) . . . ζ̃r(x)

)
=
(
ζ1(x) . . . ζr(x)

)
Θ =

(
ψ1(x) . . . ψN (x)

)
Z̃. (7)

In this framework, the spectral analysis of the snapshots, including the KMD (2), is entirely based on
unitary transformations. The analysis in terms of the eigenvectors as modes of a Koopman operator
compression is replaced with a modal decomposition in terms of a flag of invariant subspaces that
correspond to selected eigenvalues – the partial ordered Schur decomposition provides convenient
orthonormal bases for subspaces determined by any given selection λi1 , . . . , λiℓ of the eigenvalues.
From this point, we proceed in two direction. First, we analyze the convergence (as the size of
the dictionary and the number of data snapshots become infinite) to obtain results analogous to
the EDMD. Then, to have the same functionality as the existing EDMD (snapshot reconstruction
using selected eigenvalues, dynamically changed data window in online applications, forecasting,
formulation with the kernel trick etc.), many technical (algorithms and software related) details
have to be worked out. For instance, in the case of real data, a real ordered partial Schur form is
used and the computation is based on real orthogonal transformations, even when the spectrum
is complex. Other details include e.g. streaming data with dynamically changing data windows.
Numerical experiments show superior performances in the numerically difficult non-normal cases.
The second topic that will be discussed is numerical implementation of the Hermitian case of the
physic informed DMD [1], [3] – if it is a priori known that the underlying operator is Hermitian, how
to ensure that the numerical implementation of the DMD guarantees real spectrum and orthonormal
eigenvectors? What are the other issues when it comes to software implementation [2] e.g. in the
framework of the LAPACK library?
These themes are excellent case study examples that demonstrate the importance of numerical
linear algebra and of the power of numerical analysis of an algorithm – it precisely predicts in what
way it may fail and indicates what has to be done to provably fix the problem.
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Nonlinear inverse scattering data transforms via casual transmutation
matrices

Vladimir Druskin, Shari Moskow, Mikhail Zaslavskiy

Abstract

Many important problems in remote sensing, where measurements are not available in the domain
of interest (radar imaging, seismic exploration, medical array ultrasound, etc.) lead to inverse
scattering problems which can be strongly nonlinear in case of large perturbations of the unknown
PDE coefficients. The model based nonlinear optimization which is the method of choice for the
solution of such problems can be unreliable and prohibitively expensive. Data driven nonlinear
transforms emerged as an attractive alternative, however it was recently shown that the most com-
mon ReLU neural networks are intractable for reliable solution of non-parametric inverse problems.
Data driven ROMs recently emerged as a feasible option for such problems.
The key of this approach is data-driven computation of the state solution in the domain of interest
not available for direct measurements for a black-box model via a nonlinear transform. It implicitly
was used for different imaging applications with data-driven ROMs, e.g., see, [2, 3, 1]. Here we give
its new explicit formulation allowing simple analysis and clear connection with preceding work.
We assume the following wave model problem for a domain Ω ⊂ Rd

utt −∆u+ q(x)u = 0 in Ω× [0,∞) (1)

with initial conditions

u(t = 0) = g in Ω (2)
ut(t = 0) = 0 in Ω (3)

where g(x) is an initial condition representing a localized source near the boundary, and we assume
homogeneous Neumann boundary conditions on the spatial boundary ∂Ω. We assume q(x) ≥ 0
is our unknown potential, not necessarily small, but with compact support. The exact forward
solution to (1-3) is

u(x, t) = cos (
√
At)g(x), (4)

where
A = −∆+ q(x),

with the square root and cosine are defined via the spectral theorem. This solution is assumed to
be unknown, except near the receivers.
Assume we measure the SISO transfer function at the receiver collocated with the at the 2n − 1
evenly spaced time steps t = kτ for k = 0, . . . , 2n− 2, modeled by

F (kτ) =

∫
Ω
g(x)u(x, kτ)dx

=

∫
Ω
g(x) cos (

√
Akτ)g(x)dx. (5)

The inverse problem we consider is as follows: Given

{F (kτ)} for k = 0, . . . , 2n− 2,
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reconstruct q. This generally nonlinear problem becomes a simple linear problem if uk = u(x, kτ)
is known in the entire domain, that may not be accessible to the direct measurement.
So our objective here is to compute, from the measured data F (kτ) only, approximations of the
internal snapshots uk = u(x, kτ) for k = 0, . . . n− 1 assuming that q(x) is unknown.
We introduce Gramian matrix M with with elements

Mkl =

∫
Ω
ukuldx (6)

for k, l = 0, . . . , n− 1, can be written as

Mkl =

∫
Ω
g(x) cos (

√
Akτ) cos (

√
Alτ)g(x)dx. (7)

thanks to the formula (4). Then, from (5), (7), and the cosine angle sum formula, one has

Mkl =
1

2
(F ((k − l)τ) + F ((k + l)τ)) , (8)

so Gramian M can obtained directly from the data [2] . Formula (7) is the Chebyshev moment
problem yielding M given by 8 as the sum of Toeplitz and Hankel matrices.
Now, let

U = [u1(x), . . . , un(x)]

be a row vector of the true snapshots, so that we can write

M =

∫
Ω
U⊤U ∈ Rn×n. (9)

Consider also the background field u0(x, t), the solution to (1-3) with q(x) = 0, which we assume
that we know. Let

U0 = [u01(x), . . . , u
0
n(x)]

be a row vector of the background snapshots u0k = u0(x, kτ), and let

M0 =

∫
Ω
U⊤
0 U0 ∈ Rn×n

be the background mass matrix. We want to obtain approximation

U ≈ U = U0T

satisfying (9) via projection, i.,e., condition∫
Ω
U⊤U = M (10)

that yields
M = T⊤M0T. (11)

Equation (11) was inspired by the celebrated Marchenko-Gelfand-Levitan-Krein (MGLK) Volterra
equation, e.g.,see [5] and references wherein, with T being so-called transmutation matrix. Its
discrete analogy first appeared in study of connection between the discrete MGLK and Lanczos
algorithms [6]. A critical observation is that the waves in background (q = 0) and true (unknown
q ) media travel with the same speed, so thanks to the causality principle, T is upper triangular
matrix. This restriction leads to its uniqueness, that can be shown by direct calculations.
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Proposition 1 The row vector of data generated internal fields U = U0T satisfying (10) with
upper triangular transmutation matrix T is unique and can be computed as

T = (L⊤
0 )

−1L⊤. (12)

where upper triangular matrices L and L0 are defined via Cholesky factorizations

M = LL⊤ M0 = L0L
⊤
0

The Cholesky factorization of M constitutes the nonlinear part of the data transform. The internal
solution generated via SISO data was successfully used for radar imaging applications, however it
had significant artifacts due to luck of aperture [4].
For seismic exploration and medical array ultrasound the SISO data (5) can be replaced by the
square MIMO transfer function

F (kτ) =

∫
Ω
G(x)u(x, kτ)dx

=

∫
Ω
g(x) cos (

√
Akτ)G(x)dx ∈ Rm×m, (13)

where G(x) = [g1(x), . . . , gm(x)] is the row vector of m transmitters collocated with receivers. The
Proposition 1 can be replaced by its block analogy for the data given by (13), which was implicitly
used in e.g., [3].
Another important application, the synthetic aperture radars (SAR) used for imaging from airborne
platforms can only access diag F , and for computing block-transmutation matrix they require data-
completion.
Finally we outline the list of computational linear algebra bottlenecks in the proposal framework:

• Fast Cholesky factorization and spectral decomposition of sum of block Hankel and Toeplitz
matrices

• Lifting partial data matrices to full square MIMO data, e.g., from diagonal as in the SAR
framework

• Efficient truncation or correction of spurious non-Hamiltonian modes (with negative eigen-
values, appeared due to measurement errors or inaccuracies of the above mentioned data-
completion or lifting) of data-driven Gramians

• Estimation of non-strictly triangular data-driven transmutation matrices

• Extension to problems with dissipation
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Julia, Portable Numerical Linear Algebra, and Beyond

Alan Edelman

Abstract

Nearly 20 years ago, Demmel, Dongarra et. al. wrote in the Linear Algebra Working Notes (LAWN)
181 what appears to be a nearly impossible combinatorial explosion of challenges:

(1) for all linear algebra problems
(linear systems, eigenproblems, ...)

(2) for all matrix types
(general, symmetric, banded, ...)

(3) for all data types
(real, complex, single, double, higher precision)

(4) for all machine architectures
and communication topologies

(5) for all programming interfaces
(6) provide the best algorithm(s) available in terms of

performance and accuracy ("algorithms" is plural because sometimes
no single one is always best)

Twenty years later the concept of data types has extended to many more important possibilities
(e.g., quaternion, mixed precision), GPUs have grown in importance and in number, and how
linear algebra is integrated into larger applications has grown to become more complex than the
traditional library model. Nonetheless, the dream of solving this problem remains, and we believe
that the abstractions provided by Julia may be key. In this talk we will report some of the solutions
provided by the Julia Lab at MIT and beyond.
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Matrix-less spectral approximation for large structured matrices
Giovanni Barbarino, Melker Claesson, Sven-Erik Ekström,

Carlo Garoni, David Meadon, and Hendrik Speleers

Abstract

Sequences of structured matrices of increasing size arise in many scientific applications and espe-
cially in the numerical discretization of linear differential problems; for example by using Finite
Differences (FD), Finite Elements (FE), Finite Volumes (FV), Discontinuous Galerkin (DG), Iso-
greometric Analysis (IgA). The eigenvalues λj(An) of matrices An, belonging to such a sequence
{An}n, can often be approximated by a regular expansion:

λj(An) =

α∑
k=0

ck(θj,n)h
k + Ej,n,α, j = 1, . . . , n θj,n =

jπ

n+ 1
, (1)

where ck : [−π, π] → C (c0 is called the spectral symbol and ck, k > 0 are called higher order
symbols) and the errors Ej,n,α = O(hα+1).
Hence, if we know these functions ck(θ), or approximate them since they are often not known
analytically, we can accurately (and very fast) approximate some (or all) of the eigenvalues of any
matrix An simply by evaluating (1).
It was previously shown (under appropriate assumptions, [4, 5]) [1, 7, 8, 9, 10] that for Hermitian
sequences {An}n, where c0 is known, that we can approximate ck(θj,n0), k = 1, . . . , α at specified
grid points θj,n0 using so-called matrix-less methods. The name is derived from the fact that
the spectrum for any matrix An in the sequence {An}n can be approximated by (1) without ever
constructing the matrix; only the spectrum of a few small matrices have to be computed. That is, we
have equality in (1), up to machine precision, for some chosen n = n0 and α. These approximations
ck(θj,n0) can then be used for interpolation-extrapolation to any grid θj,n (for any n) to approximate
λj(An).
In the current presentation, mainly inspired by [3], but also [6, 11], we extend the previous algo-
rithms with two important features:

1. The function c0 is not needed as an input and is approximated; this is necessary for most non-
Hermitian matrix sequences, but also for discretizations of problems with variable coefficients.

2. The algorithm can handle discretizations of variable coefficient problems, e.g., (a(x)u′(x))′.

We here briefly present these two new features.

1. No knowledge of c0 necessary.

We begin by presenting two simple but representative pure Toeplitz matrix sequences; one Hermi-
tian {Tn(f1)}n and one non-Hermitian {Tn(f2)}n.

f1(θ)=6−8 cos(θ)+2 cos(2θ) f2(θ)=−eiθ+3−3e−iθ+e−2iθ

Tn(f1) =



6 −4 1
−4 6 −4 1
1 −4 6 −4 1

. . . . . . . . . . . . . . .
1 −4 6 −4 1

1 −4 6 −4
1 −4 6

 Tn(f2)=



3 −3 1
−1 3 −3 1

−1 3 −3 1

. . . . . . . . . . . .
−1 3 −3 1

−1 3 −3
−1 3


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For matrices in the Hermitian sequence {Tn(f1)}n, we have that the eigenvalues can be approxi-
mated by λj(Tn(f1)) ≈ c0(θj,n) = f1(θj,n) where θj,n = jπ/(n+1); the spectral symbol c0 is known
and equal to f1.
For matrices in the non-Hermitian sequence {Tn(f2)}n, we have that λj(Tn(f1)) ̸≈ f1(θj,n), we only
know that the eigenvalues lie in the convex hull of the complex valued function f2; the spectral
symbol c0 is not equal to f2. For most non-Hermitian matrix sequences the c0 is not known
analytically, and the new matrix-less method presented in [3, 11] does not require it to be know.
However, the matrix-less method is more efficient and accurate if it is provided.

Remark 1 In the specific case of a non-Hermitian sequence {Tn(f2)}n presented above we do know
that the spectrum is real and the are many viable c0, e.g. c0(θ) = sin3(θ)/(sin(θ/3) sin2(2θ/3));
see [13] for details.

For clarity we show a Julia implementation below on how to compute a matrix C = [ck(θj,n0)]
α+1,n0

k,j=1 ;
the inputs are n0 (≈ 100), α (≈ 3) and eigfun (a function that returns an ordered set of eigenvalues
λj(An) for a matrix An in {An}n).
function compute_C(n0, α, eigfun)

hs = zeros(α+1)
E = zeros(α+1,n0)
for kk = 1:α+1

nk = 2^(kk-1)*(n0+1)-1
jk = 2^(kk-1)*(1:n0)
hs[kk] = 1/(nk+1)
E[kk,:] = eigfun(nk)[jk]

end
V=[hs[ii]^(jj-1) for ii=1:α+1, jj=1:α+1]
return C=V\E

end

As is seen above, the algorithm relies on the computed spectrum for α+ 1 small matrices (of sizes
nk = 2k−1(n0 + 1) − 1, for k = 1, . . . , α + 1) to compute the elements of C. Subesequenly ck(θj,n)
is approximated, using interpolation-extrapolation, for arbitrary n, and used in (1) to approximate
λj(An).

Remark 2 If the spectral symbol is non-monotone (e.g., the stiffness matrix for IgA or f(θ) =
6−8 cos(θ)+4 cos(2θ)), the matrix-less method does typically not work in the non-monotone region,
since we usually do not know how to order the eigenvalues correctly.

2. Variable coefficients.

The spectral symbol f of the 2nd order FD discretization of (a(x)u′(x))′ is two-dimensional, namely
f(x, θ) = a(x)(2− 2 cos(θ)), where f : [0, 1]× [−π, π] → C; e.g., see [12].
In [3] we show that we can use the rearranged symbol [2] to compute an expansion (1) for dis-
cretizations of variable coefficient problems; i.e., we map the function f : [0, 1]× [−π, π] → R to a
rearranged symbol g : [0, 1] → R. In the new matrix-less method we have c0 = g.

Remark 3 We emphasize that the class of problems and matrices where this approach can be
applied is extensive, e.g.,

• multi-dimensional problems (size of matrices are then dn(n) and not n);
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• block matrices (e.g., FE/FV/DG);

• boundary conditions (c0 is the same, ck, k > 0 changes);

• h-dependence, space-time, sums/inverses/products;

• eigenvectors, singular values, generalized eigenvaklue problems;

and the approach could also be used to construct preconditioners and other solver techniques.

Apart from the two main points mentioned above, we will also discuss the current framework in
detail, possible extension and current developments, and possible applications.
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Spectral Computations for Quasicrystal Models

Mark Embree, Matthew J. Colbrook, David Damanik, Jake Fillman,
Anton Gorodetski, May Mei, Charles Puelz

Abstract

Mathematical models of aperiodic materials – quasicrystals – lead to fascinating problems in spec-
tral theory that can test the limits of conventional approaches to eigenvalue computation. Qua-
sicrystals are exotic objects that were discovered in the 1980s by Dan Schechtman, who was recog-
nized with the 2011 Nobel Prize in Chemistry.
The periodic structure of conventional crystals gives rise to Schrödinger operators whose spectra
consist of the union of real intervals, which are neatly characterized by Floquet–Bloch theory. At
the other extreme, disordered materials lead to random Schrödinger operators that typically have
eigenvectors whose entries exponentially decay from some central site (“Anderson localization”).
Sitting between these extremes, quasicrystal models are deterministic but not periodic, and the
associated self-adjoint linear operators often exhibit intriguing spectral structure. For example,
the spectrum can be a zero-measure Cantor set (a closed set that contains its limit points but no
intervals). How can one approach such problems using tools from numerical linear algebra?
In this talk we will survey several problems that arise in the computational study of quasicrystals,
highlighting the motivating questions, describing algorithmic approaches, and showing numerical
results, based on [2, 3, 4, 7]. We focus on three general problems.

• Approximating the spectrum of the Fibonacci Hamiltonian. The most carefully studied qua-
sicrystal model is the Fibonacci Hamiltonian H : ℓ2(Z) → ℓ2(Z), defined for each site k ∈ Z
by the difference equation

(Hx)k = xk−1 + Vk xk + xk+1, Vk =

{
0, kα mod 1 ∈ [0, 1− α);

λ, kα mod 1 ∈ [1− α, 1);

for the irrational α = (
√
5−1)/2 = 0.6180 . . . (the reciprocal of the golden ratio); see [4, 5] for

summaries of key results. In 1987, Sütő [8] proved that the spectrum is a zero-measure Cantor
set for all λ > 0, which one can approximate by replacing α with rational approximations given
by the ratio of successive Fibonacci numbers. With such approximations the potential {Vk}
becomes periodic, and the resulting spectrum follows from Floquet–Bloch theory. Specifically,
if {Vk} has period p, then the spectrum of H is the union of p real intervals whose end points
are eigenvalues of two p× p symmetric tridiagonal matrices plus corner entries:

J
(p)
± =



V1 1 ±1
1 V2 1

1 V3
. . .

. . . . . . 1
±1 1 Vp


.

To study the Cantor spectrum of the Fibonacci Hamiltonian demands approximations with
very large period p, giving intervals so narrow that the computed eigenvalues of J (p)

+ and J
(p)
−

can violate their theoretical ordering properties. For this reason we propose these examples
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as physically-motivated test matrices for symmetric eigensolvers. (Indeed, these models can
exhibit similar behavior to Wilkinson’s famous W+

21 example [9, p. 309].)
We will describe the numerical linear algebra challenges associated with the approximation
of the Cantor spectrum of the Fibonacci model and several other aperiodic models derived
from substitution rules (period-doubling and Thue–Morse) [7].

• Quantities derived from Cantor spectra.
The computation of the spectrum is often the first step in a more elaboate process. For ex-
ample, one can gain physical insight from the fractal (box-counting and Hausdorff) dimension
of the spectrum of the Schrödinger operator. How can one use estimates to the spectrum to
approximate these quantities? Simple two- and three-dimensional quasicrystal models follow
from coupling one-dimensional models on a square or cubic lattice. The resulting spectra
are now sums of Cantor sets, which could potentially be intervals, Cantor sets, or more ex-
otic sets called Canvorvals. We will discuss computational approaches and obstacles for such
problems [2, 4, 7], using the perspective of the Solvability Complexity Index [1].

• Locally supported eigenvectors of the graph Laplacian for Penrose tilings.
A different class of two-dimension quasicrystal models derive their structure from aperiodic
tilings of the plane, such as the Penrose or Ammann–Beenker constructions. From a finite
section of such tiling we construct a graph, and then study spectral properties of the associated
graph Laplacian. Generalizing work from the physics literature [6], we show that a variety of
Penrose models exhibit eigenvectors that are nonzero only on a small (repeating) pattern of
tiles, and thus arise with high algebraic multiplicity. We illustrate these configurations, and
discuss some associated numerical challenges (finding sparse bases for the invariant subspaces,
predicting eigenvalue multiplicity as the tiling grows, identifying gaps in the spectrum) [2, 3].
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Randomly Pivoted Cholesky: Near-Optimal Positive Semidefinite
Low-Rank Approximation from a Small Number of Entry Evaluations

Ethan N. Epperly, Yifan Chen, Joel A. Tropp, Robert J. Webber

Abstract

This talk describes randomly pivoted Cholesky (RPCholesky), a randomized algorithm for com-
puting a low-rank approximation to a Hermitian postive semidefinite (psd) matrix. To compute a
rank-k approximation to an N ×N matrix, RPCholesky performs a k-step partial Cholesky de-
composition with a pivot entry randomly chosen with probabilities proportional to diagonal entries
of the current residual matrix (i.e., Schur complement). The algorithm requires O(k2N) operations
and reads only (k + 1)N entries of the input matrix.
The RPCholesky method has an interesting history. The existence of the method was briefly
noted in a 2017 paper of Musco and Woodruff [9], and it is algebraically related to an earlier
“randomly pivoted QR” algorithm of Desphande, Rademacher, Vempala, and Wang (2006, [3]).
Our paper [2], originally released in 2022, reintroduced the algorithm, described its connection to
Cholesky decomposition, evaluated the method numerically, and provided new theoretical results.
Surprisingly, this simple algorithm is guaranteed to produce a near-optimal low-rank approxima-
tion. The output of RPCholesky, and any other partial Cholesky decomposition, is low-rank
approximation of the form

Â = A(:, S)A(S, S)†A(S, :),

where S denotes the set of pivots selected by the algorithm and † denotes the Moore–Penrose
pseudoinverse. This type of low-rank approximation is known as a (column) Nyström approximation
and is used widely to accelerate kernel machine learning methods. It is known [7] that k ≥ r/ε
columns S are needed to produce a Nyström approximation Â within a 1 + ε multiplicative factor
of the best rank-r approximation JAKr, i.e.,

∥A− Â∥∗ ≤ (1 + ε) ∥A− JAKr∥∗ .
Here, ∥·∥∗ denotes the trace norm. In [2], we showed that RPCholesky achieves the guarantee:

E [∥A− Â∥∗] ≤ (1 + ε) ∥A− JAKr∥∗ when k ≥ r

ε
+ r log

(
1

εη

)
.

Here, Â is the approximation produced by k steps of RPCholesky and η = ∥A− JAKr∥∗ / ∥A∥∗
denotes the relative error of the best rank-r approximation. In expectation, RPCholesky achieves
the optimal scaling k = r/ε up to an additive term that is logarithmic in the relative error η.
RPCholesky has proven effective at accelerating kernel machine learning methods. Given a data
set x1, . . . ,xN , kernel methods perform machine learning tasks such as regression and clustering
by manipulating a psd kernel matrix A = (κ(xi,xj))1≤i,j≤N , where κ is a given positive definite
kernel function. When implemented directly, kernel methods require O(N3) operations and O(N2)
storage. By replacing A with a low-rank approximation Â (say, of rank k = O(1)), the storage and
runtime costs of these methods are reduced to O(N). This talk will present numerical experiments
from [2], which show that an RPCholesky-accelerated clustering method can be 9× to 14×
more accurate than accelerated clustering methods using other low-rank approximation techniques.
Subsequent papers have applied RPCholesky to accelerate learning of committer functions in
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biochemistry [1], as a preconditioner for conjugate gradient [4], for quadrature in reproducing
kernel Hilbert spaces [5], and compression of data sets [8].
While the standard version of RPCholesky is already fast, it is slower than it could be because
it processes the columns of the input matrix one-by-one. A blocked version of the method is
faster, but can produce approximations of lower accuracy. This talk will conclude by discussing
the recently introduced accelerated RPCholesky method [6], which simulates the performance of
original RPCholesky using a combination of rejection sampling and block-wise computations.
The accelerated RPCholesky method can be up to 40× faster than the original method while
producing the same random output (in exact arithmetic).
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Variable Projection Methods for Regularized Separable Nonlinear Inverse
Problems

Malena I. Español and Gabriela Jeronimo

Abstract

We consider discrete ill-posed inverse problems of the form

A(y)x ≈ b = btrue + ϵ with A(ytrue)xtrue = btrue, (1)

where the vector btrue ∈ Rm denotes an unknown error-free vector associated with available data
and ϵ ∈ Rm is an unknown vector that represents the noise/errors in b. The matrix A(y) ∈ Rm×n

with m ≥ n models a forward operator and is typically severely ill-conditioned. We assume that A
is unknown but can be parametrized by a vector y ∈ Rr with r � n in such a way that the map
y 7→ A(y) is differentiable. We aim to compute good approximations of xtrue and ytrue, given a
data vector b and a matrix function that maps the unknown vector y to an m× n matrix A. To
accomplish this task, we could solve

min
x,y

1

2
‖A(y)x− b‖22 +

λ2

2
‖Lx‖22 , (2)

where λ > 0 is a regularization parameter and L ∈ Rq×n is a regularization operator. We assume
that L satisfies that N (A(y)) ∩ N (L) = {0} for all feasible values of y, so that the minimization
problem (2) has a unique solution for y fixed. We call problems of the form (2) regularized separable
nonlinear inverse problems since the observations depend nonlinearly on the vector of unknown
parameters y and linearly on the solution vector x.
The Variable Projection (VarPro) method was originally developed in the 1970s by Golub and
Pereyra [3] to solve (2) for λ = 0 and has been widely recognized for its efficiency in solving separable
nonlinear least squares problems. VarPro eliminates the linear variables x through projection and
reduces the original problem to a smaller nonlinear least squares problem in the parameters y. This
reduced nonlinear least squares problem can be solved using the Gauss-Newton Method.
In [1], Español and Pasha extended VarPro to solve inverse problems with general-form Tikhonov
regularization for general matrices L. They named this method GenVarPro. For special cases
where computing the generalized singular value decomposition (GSVD) of the pair {A(y),L} for a
fixed value of y is feasible or a joint spectral decomposition exists, they provided efficient ways to
compute the Jacobian matrix and the solution of the linear subproblems. For large-scale problems,
where matrix decompositions are not an option, they proposed computing a reduced Jacobian and
applying projection-based iterative methods and generalized Krylov subspace methods to solve the
linear subproblems. Following on this theme, Español and Jeronimo introduced in [2], the Inexact-
GenVarPro that considers a new approximate Jacobian where iterative methods such as LSQR
and LSMR are used to solve the linear subproblems. Furthermore, specific stopping criteria were
proposed to ensure Inexact-GenVarPro’s local convergence.
In this talk, we will show how to extend GenVarPro and Inexact-GenVarPro to solve

min
x,y

1

2
‖A(y)x− b‖22 +

λ2

2
‖Lx‖22 + µR(y), (3)

where µ > 0 is another regularization parameter and R(y) plays the role of regularization on the
parameter vector y. Similar variational formulations have appeared in recent papers in the context
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of training neural networks [4] and computerized tomographic reconstruction [5]. We will motivate
the need to incorporate this regularization term on y in the context of a semi-blind image deblurring
problem by showing some examples where, without it, the solution of the reduced problem does
not exist (i.e., no minimizer exists) or is trivial (e.g., y = 0 and A(y) becomes the identity matrix).
We will show in particular, how to extend GenVarPro and Inexact-GenVarPro to the case when
R(y) = ‖y − y0‖22 and R(y) = −

∑
j log(yj) in the context of a large-scale semi-blind image

deblurring problem. Furthermore, we will present theoretical results with sufficient conditions on
the matrices involved to ensure local convergence. Numerical experiments will also be presented to
illustrate their efficiency and confirm the theoretical results.
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Bayesian Optimal Experiment Design via Column Subset Selection

Srinivas Eswar, Amit N. Subrahmanya, Vishwas Rao, Arvind K. Saibaba

Abstract

Inverse problems involve the process of calculating parameters of a mathematical model from ob-
servational data [3]. Often these problems are ill-posed and a Bayesian approach is used to produce
a posterior distribution for the unobservable parameters. A key question is “how best to acquire
data” in such a setting. We consider the case of Bayesian linear inverse problems where there are
m candidate sensor locations, and we need to pick the k “best” ones.
Consider the measurement equation

d = Fm+ ϵ, (1)
where d ∈ Rm is the data, F ∈ Rm×n is the mathematical model, and m ∈ Rn is the parameter to be
reconstructed. The observations are assumed to be perturbed with additive uncorrelated Gaussian
noise, i.e. ϵ ∼ N (0,Γnoise). We assume that m < n, which makes the problem underdetermined.
If we assume our prior to also be Gaussian, m ∼ N (µpr,Γpr), the posterior will also be a Gaussian
with covariance Γpost = (FTΓ−1

noiseF+ Γ−1
pr )

−1 and mean µpost = Γpost(F
TΓ−1

noised+ Γ−1
pr µpr).

The rows of F correspond to the m different candidate sensor locations and we would like to select
only k locations to collect data. To determine the optimal sensor placements, we solve the following
combinatorial optimization problem

min
W⊂{1,··· ,m}

ϕ(W ), subject to |W | ≤ k. (2)

Here ϕ(W ) is a set-valued function which determines the quality of the sensor placement. In
this work we focus on the A-optimality criterion, which minimizes average posterior variance,
and D-optimality, which measures the information gain from the prior to the posterior. These
criteria amounts to measuring the trace and log-determinant of the posterior covariance matrices
respectively. For the current problem, these criteria take the form

ϕA(W ) = trace

(
Γ1/2
pr

(
I+CCT

)−1
Γ1/2
pr

)
and ϕD(W ) = −logdet

(
I+CCT

)
, (3)

where C = A(:,W ) are the columns of an appropriately formed matrix indexed by W . Here
A := Γ

1/2
pr FTΓ

−1/2
noise ∈ Rn×m is the prior-preconditioned forward operator and selecting k columns

is akin to selecting sensors. Note that we use ϕ(W ) and ϕ(C) interchangeably.
Assuming the following partitioned SVD of A with 1 ≤ k ≤ m,

A =
[
Uk U⊥

] [Σk

Σ⊥

] [
Vk V⊥

]T
.

Now our structural bounds are for column selection of the form AΠ =
[
AΠ1 AΠ2

]
=

[
C T

]
with an identical permutation of the truncated right singular vectors VT

kΠ =
[
V11 V12

]
.

Theorem 1 [1] Let A ∈ Rn×m with k ≤ rank (A). Then for any permutation Π such that
rank (V11) = k and AΠ =

[
C T

]
we have,

σi(A)∥∥V−1
11

∥∥
2

≤ σi(C) ≤ σi(A), 1 ≤ i ≤ k.
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The bounds on individual singular values of C are key to obtaining bounds and algorithms for
the different OED objectives. Let Copt

D denote the optimal selection for the D-optimality criteria
(respectively Copt

A for A-optimality). Then utilizing Theorem 1, we can see that

ϕD(A) ≤ ϕD(Σk) ≤ ϕD(C
opt
D ) ≤ ϕD(C) ≤ ϕD

(
Σk/

∥∥V−1
11

∥∥
2

)
and

t (Σk) + (n− k)∥∥Γ−1
pr

∥∥
2

≤ ϕA(C
opt
A ) ≤ ϕA (C) ≤ ∥Γpr∥2

(
t
(
Σk/

∥∥V−1
11

∥∥
2

)
+ (n− k)

)
,

(4)

where t(X) =
∑rank(X)

i=1
1

1+σ2
j (X)

. Not surprisingly, the performance of the selected columns depend
on the top-k singular values of A. If the discarded singular values, Σ⊥, are not negligible, we cannot
expect Copt to be close to A in either criterion. Note that the error bounds for the D-optimality
case is much cleaner than A-optimality due to the absence of the prior term which factors out as a
constant because of the logdet objective. Another point of concern is the presence of the terms with
n for A-optimality, which in principle can be extremely large. This term arises due to the ill-posed
nature of the inverse problem and corresponds to the singular values of 1 in In + CCT. These
values multiply out for D-optimality but are harder to remove in the A-optimality case prompting
the development of relative bounds.
Equation (4) clearly identifies the factor

∥∥V−1
11

∥∥
2

to optimize for in an OED algorithm. Also since
V11 is an invertible submatrix of Vk, we have

∥∥V−1
11

∥∥
2
≥ 1. We wish to make this value as close

to 1 as possible by finding a set of k well-conditioned columns of VT
k . This is exactly the Golub-

Klema-Stewart approach for subset selection [4], which we further accelerate using randomized
approaches. Inspired by rank-revealing factorizations [2] and exchange algorithms for OED [5], we
also investigate column-swapping based methods on model inverse problems.
The explicit connection to column subset selection gives us many avenues for future work. Is it
possible to extend our techniques to the correlated noise or to nonlinear problems? Can we reduce
the gap to ϕ(Σk) by combining sensor information in a sensible manner? What if our optimization
criteria is some user specified goal?
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High-Accuracy Floating-Point Matrix Multiplication on
Low-Precision Floating-Point and Fixed-Point Hardware

Ahmad Abdelfattah, Jack Dongarra, Massimiliano Fasi, Mantas Mikaitis, Françoise Tisseur

Abstract

We have officially entered the exascale era. At the forefront is the Frontier supercomputer, topping
the June 2024 Top500 list1 as the first machine capable of performing over 1018 operations per sec-
ond in binary64 (double precision) arithmetic. Modern supercomputers achieve their remarkable
speeds by leveraging machine-learning hardware accelerators, which deliver extraordinary through-
put by trading off some degree of accuracy. While these accelerators currently support binary64
arithmetic, the field is shifting, and soon many will be optimized exclusively for lower precision.
Today, fully utilizing the potential of these accelerators requires relying on low-precision formats:
TensorFloat-32, bfloat16, binary16 (half precision), E4M3, E5M2, and even compact integer data
types, such as INT8. These reduced-precision formats can have a throughput up to two orders
of magnitude higher than binary64, but they lack the precision needed for traditional scientific
simulations, which require higher accuracy to yield meaningful results.
To integrate GPUs effectively into scientific computing, we must reimagine high-precision com-
putations by strategically applying lower precision when feasible. Here, we explore techniques to
reformulate a high-precision matrix multiplication as a series of low-precision operations, and we
outline two strategies for assigning different precision levels across computations. Matrix multipli-
cation is a fundamental kernel in scientific computing, and efficient implementations underpin the
performance of many algorithms in numerical linear algebra. The techniques we discuss will enable
numerical codes to make better use of current accelerators, where the performance gap between low
and high precision is widening, and of future ones, where high precision will be missing altogether.
General scheme for mixed-precision matrix multiplication Let Flow and Fhigh be a low-
precision and a high-precision floating-point format, respectively, and let ulow and uhigh be their
unit roundoffs. We consider the computation of C = AB ∈ Fm×n

high , where A ∈ Fm×p
high and B ∈ Fp×n

high .
Rows of A and column of B with only zeros do not affect the result, thus we assume that each row
of A and column of B contains at least one nonzero element. The high-precision matrices A and
B can be written as the unevaluated sum of low-precision matrices

A = A(1) +A(2) + · · ·+A(sA) +∆A, B = B(1) +B(2) + · · ·+B(sB) +∆B, (1)

where the entries of A(1), A(2), …, A(sA), B(1), B(2), …, B(sB) belong to Flow, while ∆A and ∆B
are truncation errors. With the decomposition (1), we can approximate the product as

C̃ ≈
sA∑
k=1

sB∑
ℓ=1

A(k)B(ℓ). (2)

In terms of runtime, (2) will achieve good performance if the low-precision matrix products of the
form A(k)B(ℓ) are executed on hardware that can efficiently multiply matrices stored in Flow and
accumulate the result in Fhigh. Two terms contribute to the total error in the approximation C̃:

• the truncation error ∆AB +A∆B, which depends on the splitting strategy in (1); and
1https://www.top500.org/lists/top500/list/2024/06/
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• a rounding error, caused by the matrix products and sums in (2)

Matrix multiplication using multi-word arithmetic A natural way to obtain the decom-
position (1) is to split A and B as sum of low-precision floating-point matrices [4]. This can be
accomplished by applying the splitting algorithm:

A(k) = fllow

(
A−

k−1∑
t=1

A(t)

)
, B(ℓ) = fllow

(
B −

ℓ−1∑
t=1

B(t)

)
, (3)

where fllow(X) rounds the entries of the input matrix X to precision Flow. In this case, we can set
sA = sB = s, as the final accuracy will be limited by the smaller between sA and sB.
If the splitting (1) is obtained using (3), and the approximation C̃ is computed using (2), then [1]∣∣C̃ − C

∣∣ ≤ (2uslow + u2slow)|A||B|+ (n+ s2 − 1)uhigh

s∑
k=1

s∑
ℓ=1

∣∣A(ℓ)
∣∣∣∣B(ℓ)

∣∣. (4)

For practical choices of ulow and uhigh, a small value of s, 2 or 3 say, is sufficient to make the two
terms in (4) of similar size. Furthermore, not all s2 products in (2) need be computed, since the
magnitude of the elements of A(k) and B(ℓ) decreases rapidly as k and ℓ increase. Ignoring all
products of the form A(k)B(ℓ), for k+ ℓ > s+1, yields a faster algorithm and an error bounded by∣∣C̃ − C

∣∣ ≤ ((s+ 1)uslow + (n+ s2 − 1)uhigh
)
|A||B|+O

(
uhighulow + us+1

low

)
, (5)

which is just slightly weaker than (4). We evaluated this scheme using double-binary16 (s = 2
and ulow = 2−11) arithmetic to compute binary32 matrix products (uhigh = 2−24). We run our
implementations of the algorithm described above on NVIDIA GPUs equipped with tensor cores—
mixed-precision units that compute the product of binary16 matrices using binary32 arithmetic.
We identified some cases where, surprisingly, double-binary16 fails to achieve binary32 accuracy:
this is the case, for example, if the entries of the matrix are drawn from the interval (0, 1]. This
phenomenon does not contradict the bounds (4) and (5), and with the help of probabilistic rounding
error analysis we showed that a possible cause is the fact that the tensor cores use a custom rounding
mode that is less accurate than round-to-nearest [2]. To support this conclusion, we used the
CPFloat library [3] to simulate a variant of the tensor cores that uses round-to-nearest throughout,
and we showed that switching between rounding modes has indeed the expected effect on accuracy.
The Ozaki scheme for matrix multiplication An alternative technique, which goes back to
Rump, Ogita, and Oishi [8], uses a fixed-point representation to recast the matrix product as a
sequence of error-free transformations. In the case of matrix multiplication [7], this technique is
known as the Ozaki scheme. The decomposition (1) is computed using the element-wise algorithm

a
(k)
ij = fl

(
fl

(
αi +

(
aij −

k−1∑
t=1

a
(t)
ij

))
− αi

)
, αi = 2max1≤j≤p⌈log2|aij |⌉+f(aij),

b
(ℓ)
ij = fl

(
fl

(
βj +

(
bij −

ℓ−1∑
t=1

b
(t)
ij

))
− βj

)
, βj = 2max1≤j≤p⌈log2|bij |⌉+f(bij),

(6)

where f(x) returns 1 if x is a power of two, and 0 otherwise. If the routine computing A(k)B(ℓ)

in (2) takes matrices with elements in Flow as input but uses precision uhigh internally, then the
intermediate precision used by the fl operator in (6) can have at most

q =
⌈
(log2 u

−1
high − log2 p)/2

⌉

122



bits, where p is the common dimension of A and B. This choice of q ensures that all multiplications
of the form A(k)B(ℓ) will be exact.
Implicitly, the algorithm (6) performs two actions. First, it scales all entries in the ith row of A by
α−1
i , where αi is the smallest power of two that is strictly larger, in magnitude, than all elements in

the ith row of A; this ensures that α−1
i aij has magnitude in the interval [0, 1). Next, each α−1

i aij is
interpreted as a fixed-point number, and its representation is divided up into q-bit segments, each
assigned to a different low-precision slice A(k). The matrix B is sliced analogously, with the proviso
that the algorithm operates by columns rather than by rows. This gives the representation

A = ∆A+ diag(α)

sA∑
k=1

2−kqA(k), B = ∆B +

sB∑
ℓ=1

2−ℓqB(ℓ)diag(β), (7)

where A(1), A(2), …, A(sA) and B(1), B(2), …, B(sB) are slices of a fixed-point representation of the
elements in A and B. Since αi and βj depend on the magnitude of the largest entry in row i and
column j, respectively, the leading matrices may have zeros in positions corresponding to small
elements in A and B.
If sA and sB are large enough to guarantee that ∆A = 0 and ∆B = 0 in (7), then algorithm (2)
will produce an extremely accurate approximation C̃, where the only rounding errors are due to the
sAsB floating-point sums. Mukunoki et al. [5] have specialized this algorithm and have implemented
it to obtain binary64 accuracy by using binary16 arithmetic on the NVIDIA tensor cores.
The latest NVIDIA GPUs can perform matrix multiplication even more efficiently using integer
arithmetic. The tensor cores of NVIDIA H100 cards, for example, can compute the product of
matrices stored in INT8 format (an 8-bit signed format) using 32-bit signed integer arithmetic.
Exploiting the fixed-point nature of the Ozaki scheme, Ootomo, Ozaki, and Yokota [6] have therefore
developed a method that computes the product of two binary64 matrices using only INT8 matrix
multiplications. This initial idea was further refined by Uchino, Ozaki, and Imamura [9], who
developed a more accurate and efficient variant of this scheme and gave a first error analysis. For
sA = sB = s, they show that∣∣C̃ − C

∣∣ ≤ 4(s+ 1)k2−qsαβT + (s− 1)uhigh|A||B|,

where uhigh is the unit roundoff of the floating-point arithmetic used to accumulate the partial
matrix products in (2). This result suggests that the algorithm can be inaccurate if s is too small,
or if the entries of the matrix are large in absolute value, as this will cause the entries of the vectors
α and β to be large.
We propose an alternative error analysis that can be used to inform the choice of the parameters
sA and sB, which we argue need not be equal in the Ozaki scheme. First, we note that the terms
in (7) satisfy

|δaij | < αiuA, uA := 2−sAq, |δbij | < βjuB, uB := 2−sBq. (8)
In error analysis, it is often more informative to bound the relative error. Such bounds arise natu-
rally when using floating-point arithmetic, because floating-point numbers have constant precision.
In fixed-point arithmetic, precision is tapered, so bounds like those in (8) are more familiar, but it
is still possible to bound |δaij | and |δbij | in terms of |aij | and |bij |, respectively, since

|δaij | ≤ κAuA|aij |, κA := 2 max
1≤i≤m

max{|aij | : 1 ≤ j ≤ p}
minj{|aij | : 1 ≤ j ≤ p and aij ̸= 0}

,

|δbij | ≤ κBuB|bij |, κB := 2 max
1≤j≤n

max{|bij | : 1 ≤ i ≤ p}
min{|bij | : 1 ≤ i ≤ p and bij ̸= 0}

.
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Our analysis yields the alternative error bound∣∣C̃ − C
∣∣ ≤ κAuA + κBuB + κAκBuAuB + γsAsB−1(1 + κAuA + κBuB + κAκBuAuB)

)
|A||B|.

In other words, the overall error can be substantial if either κA or κB are large. One can counteract
the prominence of these two terms by increasing sA and sB, but doing so will negatively impact
the performance of the algorithm, which needs to perform O(sAsB) integer matrix multiplications.
The integer-based Ozaki scheme can be much faster than traditional high-precision alternatives,
but our analysis suggests that it can also be significantly less accurate, depending on the dynamic
range of the entries of A and B. The value of the parameters sA and sB required to meet a specific
accuracy target can be determined by examining κA and κB, which are inexpensive to compute.
For a given choice of sA and sB, we can estimate the runtime of the scheme, and we can opt for a
traditional high-precision routine when the latter is expected to be faster.
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Multigrid Methods for Solving Indefinite Problems
in Port-Hamiltonian Systems

Paola Ferrari, Matthias Bolten

Abstract

In this study, we develop and analyze multigrid methods for efficiently solving large-scale indefinite
structured linear systems that arise in port-Hamiltonian systems. Port-Hamiltonian systems are
open dynamical systems characterized by a Hamiltonian function representing the stored energy,
and they interact with their environment through ports, which facilitate the exchange of energy.
Mathematically, these systems are described by differential equations coupled with algebraic con-
straints, forming a framework that inherently preserves the energy-conserving properties of physical
systems. Resistive effects are included by terminating some of the ports on energy-dissipating ele-
ments, such as resistors, which introduce dissipation into the system. Finding the numerical solution
of such problems results in resolving linear systems with specific structures, often indefinite and
involving skew-symmetric and symmetric blocks [6, 8].
The combination of energy-conserving and dissipative properties leads to saddle-point structures.
When discretized, they result in large, indefinite systems of equations that pose significant compu-
tational challenges. The matrices involved are often block-based, with components that are skew-
symmetric or symmetric, and with proper discretizations, they are of (multilevel block) Toeplitz
type. The skew-symmetry can lead to Hermitian but indefinite matrices when multiplied by the
imaginary unit. The coupling introduces additional challenges due to the skew-symmetric nature
of the interactions, necessitating specialized numerical techniques for efficient and stable solutions.
Multigrid methods have long been recognized as optimal solvers for a wide range of elliptic partial
differential equations (PDEs) due to their ability to provide convergence rates independent of
the problem size. However, adapting these methods to indefinite and structured problems, such
as those encountered in port-Hamiltonian systems, requires careful consideration of the matrix
properties and the selection of appropriate smoothers and grid transfer operators. In this study,
we address such challenges by focusing on two key aspects: solving general saddle-point systems
that arise naturally in port-Hamiltonian models and solving skew-symmetric Toeplitz systems. Our
tailored multigrid methods are designed to handle the indefiniteness and structured properties of
the resulting linear systems, providing efficient and stable solutions to the considered complex
problems.
To tackle these computational challenges, we propose applying an approach inspired by Notay’s
method [7] for solving saddle-point systems. This method involves transforming the original system
through pre- and post-multiplication with sparse block triangular matrices, effectively precondition-
ing the system to be more suitable for resolution by multigrid techniques. After this transformation,
the diagonal blocks become symmetric and positive definite, resembling discrete Laplace operators
that are well-suited for multigrid solvers. In our previous works [2, 3], we successfully applied this
approach to multilevel block Toeplitz matrices arising from finite element approximations of systems
of PDEs such as the Stokes problem, demonstrating that it leads to efficient multigrid methods with
convergence rates independent of the matrix size. We extend this approach to port-Hamiltonian
systems.
To establish a rigorous convergence analysis of our proposed multigrid methods, it is crucial to
examine the detailed matrix structures of the discretized systems. These matrices are low-rank
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corrections of multilevel block Toeplitz matrices, whose properties can be characterized by their
(matrix-valued) generating functions, also called symbols. By deriving the generating functions,
we gain insight into the spectral properties of the transformed matrices, which are essential for
analyzing the effectiveness of multigrid methods. Specifically, for saddle-point problems with hidden
block Toeplitz structure, the analysis of the generating functions enables us to determine optimal
preconditioning strategies and to select appropriate smoothers and grid transfer operators within
the multigrid hierarchy.
For structured problems involving multilevel block Toeplitz matrices, such as those arising in port-
Hamiltonian systems, it is essential to preserve the matrix structure across different grid levels. This
focus guides the design of our grid transfer operators. By retaining the Toeplitz-like structure, we
can apply symbol-based convergence analysis uniformly across all grid levels. This approach enables
us to rigorously analyze and predict the convergence behavior of the multigrid method, providing
both theoretical guarantees and practical performance benefits.
Additionally, we present a preliminary analysis of multigrid methods for port-Hamiltonian-derived
saddle-point problems with hierarchical and recursive configurations. These configurations com-
monly arise in complex port-Hamiltonian models where multiple nested levels of interactions or
coupling mechanisms are present. By extending our multigrid framework to accommodate hier-
archical and recursive structures, we highlight the potential for scalability and effectiveness in a
broader class of indefinite and structured linear systems.
To validate our theoretical findings, we present numerical experiments focusing on field-circuit
coupling problems [4] and also on non-convex shape optimization problems [1]. In the field-circuit
coupling experiments, we tackle large, indefinite linear systems arising from the interaction of
Maxwell’s equations with circuit equations, simplified under certain modeling assumptions to quasi-
stationary models or dimensionally reduced forms like the telegraph equation. Concerning shape
optimization, we address non-convex problems involving mechanical components, such as optimizing
the shape of ceramic parts under reliability, volume, and construction space constraints. These
numerical experiments confirm that the convergence rates of our multigrid methods are indeed
independent of the problem size, validating the effectiveness of our approach in practical, complex
applications.
Furthermore, we focus on the resolution of skew-symmetric structured linear systems. Multiplying
a skew-symmetric Toeplitz matrix by the imaginary unit transforms it into a Hermitian matrix;
however, the resulting matrix is not positive definite, complicating the application of standard
multigrid methods.
In particular, we introduce a novel approach by interpreting a scalar skew-symmetric Toeplitz ma-
trix as a block Toeplitz matrix with 2 × 2 blocks. This block formulation allows us to associate
the transformed Hermitian matrix with a matrix-valued generating function, which we demon-
strate is diagonalizable and possesses one positive and one negative eigenvalue function. According
to the relationship between the eigenvalues of Hermitian Toeplitz matrices and their generating
functions—as established by Szegő’s theorem—the zeros of these eigenvalue functions lead to near-
zero eigenvalues in the matrix. The near-zero eigenvalues can significantly hinder the convergence
of multigrid methods due to slow error reduction in the associated spectral components [5].
To address this challenge, we develop grid transfer operators that consider the two eigenvalue
functions separately, effectively tailoring the multigrid hierarchy to the distinct spectral properties
of the positive and negative eigenvalues. By analyzing the eigenvalue functions and their zeros,
we design interpolation and restriction operators that enhance the coarse-grid correction process.
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Additionally, we employ block-Jacobi methods as smoothers and establish a preliminary theoretical
framework to estimate optimal smoothing parameters, thereby improving the overall efficiency of
the multigrid method.
Our approach ensures robust convergence of multigrid methods for skew-symmetric Toeplitz sys-
tems, even in the presence of near-zero eigenvalues. Numerical experiments confirm the effectiveness
of our method, showing optimal convergence rates also in the multilevel setting.
Overall, our work advances the development of efficient multigrid methods for large-scale, indefinite,
and structured linear systems arising in port-Hamiltonian systems. By addressing the challenges
associated with saddle-point structures and skew-symmetric Toeplitz matrices, we provide a robust
computational framework with convergence rates independent of the problem size. Our theoretical
analyses, supported by numerical experiments, demonstrate the potential of these methods to
significantly improve computational efficiency in modeling complex physical systems.
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Interpolated Compressed Inverse Preconditioning:
Fast and Accurate Simulation of Close-to-Touching Discs in Stokes Flow

Daniel Fortunato, Mariana Martínez Aguilar, Dhairya Malhotra

Abstract

We consider the flow of dense suspensions of rigid bodies in a Stokesian fluid. Such flows are
difficult to compute numerically due to the presence of close-to-touching interactions, which may
require a large number of unknowns to resolve sharply peaked surface forces, a large number of
GMRES iterations to solve the discretized PDE, and an extremely small time step. A common
way of dealing with these difficulties is to introduce a repulsion force between particles to prevent
them from getting too close. However, this additional repulsion force is non-physical and may
fundamentally alter the results of a simulation.
For suspensions of identical discs in 2D, we present a fast and accurate boundary integral method
that mitigates these challenges without introducing artificial forces. Through precomputation, com-
pression and interpolation of the close-to-touching part of the interaction operator, our method—
termed interpolated compressed inverse preconditioning—efficiently handles close-to-touching inter-
actions down to distances of 10−10 with only a coarse discretization of the boundary. Additionally,
we present a preconditioner that significantly reduces the number of GMRES iterations required
to solve the Stokes mobility problem at each time step by effectively reusing the Krylov subspace
from previous time steps. Coupled with high-order, adaptive time-stepping using spectral deferred
correction, we are able to take larger time steps, mitigating the temporal stiffness resulting from
close-to-touching interactions.
For a graphical description of this work, see: https://danfortunato.com/talks/ICIP-poster.pdf.

1 Stokes mobility problem

We consider NΩ rigid discs Ω = {Ω1, · · · ,ΩNΩ
} embedded in a Stokesian fluid. The fluid velocity

in the exterior of Ω is governed by the Stokes equations,

−∆u+∇p = 0 in R2 \ Ω, (1)
∇ · u = 0 in R2 \ Ω, (2)

where u is the fluid velocity and p is the fluid pressure. Equations (1) and (2) denote the momentum
balance and incompressibility constraints, respectively. In addition, we also assume that the fluid
velocity at infinity decays to zero,

u(x) → 0 as |x| → ∞.

Each disc has a net force Fk and a net torque Tk acting about a point xc
k. The discs undergo rigid

body motion with the velocity V given by,

V (x) = vk + ωk(x− xc
k)

⊥ for all x ∈ Ωk,

where vk is the translational velocity and ωk is the angular velocity of Ωk about the point xc
k. A

slip velocity boundary condition us between the rigid bodies and the fluid is prescribed. Therefore,
the fluid velocity on the boundary ∂Ω is given by,

u = V + us on ∂Ω.
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In the mobility problem, we are given us, Fk, and Tk about xc
k for each Ωk. The rigid body motion

V (i.e., vk and ωk for each Ωk) is not known and must be determined.
Using the Stokes single- and double-layer potentials to represent the fluid velocity u in terms of an
unknown surface density σ, a boundary integral equation (BIE) for the Stokes mobility problem
can be formulated as given in [1]:

Kσ = g on ∂Ω, (3)

where K is a second-kind boundary integral operator and g encodes the given slip velocity, net
force, and net torque.

2 Close-to-touching interactions

Consider the model problem of two discs separated by a distance d, with each disc discretized into
a set of high-order Gauss–Legendre panels. The two disc problem serves as an effective pairwise
preconditioner in a simulation with many close-touching discs. When the distance d between two
discs gets small, the solution σ to the BIE in (3) becomes highly peaked. This requires an extremely
fine discretization of the boundary in the close-to-touching region. We label the close-to-touching
region as Γ2 and the remaining boundary as Γ1 = ∂Ω \ Γ2. Then, (3) can be discretized as a block
linear system, (

K11 K12

K21 K22

)(
σ1
σ2

)
=

(
g1
g2

)
, (4)

where g1 and σ1 are the boundary conditions and unknowns on Γ1, g2 and σ2 are the boundary
conditions and unknowns on Γ2, and Kij represents a sub-block of the discretized operator K that
computes interactions from sources on Γj to targets on Γi. Right preconditioning (4) with the block
diagonal preconditioner

( I 0
0 K−1

22

)
yields the system(
K11 K12K

−1
22

K21 I

)(
σ1
σ2

)
=

(
g1
g2

)
, (5)

where σ2 = K22σ2 is a new unknown on Γ2. While (5) may require fewer GMRES iterations to
solve than (4), it still requires an excessively fine discretization in the close-to-touching region Γ2.
Additionally, computing K−1

22 on the fly can be expensive, especially for problems with moving
boundaries. However, one may show that σ2 can be discretized on a coarse mesh and that the
off-diagonal block K12K

−1
22 is low rank.

2.1 Compressing close-to-touching interactions

Since Γ1 and Γ2 are disjoint, the discretized boundary integral operators K12 and K21 are low
rank, with the numerical rank independent of the distance d. Hence, the column space of K21

is comprised of smooth functions that can be discretized using piecewise polynomials on a coarse
mesh. From (5), we have σ2 = g2 − K21σ1; therefore, σ2 is smooth whenever g2 is smooth and
it can be discretized on a coarse mesh. Since K12 is low rank, so is K12K

−1
22 (with numerical

rank independent of d). There are several ways of constructing a compressed representation for
K12K

−1
22 . To retain the boundary integral structure and allow for acceleration by the fast multipole

method (FMM), we use a representation of the form K12R where R is a low-rank operator such that
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K12R ≈ K12K
−1
22 , up to a given numerical tolerance. We now describe the numerical construction

of R.
Consider two different panelizations of Γ2: a fine mesh where the panels on each disc are refined
dyadically towards the closest point between the discs, and a coarse mesh with a small number of
uniformly sized panels on each disc. We denote quantities on the coarse mesh with a superscript
“c”; all other quantities are assumed to live on the fine mesh. Define the prolongation operator P
that interpolates data from the coarse mesh to the fine mesh, and diagonal matrices Wf and Wc

containing the weights for smooth integration on the fine and coarse meshes, respectively. Then,
W−1

c P TWf computes an L2 projection from the fine mesh to the coarse mesh.
Assuming that the boundary data g2 is smooth and therefore representable on the coarse mesh, we
have

g2 = P gc2, (6)
σ2 = P σc

2. (7)

Since K12 and K21 are low rank, they can be approximated accurately by their coarse discretizations,

K12 = Kc
12W

−1
c P TWf , (8)

K21 = PKc
21, (9)

Substituting (6)–(9) in (5), we obtain(
K11 Kc

12R
Kc

21 I

)(
σ1
σc
2

)
=

(
g1
gc2

)
(10)

where R = W−1
c P TWfK

−1
22 P . This definition of R is used in the RCIP (recursively compressed

inverse preconditioning) method [2]. For an order-p fine mesh with O(log d) levels of refinement, di-
rect construction of R takes O(p3(log d)3) operations; the RCIP method provides a faster algorithm
to construct R without directly computing K−1

22 , taking O(p3 log d) operations. Our main result—
termed ICIP (interpolated compressed inverse preconditioning)—instead constructs R through pre-
computation and interpolation, requiring only O(p2) work.

2.2 Interpolated compressed inverse preconditioning (ICIP)

Constructing R = R(d) each time for a different value of d can be expensive since it requires com-
puting K−1

22 . Instead, we construct a polynomial interpolant for R(d) over a range d ∈ [dmin, dmax]
(where 0 < dmin < dmax). Then for any value of d in the interval, we construct R(d) through
entrywise interpolation. We use Chebyshev polynomials in log d as our interpolation basis, i.e.,

[R(d)]ij ≈
q∑

k=0

[Rk]ijTk(log d)

where [Rk]ij is the kth Chebyshev coefficient for the ijth entry of R(d). For accurate interpolation
of R(d) over a large dynamic range of 10−10 < d < 10−1, only a moderate interpolation order of
q = 32 is required. After an offline precomputation to generate {Rk}qk=0, constructing R(d) at each
time step costs O(p2q) operations.
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3 Accelerating timestepping with subspace recycling

While the two-disc preconditioner is effective at lowering the number of GMRES iterations induced
by close-to-touching interactions, a significant number of GMRES iterations may still be required at
each time step for problems with many discs. To ameliorate this effect, we propose a preconditioner
which effectively reuses the Krylov subspace from previous time steps.
After the kth iteration of GMRES, the Krylov matrix is given by X = [b Ab · · · Ak−1b]. Let
QR = AX be the QR decomposition of AX. Then the matrix P given by

P = I −QQT +XR−1QT

has the following properties:
PAx = x for all x ∈ span(X),

Py = y for all y ⊥ span(X).

Hence, P effectively reuses the given Krylov subspace X when used as a preconditioner in a Krylov
method. In a high-order time-stepping scheme based on spectral deferred corrections, this precon-
ditioner can drastically reduce the number GMRES iterations by recycling the Krylov subspace
between time steps.
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Analysis on Aggregation and Block Smoothers in Multigrid Methods for
Block Structured Linear Systems

Matthias Bolten, Marco Donatelli, Paola Ferrari, Isabella Furci

Abstract

In this talk we present a detailed analysis of block smoothers and propose new aggregation-based
strategies in multigrid methods for structured linear systems [3].
Multigrid methods are well-known for their efficiency in solving large linear systems, especially
when the coefficient matrices exhibit a large (multilevel block) structure [2, 7, 8]. These methods
are widely used in various scientific and engineering applications, including the discretization of
partial differential equations (PDEs), image processing, and approximation problems.
The key to developing effective multigrid methods lies in the careful selection of the grid transfer op-
erator P and the iterative methods that serve as pre/post smoothers within the multigrid iteration.
In previous works [2, 8], a comprehensive convergence analysis for two-grid and V-cycle methods
applied to scalar Toeplitz and circulant systems was developed. Specifically, the convergence re-
quirements for P and smoothers were formulated elegantly using conditions on the (scalar-valued)
function f associated with the structured coefficient matrix. Extending this symbol-based analysis
to block systems introduces challenges such as the non-commutativity of matrix-valued functions
and the need for suitable grid transfer operators to manage coarse-grid corrections.
Scalar smoothers can be defined by carefully selecting the relaxation parameter based on the matrix-
valued function f, mimicking the approach used for scalar-valued functions. However, we show that,
as the block dimension d increases, block smoothers become more appropriate because they align
more naturally with the system’s block structure.
One of the main goals of this talk is to provide an in-depth analysis of block smoothers, which
are more effective in handling block-structured systems. Specifically, we introduce a relaxed block
Jacobi method and derive general conditions for the smoothing parameter ω that ensure conver-
gence. This method proves more efficient than scalar smoothers, both in terms of solving time
and set-up time. From our comparison of scalar and block Jacobi smoothers, we demonstrate that
the block Jacobi method consistently outperforms its scalar counterpart in terms of convergence
rate and computational efficiency, particularly for systems with large block dimensions. Moreover,
we show that the general conditions on smoothing parameters can be calculated with negligible
computational cost in some practical applications.
Regarding the choice of grid transfer operators, a rigorous convergence analysis for the two-grid
method (TGM), further extended to the V-cycle, was derived in [6]. The latter demonstrates that
certain classical grid transfer operators, such as the geometric projection and standard bisection
operators, meet the necessary conditions for convergence in many practical cases. The grid transfer
operator in this context is written as

P = An(p)(K ⊗ Id),

where K is an n × k matrix that reduces the dimension of the problem by selecting specific rows,
and An(p) is a structured matrix analogous to the original problem. A key aspect of such grid
transfer operators is that they preserve the block structure at coarser levels, and the proof of the
approximation convergence property is based on validating further commutativity conditions on
the matrix-valued symbol p.
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However, many known grid transfer operators were not covered by the previous theory. To address
this, new conditions were obtained in [4], expressing the projector’s approximation property in
terms of the eigenvector associated with the ill-conditioned subspace, thereby broadening the class
of valid operators. Specifically, convergence results in the block-structured setting were derived
by exploiting block-symbol analysis. If f(θ) is a trigonometric polynomial with exactly one zero
eigenvalue at θ0 and is positive definite in [0, 2π)\{θ0}, it can be diagonalized as

f(θ) = Q(θ)D(θ)Q(θ)H ,

where Q(θ) is the matrix of eigenvectors and D(θ) is the diagonal matrix of eigenvalues. We
denote by qȷ̄(θ) the normalized eigenvector associated with the zero eigenvalue λȷ̄(f(θ0)) = 0.
Under certain assumptions, sufficient conditions for the linear convergence of the TGM involve
choosing p such that the function p(θ)Hp(θ) + p(θ + π)Hp(θ + π) is positive definite for all θ ∈
[0, 2π) and specific limit conditions as θ approaches θ0 are satisfied. These requirements can be
simplified in specific applications, and the V-cycle convergence conditions are based on these results.
An important aspect of the strategy outlined above is that the grid transfer operator maintains
the block structure at coarser levels. While this is theoretically convenient for proving V-cycle
convergence, it introduces computational challenges, as the block structure remains, and the matrix-
valued function can be difficult to analyze.
The second aim of this talk is to present a new symbol-based multigrid method with an aggregation-
based approach, which reduces the system to a scalar form at coarser levels. In particular, from the
decomposition of the matrix-valued trigonometric polynomial f , we propose a grid transfer operator
of the form

P = In ⊗ qȷ̄(θ0).

This approach offers significant computational advantages, especially for large-scale systems [1]. At
the coarse level, the coefficient matrix simplifies, resulting in a scalar-valued function

f̃(θ) = qHȷ̄ (θ0)f(θ)qȷ̄(θ0),

which maintains some properties of the original problem. Indeed, f̃ vanishes at θ0 (and only at
θ0), and with a zero of order smaller than or equal to that of the original λȷ̄(f), ensuring that the
conditioning of the problem does not worsen.
We derive the convergence and optimality of the TGM by combining the approximation property
verified by P and the findings on the block smoothers. We also extend the TGM analysis to
the V-cycle, where the properties of the scalar-valued symbol at the coarse level are crucial in
determining the convergence rate. In particular, we show that V-cycle convergence can be achieved
by combining the TGM results with an analysis of the scalar coarse-level symbol. This allows us
to formulate clear conditions for convergence and optimality, even in complex block settings.
From a computational perspective, aggregation-based methods provide substantial savings while
maintaining convergence, particularly when combined with over-relaxation strategies. As proposed
by Braess [5], over-relaxation of the coarse-grid correction significantly enhances multigrid perfor-
mance, and we show the effectiveness of this strategy when combined with our symbol-based grid
transfer operators. This corresponds to performing an over-relaxation with a parameter α > 1 when
computing the interpolation of the error, αPy. Consequently, we present a strategy to select the
optimal pair (ω, α) to minimize the spectral radius of the TGM iteration matrix, thereby improving
results.
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To validate our theoretical findings, we conduct numerical experiments using the proposed approach
both as a standalone method and as a preconditioner for Krylov iterative methods. The tested large-
scale block circulant, block Toeplitz-like, and Generalized Locally Toeplitz (GLT) linear systems
stem from discretizations using Qd Lagrangian FEM approximation of second-order differential
problems and B-spline discretization with non-maximal regularity. In addition to confirming our
theoretical results, these examples demonstrate how the conditions outlined for block smoother
convergence simplify in practical scenarios.
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Proving Rapid Global Convergence for the Shifted QR Algorithm

Jess Banks, Jorge Garza-Vargas, Nikhil Srivastava

Abstract

The design of efficient and reliable algorithms for computing the eigenvalues and eigenvectors of a
matrix is of unquestionable importance in both science and engineering. However, despite significant
advancements in various practical aspects, fundamental theoretical questions about the eigenvalue
problem remain poorly understood. In this talk I will discuss work [BGVSa, BGVSb, BGVSc] that
provides nearly optimal rigorous guarantees, on all inputs, for the shifted QR algorithm. Similar
results were established by Wilkinson in [Wil68] and Dekker and Traub in [DT71] for Hermitian
inputs; however, despite sustained interest and several attempts, the non-Hermitian case remained
elusive for the last five decades.

The QR iteration. The QR algorithm, which originated in the works of Francis [Fra61, Fra62]
and Kublanovskaya [Kub62] (see [GU09] for some history), has been listed as one of the top ten
most influential algorithms of the 20th century [DS00] and is the preferred method for computing
the full eigendecomposition of an arbitrary input matrix.
In its simpler form, the QR algorithm starts by putting the input matrix A ∈ Cn×n into Hessenberg
form, that is, it computes a unitary matrix U such that H = U∗AU is an upper Hessenberg matrix.1
Then, it computes a sequence of Hessenberg matrices H0 = H,H1,H2 . . . via the iteration:

[Qt, Rt] = qr(Ht), (1)
Ht+1 = Q∗

tHtQt.

Where QtRt = Ht is the QR decomposition of Ht, and from Ht+1 = Q∗
tHtQt we see that

A = UtHtU
∗
t for Ut = UQ0 · · ·Qt.

This iteration has the fascinating property (see [Wat82]) that for generic2 inputs A, as t goes to
infinity, the Ht converge to an upper triangular matrix, say, T . In such situation, we can set
V = limt→∞ Ut, so that

A = V TV ∗,

therefore obtaining the Schur decomposition of A.3 The appeal of this method resides on the
simplicity of the iteration described in (1). The drawback is that the convergence Ht → T happens
at a prohibitively slow rate for most inputs, ultimately turning it into an impractical algorithm.

The shifted QR algorithm. In practice the QR iteration is endowed with “shifts” that seek to
accelerate convergence. Concretely, at each time t, a polynomial pt(z) is computed as a function of
Ht (see Wilkinson’s shift below for an example) and the iteration now is given by:

[Qt, Rt] = qr(pt(Ht)), (2)
Ht+1 = Q∗

tHtQt.

1This can be done by applying a sequence of n− 1 suitably chosen Householder transformations. This procedure
is numerically stable and can be executed in O(n3) arithmetic operations, see [Wat08] for details.

2That is, all but a set of Lebesgue measure zero.
3Recall that one can read the eigenvalues of A from the diagonal entries of T , and if desired, easily compute the

eigenvectors of A from the columns of V .
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Intuitively, one should think of the roots of pt(z) as “guesses” for the eigenvalues of Ht (which by
unitary equivalence are the same as the eigenvalues of A) and, the better the guesses the more
progress towards convergence one will make while going from Ht to Ht+1. Moreover, the closer
Ht is to an upper triangular matrix, the more its eigenvalues have been “revealed”, which allows
one to make better guesses, all together yielding a virtuous cycle that is in part responsible for
the undefeated performance of the shifted QR algorithm. This intuition can be made rigorous
by understanding the connection between the shifted QR algorithm and shifted inverse iteration
[Wat82, Wat08], where the aforementioned “virtuous cycle” can be established via a local analysis
of convergence, e.g. see [Par74] or [Par98, §4.7].
The chosen algorithm for computing the pt(z) as a function of the Ht is refered to as the shifting
strategy, and the main purpose of any shifting strategy is to guarantee rapid global convergence,
that is, rapid convergence to an upper triangular matrix regardless of the starting condition H0.
Although local convergence is intuitive (as explained above) and typically easy to establish, devising
a shifting strategy that ensures rapid global convergence remained an important open problem
throughout the years [Par74, Mol78, Dem97, Sma97, HDG+15].

Exploiting the Hessenberg structure. Working with Hessenberg matrices has several com-
putational advantages that ultimately permit obtaining the full eigendecomposition of the input in
nearly n3 operations, which is the initial cost of putting the input matrix into Hessenberg form.
Easy deflation. In practice, one can only hope to compute an approximate Schur form (resp.
approximate eigedecomposition) for the input matrix. In turn, when seeking to solve the an ap-
proximate version of the eigenvalue problem, one can exploit the Hessenberg structure to accelerate
the algorithm as follows. We will say that an upper Hessenberg matrix H is δ-decoupled if one of
its subdiagonals satisfies |H(i, i− 1)| ≤ δ∥H∥. So, in the iteration (2), once one of the matrices Ht

is δ-decoupled for some δ small enough, one can zero out the small subdiagonal:
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 small ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

 −→


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗

 .

This procedure, called deflation, incurs a small error in the computation but has the advantage that
the resulting matrix is now block upper triangular, and therefore the spectrum of the big matrix is
the union of the spectra of each of the smaller block diagonal parts, which happen to again have
a Hessenberg structure. Moreover, the eigenvectors of the big matrix can be related in a similar
way to the eigenvectors of the smaller diagonal blocks. With this, the eigenvalue problem has been
reduced to two subproblems of smaller dimension, on which one can again call the QR algorithm.
Implicit shifts. Another advantage of the Hessenberg structure is that in the iteration (2) one can
compute Ht+1 from Ht without having to explicitly compute pt(Ht). Concretely, if pt(z) is of degree
k and Ht is of dimension n, one can compute Ht+1 from Ht in O(kn2) operations using a procedure
commonly known as chasing the bulge (see [Tis96] or [Wat08]). Moreover, when the input matrix
is Hermitian, the iterates Ht are tridiagonal, and in this case Ht+1 can be computed from Ht in
O(kn) operations.
Meaningful corners. If H is a normal upper Hessenberg matrix then the lower-right corners of H
can be related to the orthogonal polynomials associated to a natural probability measure supported
on the spectrum of H, and, there is a natural potential theory interpretation of the subdiagonals
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of such corners. In the general non-normal case these interpretations are no longer valid, but still
provide great intuition for the dynamics of the shifted QR algorithm. In part, this is the reason
why many of the shifting strategies use small lower-right corners of the Ht to compute pt(z).

Previous theoretical guarantees. When the input A ∈ Cn×n is Hermitian, and therefore
all the iterates Ht are too, Wilkinson introduced a shifting strategy that guarantees rapid global
convergence. At time t, Wilkinson’s shift computes the two eigenvalues of the lower-right 2 × 2
matrix of Ht and takes the one (call it wt) that is closest to Ht(n, n) to then set pt(z) = z − wt.
In [Wil68] Wilkinson proved that for any initial Hermitian H0 , if one runs the iteration (2) using
his shifting strategy, it holds that limt→∞Ht(n, n− 1) = 0, which in particular implies that for any
δ > 0, the matrix Ht is δ-decoupled once t is large enough. This was then revisited by Dekker and
Traub [DT71] who obtained a rate of convergence for Wilkinson’s shift by showing that

|Ht+1(n, n− 1)2Ht+1(n− 1, n− 2)| ≤ |Ht(n, n− 1)2Ht(n− 1, n− 2)|√
2

, for all t ≥ 0. (3)

In particular, this implies that for any δ > 0, δ-decoupling occurs in O(log(1/δ)) iterations. Com-
bining this with the deflation technique and the implicit shifts described above, one gets that any
Hermitian matrix can be fully diagonalized to accuracy δ in O(n3 + log(1/δ)n2) operations.
The case in which the input matrix A ∈ Cn×n is unitary was later solved by Eberlein and Huang
[EH75] and Wang and Gragg [WG02]. When H0 is unitary the Wilkinson shift is no longer guar-
anteed to eventually produce decoupling. In fact, if the Wilkinson shift is used it can occur that
H0 = H1 = H2 = · · · , and similarly many other natural shifting strategies have certain unitary
matrices as fixed points (see [Par66]). The insight of Eberlein and Huang [EH75] was that these
commonly used shifting strategies could be combined with an exceptional shift that avoids stagna-
tion. In essence, their idea was to choose a main shift (e.g. one could choose the Wilkinson shift),
and then exploit the knowledge that the input matrix is unitary to identify fixed points for the
main shift, to then scape them by invoking the exceptional shift whenever necessary. Later, Gragg
and Wang [WG02] revisited this idea and showed that, on unitary inputs, a mixed strategy that
combines the Wilkinson shift and an exceptional shift satisfies a more complicated version of (3).
Their analysis implies that this mixed strategy achieves δ-decoupling in O(log(1/δ)) iterations,
ultimately implying that any unitary input can be diagonalized to accuracy δ in O(log(1/δ)n3)
operations.
Beyond Hermitian and unitary matrices not much was known and proving rapid global convergence
was open even in the normal case. We refer the reader to [BGVSa, §1.2] for a comprehensive
literature review.

The main result. In the series [BGVSa, BGVSb, BGVSc] we introduced a shifting strategy that
provably achieves global rapid convergence (in the space of all matrices). Hereon, if all the pt(z) in
a shifting strategy are of degree k we will say that the shifting strategy is of degree k.
The condition number of the eigenvector matrix turned to be a fundamental quantity in our analysis.
To be precise, if A ∈ Cn×n is diagonalizable, define

κV (A) = inf
V :A=V DV −1

∥V ∥∥V −1∥,

where ∥ · ∥ denotes the operator norm and the infimum runs over all diagonalizations of A. Note
that when A is normal one has κV (A) = 1 and when A is non-diagonalizable the convention is
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that κV (A) = ∞, so κV (·) can be viewed as a measure of non-normality. Fundamentally, [BGVSa]
proves the following.4

Theorem 1. For every positive integer k, there exists a shifting strategy of degree k that is ensured
to achieve δ-decoupling in log(1/δ) iterations provided that the starting matrix H0 satisfies

log(1 + κV (H0)) · log
(
1 + log(1 + κV (H0))

)
≤ ck, (4)

where c > 0 is some absolute constant.
In some sense, our analysis articulates that the complexity of shifted QR is tied to κV of the input. In
particular, the above theorem implies that rapid global convergence on normal matrices is possible
using a shifting strategy of degree O(1), just as in the case of Hermitian and unitary matrices.
In contrast, when the input is non-diagonalizable the strategy needed is “infinitely complex” and
the theorem becomes vacuous. That said, the latter situation can be addressed using an idea
from smoothed analysis [ST04] which in the context of the eigenvalue problem can be traced back
to Davies [Dav08]. In short, to obtain guarantees for arbitrary inputs, instead of running the
algorithm on the original input matrix A ∈ Cn×n we run it on A + γGn, where γGn is a tiny
random perturbation of A. One can then invoke results from random matrix theory (e.g. from
[ABB+18, BKMS21, BGVKS24, JSS21]), which for example imply that if Gn is a normalized n×n
Ginibre matrix5, ∥A∥ ≤ 1, and γ > 0, with high probability

κV (A+ γGn) ≤
n4

γ
. (5)

Certainly, this preprocessing random perturbation incurs an error in the computation (just as the
deflation step does), but if the scale of γ is chosen appropriately, it will not preclude one from being
able to obtain an accurate approximate version of the eigenvalue problem. Then, putting (4) and
(5) together, in [BGVSb] we were able to show that a randomized version of the QR algorithm can
diagonalize any input matrix A ∈ Cn×n with accuracy δ in O(n3 log(n/δ)2 log log(n/δ)2) operations.

Our shifting strategy. As in [DT71] and other works that served as inspiration (e.g. [Bat94]), we
used the lower subdiagonal entries of the iterates Ht to keep track of progress towards convergence.
Specifically, to analyze the shifting strategy of degree k mentioned in Theorem 1, we used the
potential function ψk which on a Hessenberg matrix H is defined as

ψk(H) = |H(n, n− 1)H(n− 1, n− 2) · · ·H(n− k + 1, n− k)|
1
k .

Then, as in [EH75, WG02], we used a mixed strategy consisting of a main shift and an exceptional
shift. If at time t an iteration with the main shift did not satisfy that ψk(Ht+1) ≤ .8ψk(Ht) (i.e.
if progress is not being made), then our shifting strategy recomputes Ht+1, this time using the
exceptional shift, and in [BGVSa] we show that provided that κV of the input matrix satisfies the
bound (5) the exceptional shift does succeed in guaranteeing ψk(Ht+1) ≤ .8ψk(Ht). Our mixed
strategy then guarantees a geometric decrease of the quantity ψk(Ht), which in turn implies that
δ-decoupling will occur after O(log(1/δ)) iterations.

A final caveat. Our theoretical algorithm is not a prescription for practitioners and does not
seek to replace the current very efficient LAPACK routines, which have been fine-tuned over the

4This theorem was not stated verbatim and strictly speaking only k’s that are powers of 2 were treated in the
paper, however, the ideas in [BGVSa] yield, with very little extra work, the theorem stated here.

5That is, and n× n matrix with i.i.d. complex Gaussian entries of variance 1
n
.
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decades and for which several patches have been added to avoid convergence failures. We do
warn the reader however, that such routines are by now quite sophisticated and do not come with
theoretical guarantees. This does make one wonder if there is an algorithm that is as efficient as
the existing implementations, but that is conceptually simple and for which one can give rigorous
guarantees.
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Flexible Golub-Kahan Factorization for Linear Inverse Problems

Silvia Gazzola

Abstract

Discrete linear inverse problems arising in many applications in Science and Engineering are for-
mulated as the solution of large-scale linear systems of equations of the form

Axtrue + n = b , (1)

where the discretized forward operator A ∈ Rm×n is large-scale with ill-determined rank, and
n ∈ Rm are some unknown perturbations (noise) affecting the available data b ∈ Rm. In this
setting, in order to recover a meaningful approximation of xtrue ∈ Rn, one should regularize (1).
In this talk we consider variational regularization methods that compute an approximation xreg of
xtrue as

xreg = arg min
x∈Rn

∥R(Ax− b)∥pp + λ∥Lx∥qq , where λ ≥ 0, p, q > 0, R ∈ Rm×m L ∈ Rl×n. (2)

In the above formulation, when p = q = 2, many standard numerical linear algebra tools can be
employed to approximate xreg: these include the SVD of A (when A has some exploitable structure
and L is the identity), early termination of Krylov solvers for (1) (when λ = 0), and hybrid
projection methods. We refer to [2] for a recent survey of these strategies. However, by properly
setting p, q ̸= 2, better approximations of xtrue can be obtained in many scenarios, including: when
the noise n is not Gaussian, nor white, and/or when wanting to enforce sparsity onto Lxreg (e.g., in
the compressive sensing framework, when A is heavily underdetermined). Although many classes of
well-established optimization methods are usually employed to handle the non-smooth and possibly
non-convex instances of (2), in the last decades a number of new solvers based on ‘non-standard’
(such as flexible [1, 4] or generalized [5]) Krylov methods have been successfully considered for this
purpose; see also [3, 7]. Even though the common starting point of such ‘non-standard’ Krylov
solvers is the reformulation of a smoothed version of (2) as an iteratively reweighted least squares
problem, flexible Krylov methods for p = 2 are typically more efficient and stable than generalized
Krylov methods, while the latter can handle also the p ̸= 2 case and many options for L.
This talk introduces new solvers for (2), based on a new flexible Golub-Kahan factorization of the
kind

ÂZk = Uk+1M̄k , Â⊤Yk+1 = Vk+1Tk+1 ,

where: Uk+1 ∈ Rm×(k+1) and Vk ∈ Rn×k have orthonormal columns ui (i = 1, . . . , k + 1) and vi

(i = 1, . . . , k), respectively; Zk = [L†
1v1, . . . ,L

†
kvk], Yk+1 = [R†

1u1, . . . ,R
†
k+1uk+1]; M̄k ∈ R(k+1)×k

is upper Hessenberg and Tk+1 ∈ R(k+1)×(k+1) is upper triangular; k ≪ min{m,n}. The ith
approximate solution of xreg in (2) is defined as

xi = Zi argmin
s∈Ri

∥f(Ti+1, M̄i)s− ci∥22 + λi∥Sis∥22 ,

where the regularization parameter λi is adaptively set, Si ∈ Ri×i is a regularization matrix for the
projected variable s, ci is a projected right-hand side, and f compactly denotes products and/or
sums of (possibly slight modifications and transposes of) both matrices Ti+1 and M̄i; different
choices of f and Si define different solvers. Note that R†

i and L†
i act as variable ‘preconditioners’

for the constraint and solution subspaces, respectively; their role is to enforce iteration-dependent
information useful for a successful regularization. Different choices of Â, R†

i and L†
i allow to handle

different instances of (2). Namely:
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(a) Â = [A⊤, L⊤]⊤, R†
i = diag(I, λiI) and L†

i = I solves Tikhonov problems in general form in
the 2-norm, with adaptive regularization parameter choice strategy; this provides an alterna-
tive to the generalized Krylov method in [6].

(b) Â = A, R†
i = I and L†

i = diag(g−1
q (xi−1)) (where gq is a function that depends on the q-

norm and is applied entry-wise) solves the so-called ℓ2−ℓq regularized problem, with adaptive
regularization parameter choice strategy; this coincides with the basic version of the method
in [1] (and can be reformulated to cover all the options in [1]).

(c) Â = [A⊤, L⊤]⊤, R†
i = diag(gp(R(Axi−1 − b)), λigq(Lxi−1)) (where, similarly to gq, gp is

a function that depends on the p-norm and is applied entry-wise) and L†
i = I solves the

so-called ℓp− ℓq regularized problem, with adaptive regularization parameter choice strategy;
this extends the methods in [1] and provides an alternative to the generalized Krylov method
in [5]. As a particular case, setting λi = 0, i = 1, 2, . . . solves a p-norm residual minimization
problem.

The new solvers are theoretically analyzed by providing optimality properties and by studying
the effect of variations in R†

i and L†
i on their convergence. The new solvers can efficiently be

applied to both underdetrmined and overdetermined problems, and successfully extend the current
flexible Krylov solvers to handle different matrices R (typically the inverse square root of the noise
covariance matrix), as well as regularization matrices L whose A-weighted generalized pseudo-
inverse cannot be cheaply computed.
Numerical experiments on inverse problems in imaging, such as deblurring and computed tomog-
raphy, show that the new solvers are competitive with other state-of-the-art nonsmooth and non-
convex optimization methods, as well as generalized Krylov methods.
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Numerical Approximation of the Distance to Singularity for Matrix-valued
Functions

Miryam Gnazzo, Nicola Guglielmi

Abstract

We consider matrix-valued functions in the form

F(λ) =

d∑
i=1

fi(λ)Ai,

where Ai ∈ Cn×n and fi : C 7→ C entire functions for i = 1, . . . , d. Given a regular matrix-valued
function, that is a function whose determinant det (F(λ)) is not identically zero, we discuss the
problem of computing the singular matrix-valued function closest to it in the Frobenius norm. This
problem is known in literature as the computation of the distance to singularity for F(λ). More
precisely, we are interested in approximating the nearest matrix-valued function F(λ) + ∆F(λ)
such that

det (F(λ) + ∆F(λ)) ≡ 0, (1)
where ∆F(λ) =

∑d
i=1 fi(λ)∆Ai, with ∆Ai ∈ Cn×n, for i = 1, . . . , d. The problem of the numerical

approximation of the distance to singularity for F(λ) is well-known to be challenging, even for
linear cases, where it reduces to the computation of the distance to singularity for matrix pencils
[2]. Recently, the problem has gained increasing attention and numerical approaches have been
developed both for matrix pencils, as in [4], and in the case of polynomial nonlinearities, as in [3].
Nevertheless, none of the currently available techniques has been applied to the approximation of
the distance to singularity for general nonlinearities.
The solution of this problem for general nonlinearities becomes important in the context of differ-
ential algebraic equations and delay differential algebraic equations. Indeed, in this framework, the
characteristic equation associated with the differential equation has the form

det
(
A1 − λA2 + e−τ1λA3 + . . .+ e−τkλAk+2

)
= 0,

and the eigenstructure of the matrix-valued function is a crucial tool in the solvability of the delay
differential algebraic equation with discrete constant delays τj , for j = 1, . . . , k.
As an illustrative example, indeed, we underline that in many practical cases the function D(λ) =
A1 − λA2 + e−τλA3, in presence of a small delay τ , may be numerically singular, even in situations
where the pencil A1 − λA2 is regular, leading to a severe ill-posedness of the problem. In this
setting, an a-priori computation of the distance to singularity associated with D(λ) would act like
a measure for the lack of robustness of the differential equation.
A major difficulty is due to the presence of nonlinearities in the matrix-valued function, which
represents a delicate point of the problem, since a general matrix-valued function may have an
infinite number of eigenvalues. Observe that this feature of the problem does not arise when
dealing with matrix pencils and matrix polynomials, and, to our knowledge, this characteristic
may prevent the extension of the currently available methods to nonlinearities different from the
polynomial one.
In this talk, we propose a method for the numerical approximation of the distance to singularity for
nonlinear matrix-valued functions [5]. We show that the problem can be rephrased as a nearness
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problem and the property of singularity of the matrix-valued function is translated into a discrete
numerical constraint for a suitable minimization problem. Nevertheless, this resulting problem
turns out to be highly non-convex. In order to solve it, we propose an iterative procedure made
by two nested optimization subproblems, of whose the inner one introduces a constraint gradient
system of matrix differential equations and the outer one consists in the optimization of the norm
‖
[
∆A1 . . . ∆Ad

]
‖F via a Newton-like method.

We dedicate special attention to the numerical treatment of the continuous constraint (1), since a
careful translation of this condition into its discrete version is an essential step for the applicability
of our numerical approach. To this purpose, we employ results from approximation theory for
analytic functions [1].
In many practical applications, such as in the ones arising from engeneering and mechanical mod-
eling, matrix-valued functions F(λ) are often endowed with additional structures. Indeed, the
coefficients Ai frequently encode data coming from the underlying application: for instance, they
may represent the stiffness or damping matrix in a PDE setting. In this framework, it is important
to employ an approach with the desired feature of addressing different structures, in which case the
search of the closest singular function is restricted to the class of functions preserving the structure
of the matrices.
Nevertheless, the possibility of including additional structural constraints into a nearness problem
is not an easy task and it leads to a more challenging version of the problem. Indeed, techniques
that are able to compute the unstructured distance to singularity often can not be directly extended
to their structured counterparts.
One of the advantages of the nested approach we propose consists in the fact that it can be
naturally extended to its structured version, with minors changes, and, therefore, it is able to
tackle nearness problems with the additional constraint of structured perturbations. In the talk,
we practically demonstrate this feature of our technique, by providing a number of case studies. For
example, the method allows us to limit the perturbations to just a few matrices and also to include
individual structures, such as the preservation of the sparsity pattern of one or more matrices Ai,
and collective-like properties, like a palindromic structure of the function F(λ).
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H2 optimal model reduction of linear systems with quadratic outputs: from
rational function interpolation to data-driven modeling

Sean Reiter , Ion Victor Gosea, Igor Pontes Duff, Serkan Gugercin

Abstract
H2 optimal reduction of linear dynamical systems represents a long-lasting, worthwhile problem in
system-theoretical model order reduction. In this short note, we propose extensions of first-order
necessary conditions, both based on system Gramians and transfer functions, to the H2 problem
for the class of linear systems with quadratic outputs.

1 Introduction

Model-order reduction (MOR) refers to the procedure by which one approximates a large-scale
dynamical system, modeled by systems of ordinary differential equations, with a comparatively
lower-order surrogate model which can be used as a cheap-to-evaluate surrogate in downstream
computational tasks, such as optimization or control. In order to be an effective surrogate, the
computed reduced-order model (ROM) should recover the dominant input-to-output response char-
acteristics of the original complex system, as well as preserve qualitative features like internal struc-
tures. We refer to [1,2] for more details on system-theoretical MOR, since this category is of interest
to us.
The primary consideration of this work is the development of methods for the MOR of linear
dynamical systems which contain quadratic output functions, or linear quadratic-output (LQO)
systems. Here, we develop extensions of classical MOR approaches applicable solely to systems
with linear dynamics and linear outputs. Our contributions are threefold: First, we consider the
H2 optimal model reduction problem, and derive first-order necessary conditions for H2 optimality
based on rational transfer function interpolation. These provide a natural extension of the well-
known interpolation-based H2 optimality framework of Meier and Leunberger [7,8] for linear model
reduction. Based on the developed theoretical optimality framework, we propose an extension of the
well-known iterative rational Krylov algorithm (IRKA) [7] for linear H2 optimal model reduction.
Finally, we show how to compute H2 optimal reduced models using only evaluations of the linear-
and quadratic-output transfer functions.

2 Transfer functions, norms and MOR of LQO systems

In this work, we consider large-scale dynamical systems with linear dynamics and outputs which
are (up to) quadratic functions of the state vector. In state-space, such systems are formulated as

Σ :

{
ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +M (x(t)⊗ x(t)),
(1)

where x(t) ∈ ℝn is the system’s internal state, u(t) ∈ ℝm are the control inputs, and y(t) ∈ ℝp

are the observed outputs. The system matrices satisfy A ∈ ℝn×n, B ∈ ℝn×m, C ∈ ℝp×n and
M ∈ ℝp×n2 . We assume that the system in (1) is asymptotically stable, i.e., the eigenvalues of A
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to be in the left-half plane. Systems that consider quadratic observables as quantities of interest
arise in a variety of applications, and particularly whenever one is interested in observing quantities
computed as the product of time or frequency-domain components of the state [4, 11].
The frequency-domain response of system (1) is fully specified by 2 rational transfer functions [4,6]:

H1(s) = C(sI−A)−1B and H2(s, z) = M
(
(sI−A)−1B⊗ (zI−A)−1B

)
. (2)

The first function H1(s) is the typical transfer function of a linear-output system, and describes
the transfer from input u(t) to output y1(t) := Cx(t), which is linear in x(t). The second bivariate
function H2(s, z) the transfer from input u(t) to output y2(t) := M (x(t)⊗ x(t)), which is quadratic
in x(t). The H2 norm for systems of the form (1) can be defined via these transfer functions as [4,5]

∥Σ∥2H2
:=

1

2π

∫ ∞

−∞
∥H1(ı̇ıω)∥2Fdω +

1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
∥H2(ı̇ıω1, ı̇ıω2)∥2Fdω1dω2. (3)

We note that when M = 0, it implies that H(s, z) = 0, and the formula above simplifies to the
first integral term only, which is the standard formula as used in [7].
In practical applications, the state dimension n can be rather large, e.g., in the order of the millions,
and any repeated action involving the full-order model (FOM) (1) becomes prohibitively expensive.
Model reduction seeks to remedy this problem with the construction of cheap-to-evaluate surrogate
models having the same form as (1), but described by a comparatively much smaller number of
differential equations. Mathematically, this amounts to computing a system

Σ̂ :

{
˙̂x(t) = Âx̂(t) + B̂u(t),

ŷ(t) = Ĉx̂(t) + M̂ (x̂(t)⊗ x̂(t)),
(4)

with a significantly reduced dimension 1 ≤ r ≪ n. x̂(t) ∈ ℝr contains the reduced-order state
variables, and ŷ(t) ∈ ℝp are the approximateds output. The reduced-order matrix operators
satisfy Â ∈ ℝr×r, B̂ ∈ ℝr×m, Ĉ ∈ ℝp×r, and M̂ ∈ ℝp×r2 . In order to be an effective surrogate,
the reduced model (4) should replicate the input-to-output response characteristics of the large-
scale system (1). In order words, for a given tolerance τ > 0, the output deviation should satisfy
∥y − ŷ∥ ≤ τ∥u∥ in an appropriate norm for a range of admissible inputs u.
Suppose that one is interested in controlling the Lp

∞, or “worst case” deviation in the output
∥y − ŷ∥Lp

∞ := supt≥0 ∥y(t)− ŷ(t)∥∞. Significantly, one can show following error bound [4]:

∥y − ŷ∥Lp
∞ ≤ ∥Σ− Σ̂∥H2

(
∥u∥2Lm

2
+ ∥u⊗ u∥2

Lm2
2

)1/2
. (5)

In other words, the H2 model error bounds the Lp
∞ output error. Based on the bound (5), we

consider the H2 optimal model reduction problem for the LQO system class (1). Given the system
in (1), find a ROM such that

min
dim(Σ)=r

J (Σ̂), J (Σ̂) := ∥Σ− Σ̂∥2H2
. (6)

3 One main result

We follow here the results in [9]. To simplify the approximation problem, we assume the approxi-
mate system in (4) has simple poles. Then, the reduced-order linear- and quadratic-output transfer
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functions can be expressed in pole-residue form:

Ĥ1(s) =
r∑

i=1

𝕔i𝕓Ti
s− λi

and Ĥ2(s, z) =
r∑

j=1

r∑
k=1

𝕞j,k (𝕓j ⊗ 𝕓k)T

(s− λj)(z − λk)
, (7)

where 𝕓k ∈ ℂm, and 𝕔k ∈ ℂp,𝕞j,k ∈ ℂp, for all j, k = 1, . . . , r. We define 𝕔i𝕓Ti ∈ ℂp×m and
𝕞j,k(𝕓i ⊗ 𝕓i)T ∈ ℂp×m2 to be the residues of Ĥ1(s) and Ĥ2(s, z) corresponding to λi and (λj , λk),
respectively. We are able to show that

∥Σ− Σ̂∥2H2
= ∥Σ∥2H2

− 2

 r∑
i=1

𝕔Ti H1(−λi)𝕓i +
r∑

j=1

r∑
k=1

𝕞T
j,kH2(−λj ,−λk) (𝕓j ⊗ 𝕓k)

+ ∥Σ̂∥2H2
. (8)

This makes the H2 optimal model reduction problem tractable by minimally parameterizing the
ROM in (4) in terms of the transfer function poles and residues.

Theorem 1 Suppose that Σ̂ has simple poles λ1, . . . , λr ∈ ℂ−, and is a local minimizer of the
squared H2 error ∥Σ− Σ̂∥2H2

. Then, for all i, j, k = 1, . . . , r, it holds that

0 =
(
H1(−λi)− Ĥ1(−λi)

)
𝕓i,

0 =
(
H2(−λj ,−λk)− Ĥ2(−λj ,−λk)

)
(𝕓j ⊗ 𝕓k) ,

0 = 𝕔Tk
(
H1(−λk)− Ĥ1(−λk)

)
+

r∑
ℓ=1

𝕞T
k,ℓ

(
H2(−λk,−λℓ)− Ĥ2(−λk,−λℓ)

)
(Im ⊗ 𝕓ℓ)

+
r∑

ℓ=1

𝕞T
ℓ,k

(
H2(−λℓ,−λk)− Ĥ2(−λℓ,−λk)

)
(𝕓ℓ ⊗ Im) ,

0 = 𝕔Tk

(
d

ds
H1(−λk)−

d

ds
Ĥ1(−λk)

)
𝕓k +

r∑
ℓ=1

𝕞T
k,ℓ

(
∂

∂s1
H2(−λk,−λℓ)−

∂

∂s1
Ĥ2(−λk,−λℓ)

)
(𝕓k ⊗ 𝕓ℓ)

+
r∑

ℓ=1

𝕞T
ℓ,k

(
∂

∂s2
H2(−λℓ,−λk)−

∂

∂s2
Ĥ2(−λℓ,−λk)

)
(𝕓ℓ ⊗ 𝕓k) .

In other words, tangential interpolation is a necessary condition for H2 optimality. We also note that
when M = 0, it implies that the formulae above simplify accordingly to the standard interpolation-
based FONC’s for classical linear systems, as in [7, 8].

4 Summary of all proposed results

Based on the bound in (5), we have considered the H2 optimal model reduction problem for the
class of systems in (1). We went about this in two different ways, corresponding to two types of
FONCs, namely for the first one mentioned earlier introduced in [8]. Then, for the second, e.g., the
Gramian-based FONCs as introduced in [13], we analyzed it in [10].
Our contributions to the interpolation-based formulation are threefold:

A. First, we derive interpolation-based first-order necessary conditions for H2 optimal model re-
duction. These amount to tangential interpolation of a weighted sum of the transfer functions
in (2), and generalize the analogous optimality conditions for linear H2 model reduction. We
show how to enforce these conditions in the construction of the ROM using projection.
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B. Secondly, we show that these conditions are equivalent to the Gramian-based H2 optimality
conditions for LQO systems as in (1).

C. Thirdly, we propose an extension of TF-IRKA in [3] to systems of the form (1). The algorithm
enforces the necessary H2 optimality conditions at every step and produces locally H2 optimal
approximants upon convergence. Additionally, at every step, the matrices of the ROM are
computed solely in terms of data, i.e., samples of the two transfer functions in (2).

Due to space limitations, we are not able to go into a detailed analysis of the results concerning
Gramian-based FONCs, as presented in [10]. In short, we derive gradients of the squared H2 system
error with respect to the system matrices of the LQO-ROM as parameters. The stationary points
of these gradients directly yield Gramian-based FONCs for H2 optimality. These results generalize
the analogous Gramian-based FONCs for linear H2 optimal model [12, 13] to the LQO setting. We
also show that a H2 optimal LQO-ROM is necessarily defined by Petrov-Galerkin projection. The
relevant projection matrices are obtained as solutions to a pair of Sylvester equations.
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Towards Efficient Algorithms for Approximately Solving (Overdetermined)
Systems of Polynomial Equations

N. Govindarajan, R. Widdershoven, L. De Lathauwer

Abstract

We revisit the age-old problem of solving a system of multivariate polynomial equations. This
problem can be viewed as a simultaneous generalization of solving linear systems and finding roots
of univariate polynomials. It is well-known that the aforementioned special cases have widespread
applications in science and engineering. It should come as no surprise that the same is true about
the more general version of this problem. This is particularly the case in the noisy overdetermined
setting, which extends the familiar engineering notion of solving a system of linear equations in a
“least-squares” fashion to the polynomial case.
Classically, solving a system of polynomial equations belongs to the field of computational algebraic
geometry. The literature advocates two major approaches to the problem. The first approach
involves homotopy continuation, where the roots of the desired system are found by continuous
deformation of a starting system for which the roots are already known. The second approach,
which is more in line with our work, reduces the problem to an eigenvalue problem. The algebraic
approach has its origins in resultant theory, tracing back to original contributions by B’ezout,
Sylvester, Cayley, and Macaulay. The main idea behind this line of attack is to unveil the structure
of the quotient algebra of the ideal generated by the polynomial system. Solutions of the system
are subsequently extracted from the eigen-structure of the generated multiplication tables [1].
Up to this point, the literature has primarily focused on the noiseless square case. Herein, it is
assumed that the coefficients of the polynomials are known with full precision and the number of
equations equals the number of unknowns. On the contrary, a critical component of engineering
applications is the estimation of system parameters from an overcomplete set of equations corrupted
by noise. In the case of linear systems, numerical linear algebra already provides effective methods
to deal with such problems. Analogous methods to treat the more general polynomial case are,
however, far fewer, and relatively underdeveloped.
Our work hopes to fill this gap by taking a fresh perspective on the problem. The cornerstone
of our proposed framework is the (tensor-based) Macaulay method [4]. This method rests on the
idea that a basis for the quotient algebra can be formed by computing a numerical null space of
a resultant map. The classical Macaulay matrix, which generalizes the Sylvester resultant matrix
of two univariate polynomials to the multivariate case, is a canonical example of such a map. The
fact that the null space is obtained through numerical means is an essential ingredient in enabling
the solvability of polynomial systems in an approximate sense [5].
This core key feature of the methodology is best explained through an example. Suppose that one
wants to solve the overdetermined linear system −3 −1 −2

−2 −1 1
1 7 1

 1

x
y

 =

 0
0
0


in a total least-squares sense. As it is well-known, the solution is trivially found by retrieving
the smallest right-singular vector of the matrix on the left-hand side of the expression. Since
the corresponding singular value is strictly positive, the right-singular vector (after normalization)

149



will only yield an approximate solution of the system. Interesetingly, a similar strategy may be
employed to find approximate solutions for polynomial systems. For example, the overdetermined
polynomial system

p1(x,y)

p2(x,y)

p3(x,y)

 −3 −1 −2 4 6 7
−2 −1 1 3 −7 5
1 7 1 −8 3 1




1

x
y

x2

xy
y2

 =

 0
0
0

 (1)

has an exact solution at (x, y) = (1, 0), which is also the only solution of the system. This single
solution disappears under small perturbations of the coefficients, but one can still view (x, y) = (1, 0)
as an approximate solution of the noise-perturbed system. After all, the Vandermonde vector
evaluated at this point, i.e.,

[
1 1 0 1 0 0

]⊤, is still an approximate null vector for the noise
perturbed matrix. It can therefore be subsequently used to derive approximate solutions.
Unlike the linear system, there are several complications that one has to treat in the polynomial case.
Firstly, the existence of other artificial null vectors in (1) make the retrieval of the Vandermonde
solution vector impossible. This first complication is resolved by adding additional equations to
the system:

p1(x,y)

p2(x,y)

p3(x,y)

xp1(x,y)

xp2(x,y)

xp3(x,y)

yp1(x,y)

yp2(x,y)

yp3(x,y)



−3 −1 −2 4 6 7 0 0 0 0
−2 −1 1 3 −7 5 0 0 0 0
1 7 1 −8 3 1 0 0 0 0

0 −3 0 −1 −2 0 4 6 7 0
0 −2 0 −1 1 0 3 −7 5 0
0 1 0 7 1 0 −8 3 1 0

0 0 −3 0 −1 −2 0 4 6 7
0 0 −2 0 −1 1 0 3 −7 5
0 0 1 0 7 1 0 −8 3 1





1

x
y

x2

xy
y2

x3

x2y
xy2

y3


=



0
0
0

0
0
0

0
0
0


.

The above matrix presents an example of a Macaulay matrix at a certain degree. This Macaulay
matrix contains the Vandermonde Vector[

1 1 0 1 0 0 1 0 0 0
]⊤

as the only null vector up to scaling ambiguity. Secondly, a polynomial system can, in general,
admit multiple solutions. Consequently, the numerically obtained (approximate) null basis will
not be immediately in Vandermonde form. This second complication is resolved by performing
an additional unmixing operation to retrieve the Vandermonde basis. This Vandermonde basis
reconstruction can be viewed as a multi-dimensional harmonic retrieval problem [3], and can be
effectively solved by computing a canonical polyadic decomposition of a tensor formed from the
obtained null space basis [4].
In general, solutions for a polynomial system can be determined in two computational steps: (i)
compute the null space of the Macaulay matrix, and (ii) compute a polyadic decomposition of a
tensor to retrieve the solutions. In the case of overdetermined systems that only possess a handful of
solutions, the first step is a major computational bottleneck. Macaulay matrices grow very rapidly
in size for even moderately-sized polynomial systems. This makes the null space computation
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prohibitively expensive. To get an impression of the complexity, a polynomial in N variables of
degree D contains

(
N+D
N

)
monomial terms. The Macaulay matrix at degree Dmac ≥ D of S such

polynomials is the matrix that is constructed from the polynomial coefficients of the system {ps}Ss=1

such that its rows span the set of polynomials{
p :=

S∑
s=1

hs · ps : deg(p) ≤ Dmac

}
. (2)

Both the numbers of rows and columns of this matrix grow combinatorially in size with respect to
Dmac, D, and N .
Fortunately, the Macaulay matrix is highly structured. In the monomial basis, the Macaulay
matrix possesses multilevel Toeplitz structures. It also has recursive properties, and in certain
cases, the matrix can be highly sparse. Furthermore, the Chebyshev variant of the Macaulay
matrix is multilevel Toeplitz-plus-Hankel. Subsequently, much of our research has been dedicated
to developing efficient null-space computation algorithms that exploit the structures in the matrix.
Our efforts in this area have led to some interesting work; some of which is still ongoing research:

1. In [2] we considered exploiting the low-displacement rank structure of the Macaulay matrix
to compute the null space through a rank-revealing LU factorization using the Gohberg-
Kailath-Olshevsky (GKO) algorithm. Although this approach reduced the memory and time
complexity of the null-space computation significantly, the savings do not scale well for poly-
nomial systems in many variables.

2. In recent (almost completed) work [6], we introduced an alternative approach that exploits
the shift structure of the Macaulay matrix in a different way. This method scales more
gracefully with the number of variables. The method relies on computing the null spaces of
nested subblocks of increasing size by using the fact that the same subblocks are repeated
throughout the Macaulay matrix and that the null space of two stacked (block-)rows equals
the intersection of their individual null spaces.

3. Currently, we are also investigating an approach to compute the null space with a Krylov-
based iterative technique. This option seems to be particularly attractive for overdetermined
systems that only have a few (approximate) solutions. This is because, in this case, the
Macaulay matrix will have a relatively small (numerical) null space. In the monomial basis,
the Macaulay matrix has fast matrix-vector product with the help of fast Fourier transforms.
Interestingly, one can also obtain a fast matrix-vector product for the Macaulay matrix in the
Chebyshev basis using fast cosine transforms. A big challenge is to make the Krylov-based
method converge in a reasonable number of iterations. Finding good preconditioners may be
essential.

At the Householder Symposium, our goal is to share this research with our colleagues.
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When is the Resolvent Like a Rank One Matrix?

Anne Greenbaum, Abbas Salemi, Faranges Kyanfar

Abstract

For a square matrix A, the resolvent at a point z ∈ C is defined as (A − zI)−1. It was observed
in [2] that for certain matrices A with ill-conditioned eigenvalues the resolvent is close to the rank
one matrix σ1(z)u1(z)v1(z)

H , for a wide range of z values, where σ1(z) is the largest singular value
of (A− zI)−1 and u1(z) and v1(z) are the corresponding left and right singular vectors. Moreover,
for a slightly smaller range of z values, u1(z) and v1(z) are almost orthogonal to each other. Here
we provide a partial explanation for this phenomenon.
The distance in 2-norm from (A − zI)−1 to the nearest rank one matrix, σ1(z)u1(z)v1(z)

H , is
σ2(z), the second largest singular value of (A − zI)−1, and one might define the relative distance
as σ2(z)/∥(A− zI)−1∥2 = σ2(z)/σ1(z). Given ϵ > 0, we are interested in

{z ∈ C : σ2(z)/σ1(z) < ϵ}. (1)

Recall that the ϵ-pseudospectrum of A can be defined as [3]:

{z ∈ C : 1/σ1(z) < ϵ}. (2)

If it turns out that σ2(z) ∼ 1 throughout the ϵ-pseudospectrum, then these two sets may look very
similar. Indeed, the plots in [2] look much like pseudospectra.
To study this phenomenon, we will work with the matrix A − zI, whose singular values are the
inverses of those of (A−zI)−1 and whose right and left singular vectors are the left and right singular
vectors of (A− zI)−1. If sn(z) and sn−1(z) denote the smallest and second smallest singular values
of A− zI, then we are interested in the ratio sn(z)/sn−1(z).
The following theorem and corollary are proved in a paper currently in progress [1]:

Theorem. Let λ be a simple eigenvalue of A and let A0 := A − λI = USV H be a singular
value decomposition of A0, where U := [u1, . . . , un], V := [v1, . . . , vn], S := diag(s1, . . . , sn−1, 0),
s1 ≥ . . . ≥ sn−1 > 0. Let A†

0 denote the Moore-Penrose pseudoinverse of A0:

A†
0 := Vn−1S

−1
n−1U

H
n−1, (3)

where Un−1 := [u1, . . . , un−1], Vn−1 := [v1, . . . , vn−1], and Sn−1 := diag(s1, . . . , sn−1). For each
k = 1, 2, . . ., the smallest singular value of A0 − zI is less than or equal to

k∑
j=1

|z|j |uHn (A†
0)

j−1vn|+ |z|k+1/skn−1. (4)

Taking k = 1 in the theorem, we obtain the bound

sn(A0 − zI) ≤ |uHn vn| |z|+ |z|2/sn−1.

If λ is ill-conditioned, it means that the inner product of the left and right unit eigenvectors of
A corresponding to eigenvalue λ is tiny, but these eigenvectors are the same as the left and right
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singular vectors un and vn corresponding to the zero singular value of A0. In this case, if also
sn−1 ∼ 1, then sn(A0 − zI) grows more like |z|2 than like |z| for |uHn vn| << |z| << 1. If un is
also nearly orthogonal to A†

0vn, then taking k = 2 in the theorem suggests that the growth rate of
sn(A0 − zI) with |z| may be more like |z|3, and the more powers j for which |uHn (A†

0)
jvn| is small,

the higher the power of |z| describing the growth of sn(A0− zI), for |z| << 1. If the absolute value
of z times each eigenvalue of A†

0 is less than one, then the first sum in (4) will converge to a finite
value as k → ∞, and for |z| < sn−1, the second term in (4) will go to 0 as k → ∞. In this case,
the smallest bound may be obtained by taking k = ∞.
Although we are not yet sure how to interpret the conditions that |uHn (A†

0)
jvn| be small, these

conditions seem to be satisfied by many test problems with ill-conditioned eigenvalues, such as
those available through the ’gallery’ command in MATLAB and many in [3].
Corollary. With the notation and assumptions of the previous theorem, let ϵ ∈ (0, 1) be given. The
region where the ratio of the second largest to the largest singular value of the resolvent (A−zI)−1

is less than ϵ contains the set of points z ∈ C such that |z − λ| < sn−1 and

min
k=1,2,...

 k∑
j=1

|z − λ|j |uHn (A†
0)

j−1vn|+ |z − λ|k+1/skn−1

 /(sn−1 − |z − λ|) < ϵ. (5)

The ϵ-pseudospectrum of A contains the set of points z ∈ C such that

min
k=1,2,...

 k∑
j=1

|z − λ|j |uHn (A†
0)

j−1vn|+ |z − λ|k+1/skn−1

 < ϵ. (6)

This corollary defines disks about each eigenvalue that are known to lie within the regions defined
in (1) and (2). In our numerical tests, they are not far from the largest disks about the eigenvalues
that are contained in these regions.
We will report on these results, as well as some results obtained by differentiating the singular
values and vectors of A− zI.
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Randomization techniques for solving eigenvalue problems

Laura Grigori, Jean-Guillaume de Damas

Abstract

In this talk we will discuss randomization techniques for computing a few eigenpairs of a large,
sparse, non-symmetric matrix A. We consider Krylov subspace methods and the Rayleigh-Ritz pro-
cess that relies on projection onto the Krylov subspace Kk(A, v1) = span{v1, Av1, A2v1, ..., A

k−1v1}
formed after k iterations for a given starting vector v1.
Randomization for Krylov subspace methods was introduced in the recent years, in particular for
solving linear systems of equations [1, 7, 8]. Randomized Arnoldi introduced in [1] relies on a
randomized orthogonalization process that produces a well conditioned basis of the Krylov sub-
space and thus can be efficiently used in a randomized version of GMRES. It is shown in [1] that
randomized GMRES is quasi-optimal since it relies on solving a sketched least squares problem to
minimize the residual and obtain a new solution. A different approach consists in using sketching
independently of the construction of the Krylov basis, as in sketched GMRES [7], or sketch and
select [5]. Restarting in the context of linear systems is discussed in [2, 6].
We first discuss the usage of randomization for orthogonalizing a set of vectors that are of very
large dimension. This operation that occurs in many computations is very often the bottleneck in
terms of communication. Indeed, when the vectors to be orthogonalized are distributed over many
processors and are obtained one by one as in Krylov subspace methods, the orthogonalization of
each vector with respect to the previous ones requires synchronizing all processors, and this hinders
drastically the scalability of a parallel algorithm. Two different methods are in general used. The
first one is classical Gram-Schmidt (CGS), which requires one synchronization to orthogonalize a
new vector against the previous ones and thus can be considered to be efficient, but suffers from
numerical stability issues since it depends quadratically on the condition number of the vectors.
The second one is modified Gram-Schmidt (MGS) which has better numerical stability with linear
dependency on the condition number, but is inefficient since it relies on vector-vector operations and
requires j synchronizations for orthogonalizing a new vector against the previous j orthogonalized
vectors. Householder QR is a highly accurate process for orthogonalizing a set of vectors, but is in
general used for orthogonalizing a set of vectors that are given all at once.
Several different algorithms have been introduced in the literature, as randomized Gram-Schmidt
[1] and randomized Householder QR [4]. The main idea is to use randomization to sketch the
vectors that need to be orthogonalized, obtain a smaller problem for which a highly accurate
orthogonalization algorithm can be used as Householder QR, and then use the orthogonalized
sketch vectors to obtain a well conditioned basis for the vectors of very large dimension. This
approach is suitable for the usage of mixed precision, since after the random projection, a smaller
problem is obtained that can be solved in higher precision. This leads to obtaining a basis for the
Krylov subspace whose sketch is orthogonal, but not the basis itself. We will discuss in particular
a reorthogonalization process that allows to improve the stability of randomized Gram-Schmidt.
We then discuss the usage of such an orthogonalization process that produces a well conditioned
basis within an eigenvalue solver, that leads to a randomized Rayleigh-Ritz process. We introduce
the randomized Implicitly Restarted Arnoldi (randomized IRA) method, that relies on a sketched
orthonormal basis and a restarting scheme that allows to seek a specific subset of eigenpairs of a
non-symmetric matrix A. We provide a theoretical analysis that shows that some of the results
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defining the convergence behavior of IRA hold for randomized IRA, up to a factor of 1 +O(ϵ) and
with high probability. More details can be found in [3].
Finally, we will discuss one of the challenges that arises when using randomization for symmetric
matrices, that is related to the fact that randomization destroys symmetry. Thus the Hessenberg
matrix associated with the Arnoldi process is not symmetric as in the case of deterministic methods.
We discuss implications and possible solutions to this problem.
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Subspace accelerated contour integration methods for eigenvalue problems

Luka Grubišić

Abstract

In this talk, we will present a class of adaptive approximation methods for computing the partial
solution of eigenvalue problems. We will concentrate on algorithms which are matrix-free in the
sense that they treat a matrix A, or its shifted inverse (z − A)−1, as a mapping A : x 7→ Ax, and
(z −A)−1 : x 7→ (z −A)−1x, respectively. We present a Beyn-type eigensolver (see [1]) accelerated
by the use of adaptive reduced-order model of the matrix resolvent. As prototype examples, we
will consider both linear as well as nonlinear (in the spectral parameter) eigenvalue problems. In
particular, we will study examples from thermoacoustics applications [14].
In the interest of clarity, let us first concentrate on the standard linear eigenvalue problem for a
diagonalisable matrix A. When the resolvent is given as a mapping (z−A)−1 : x 7→ (z−A)−1x, one
has to incorporate the inexactness (due to the approximation truncation) of the evaluation of this
mapping into an analysis. This is a known and structurally challenging problem in the theory of
Krylov-type solvers [10, 16]. An alternative approach is to transform the problem of approximating
the eignvalue cluster enclosed by the finite contour Γ into an eigenvector problem for the spectral
projector PΓ

PΓ =
1

2πi

∫
Γ
(z −A)−1 dz ≈ ΠΓ :=

N∑
i=1

ωi(zi −A)−1.

One can then apply the standard subspace iteration to extract eigenvector information using the
approximation

xj 7→ PΓxj =
1

2πi

∫
Γ
(z −A)−1xj dz ≈

N∑
i=1

ωi(zi −A)−1xj , j = 1, · · · , d

For this talk we choose not to discuss the implications of embarrassing paralelism (in terms of
sampling the resolvent with respect to the spectral parameter zi and vectors xj) on the evaluation
of the action of PΓ.
We will loosely call this approach interpolatory and nonintrusive. Namely, to produce a reliable
eigenvalue/vector approximation method, one only needs a solver for the shifted system (z, x) 7→
(z − A)−1x as a black box, but with an error estimate and error control. The projection PΓ is
a dense, but low-rank matrix. The dimension of its range equals the joint algebraic multiplicity
of the eigenvalues enclosed by the contour Γ, denoted by #Γ. The problem of computing an
orthonormal basis of the eigensubspace associated with the enclosed cluster of eigenvalues can now
be reduced to the calculation of the SVD of a large implicitly defined matrix PΓ of low rank. This
orthonormal basis can then be used to construct a small auxiliary spectral problem from which
eigenvector/eigenvalue information can be directly and robustly extracted (not the topic of this
talk). Randomized SVD has distinguished itself as a method of choice for analyzing approximate low
rank matrices. It has been studied in many settings, including its infinite-dimensional incarnation
[13, 3, 2], which is suitable for the study of numerical methods applied to discretizations of partial
differential operators in physics and engineering. Note that in our notation the randomized SVD
algorithm for ΠΓ ≈ PΓ starts with the random draw of the interpolation directions xj , j = 1, · · · , d
for d ≥ #Γ+ 2. Here we assume that xj have been drawn appropriately, [2].
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The nonintrusive nature of contour integration methods is the reason for inclusion in SLEPc or even
as Extended Eigensolver Routines in the Intel MKL library. This is the easiest way to incorporate
any monolithic solver for the shifted system into an eigenvalue/eigenvector approximation routine.
Large-scale matrices in NLA are typically discretizations of partial differential operators, and the
use of contour integration approach allows more flexibility to seamlessly incorporate various dis-
cretisations of the shifted system (called in the engineering jargon the Helmholtz solvers). These
include rectangular approximations of the resolvent such as those from [8] used in chebop object or
the Discontinuous Petrov Gelerkin approach which also leads to rectangular approximations of the
resolvent [11, 9, 7].
Based on the (infinite-dimensional) randomized SVD for Hilbert–Schmidt operators, an extension
of Beyn’s contour integration method for operators in Hilbert spaces has been described in [5]. The
key ingredient, encapsulated in the phrase solve than discretize, is adaptive error control for the
Helmholtz solver. Pushing discretization by adaptivity to the later stage, the randomized part of
the algorithm gives us means to explore the Hilbert space more broadly and generate an accelerating
subspace with better candidates for eigenvector approximations.
The use of advances in the rational function approximation problem in the context of the solution of
the spectral problem has been thoroughly analyzed, in a slightly different context, in [6]. To coarsely
assess the performance of this method, consider a finite difference discretization of A = −4− V ,
V > 0, with Gaussian potential V , ‖V ‖∞ < ∞. Using the Matlab toolbox SpecSolve1 on a
computer with 10 cores, it took 104 seconds to approximate the spectral density in the interval
[−‖V ‖∞, 0] with tolerance ε = 0.05. In comparison, Matlab eigs on the same machine applied to
a 104 × 104 discretization computed all eigenvalues in the same interval within 0.5 seconds. Apart
from the further use of obvious embarrassing parallelism in the sampling of the resolvent, a speedup
can be achieved by exploiting the product structure in the construction of random vectors [4] (not
this talk) or by speeding up the evaluation of the resolvent using subspace acceleration [14] (this
talk).
As prototypes, we will consider a large class of (nonlinear) eigenvalue problems which are defined
by the generalized resolvent

R(z) = (A0 + f1(z)A1 + · · ·+ fs(z)As)
−1

with self-adjoint coefficients Ai, i = 0, . . . , s and scalar functions fi, i = 1, . . . , s. We will present
an analysis and improvements of the method described in [14] which uses subspace acceleration
together with reduced-order interpolatory modeling of the nonlinear resolvent R. Our method
will be cast within the context of scientific computing with particular emphasis on problems in
thermoacoustics. We will discuss the comparison of the performance of the contour integration
method with the performance of the method based on the direct rational interpolation of the
resolvent and the application of the rational Arnoldi to its linearization [15, 12]. Finally, we will
present a general analysis of the randomized SVD algorithm for operators of the form

r(A0 + V ) +W .

Here r is a rational function approximation of an indicator function, A0 is self-adjoint and positive
definite, potential V is relatively compact with respect to A0, and we use functions of A0 to
construct a Gaussian kernel for random sampling. Finally, W (not necessarily self-adjoint) is a
small bounded operator presenting the errors caused by adaptive discretization.

1https://github.com/SpecSolve/SpecSolve
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Separable Low-rank Barycentric Forms in the p-AAA Algorithm

Linus Balicki, Serkan Gugercin

Abstract

Rational approximation is a powerful tool for capturing the behavior of functions which have
singularities on or near a domain of interest. This circumstance makes rational functions ubiquitous
in fields such as signal processing, model reduction, and partial differential equations. In recent
years the adaptive Antoulas-Anderson (AAA) algorithm [2] has established itself as a successful
method for computing rational approximations from a set of sampled data. Our recent work [3]
introduced the p-AAA algorithm, extending the original AAA framework to multivariate functions.
In order to allow for a clear presentation, we first discuss the two variable case, where the goal is
to approximate a function f : C2 → C. In this case, p-AAA is given a set of samples

F = {f(x1, x2) | x1 ∈ X1, x2 ∈ X2} ⊂ C

with the corresponding sampling points

X1 = {X11, . . . , X1N1} ⊂ C and X2 = {X21, . . . , X2N2} ⊂ C,

where Xij denotes the j-th sampling point of the i-th variable. Then the goal is to approximate
this data via a rational function represented as a multivariate barycentric form, i.e.,

r(x1, x2) =
n(x1, x2)

d(x1, x2)
=

n1∑
i1=1

n2∑
i2=1

αi1i2f(ξ1i1 , ξ2i2)

(x1 − ξ1i1)(x2 − ξ2i2)

/
n1∑

i1=1

n2∑
i2=1

αi1i2

(x1 − ξ1i1)(x2 − ξ2i2)
(1)

where αi1i2 ̸= 0. We note that r is interpolatory in the sense that

r(x1, x2) = f(x1, x2) for x1 ∈ ξ1 and x2 ∈ ξ2,

where
ξ1 = {ξ11, . . . , ξ1n1} ⊂ X1 and ξ2 = {ξ21, . . . , ξ2n2} ⊂ X2

are the respective sets of interpolation nodes. Similar to before, ξij denotes the j-th interpolation
node of the i-th variable. The p-AAA algorithm follows an iterative procedure to choose the
interpolation nodes as well as the matrix of barycentric coefficients

α ∈ Cn1×n2 , i.e., α(i1, i2) = αi1i2 .

Each iteration consists of first performing a greedy selection where we determine

(x∗1, x
∗
2) = argmax

(x1,x2)∈X1×X2

|r(x1, x2)− f(x1, x2)| (2)

and update the interpolation sets via

ξ1 ← ξ1 ∪ {x∗1} and ξ ← ξ ∪ {x∗2}.

As a second step, the barycentric coefficients are computed by solving a linear least-squares (LS)
problem of the form

min
∥α∥F=1

∥L2 vec(α)∥22, (3)
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where L2 ∈ CN1N2×n1n2 is the 2D Loewner matrix. The LS problem above arises as the minimization
of the approximation error

N1∑
i1=1

N2∑
i2=1

|f(X1i1 , X2i2)− r(X1i1 , X2i2)|
2 =

N1∑
i1=1

N2∑
i2=1

∣∣∣∣ 1

d(X1i1 , X2i2)
(d(X1i1 , X2i2)f(X1i1 , X2i2)− n(X1i1 , X2i2))

∣∣∣∣2 ,
which is linearized by dropping the 1/d(X1i1 , X2i2) terms. In other words, the linearizd LS problem
minimizes the expression

∥L2 vec(α)∥22 =
N1∑
i1=1

N2∑
i2=1

|(d(X1i1 , X2i2)f(X1i1 , X2i2)− n(X1i1 , X2i2))|
2 .

This procedure is repeated until the approximation error indicated in (2) drops below a desired
error tolerance. Solving the LS problem in (3) is the dominant cost of p-AAA and is done via a
singular value decomposition of L2. More precisely, (3) has a closed form solution which is given
in terms of the right singular vector of L2 which corresponds to the smallest singular value.
While we only outlined the two variable case so far, the algorithm can easily be formulated as an
approximation procedure for functions f : Cd → C that depend on d > 2 variables. The key adjust-
ments that need to be taken into account are that the multivariate approximant r(x1, x2, . . . , xd)
will depend on a tensor

α ∈ Cn1×···×nd (4)

of barycentric coefficients (rather than a matrix) and the p-AAA LS problem will be based on the
higher-order Loewner matrix Ld ∈ CN1···Nd×n1···nd . In this case solving this dense LS problem via
SVD requires O(N1 · · ·Ndn

2
1 · · ·n2

d) operations and thus computing α or even forming Ld may be-
come an infeasible task. We note that this growth in complexity is a common issue in multivariate
approximation algorithms and is typically referred to as the “curse of dimensionality”. While there
exist approaches to overcome these obstacles in multivariate function approximation (e.g., sparse
grids, radial basis schemes), we focus here on a method that leverages a separable representation
of the denominator d of the rational approximant r. As we will point out in the following, such a
representation is directly connected to low-rank representations of higher-order tensors and allows
for partially overcoming the curse of dimensionality associated with the p-AAA LS problem.

In order to introduce our proposed approach, we consider a canonical (CP) [1] decomposition of
the tensor α in (4) which we write in its vectorized form as

vec(α) =
r∑

ℓ=1

β1ℓ ⊗ · · · ⊗ βdℓ ∈ Cn1···nd ,

where βiℓ ∈ Cni for ℓ = 1, . . . , r. The matrices β1 = [β11, . . . , β1r] ∈ Cn1×r, ..., βd = [βd1, . . . , βdr] ∈
Cnd×r are called CP factors and the smallest r for which such a decomposition exists defines
the tensor rank of α. The CP decomposition is particularly useful if it is able to represent (or
approximate) α with a small number of terms r ≪ n1, . . . , nd. In this case the storage requirement
for the CP factors is merely O(r(n1 + · · · + nd)) rather than O(n1 · · ·nd) for the full tensor. We
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propose to take advantage of this reduction in the degrees of freedom in the representation of α
within the p-AAA algorithm.
To make this idea more clear, we revisit the two variable case. There the CP decomposition is
analogous to a rank-r outer product representation given by

α = β1β
⊤
2 , (5)

Plugging this representation for α into the denominator in (1) gives the separable representation

d(x1, x2) =

r∑
ℓ=1

(
n1∑

i1=1

(β1ℓ)i1
x1 − ξ1i1

)(
n2∑

i2=1

(β2ℓ)i2
x2 − ξ2i2

)
,

where (β1ℓ)i1 ∈ C is the i1-th entry of the vector β1ℓ ∈ Cn1 and (β2ℓ)i2 ∈ C is the i2-th entry
of the vector β2ℓ ∈ Cn2 . Our main idea for incorporating such separable representations and the
associated low-rank decomposition for the barycentric coefficients into the p-AAA algorithm is to
add the decomposition introduced in (5) as a constraint to the LS problem in (3). In this case we
obtain the LS problem

min
β1,β2

∥∥∥∥∥L2

r∑
ℓ=1

β1ℓ ⊗ β2ℓ

∥∥∥∥∥
2

2

s.t.
∥∥∥∥∥

r∑
ℓ=1

β1ℓ ⊗ β2ℓ

∥∥∥∥∥
2

= 1. (6)

We introduce the matrices

Kβ1 := [β11 ⊗ In2 , . . . , β1r ⊗ In2 ] ∈ Cn1n2×n2r and Kβ2 = [In1 ⊗ β21, . . . , In1 ⊗ β2r] ∈ Cn1n2×n1r,

as well as the contracted Loewner matrices

Lβ1 := L2Kβ1 ∈ CN1N2×n2r and Lβ2 := L2Kβ2 ∈ CN1N2×n1r,

which allow for writing the constrained LS problem in two distinct ways

min
β1,β2

∥Lβ2 vec(β1)∥
2
2 s.t. ∥Kβ2 vec(β1)∥2 = 1, (7)

min
β1,β2

∥Lβ1 vec(β2)∥
2
2 s.t. ∥Kβ1 vec(β2)∥2 = 1. (8)

We note that if one of the factors β1 or β2 is fixed, the other one can be obtained by solving an
equality constrained LS problem based on the formulation above. In this case, these linear LS prob-
lems have a closed form solution in terms of the generalized SVD [4] of the matrix tuple (Lβ2 ,Kβ2)
or (Lβ1 ,Kβ1), respectively. Hence, the constrained LS problem in (6) has a separable structure
which can be tackled via an alternating least-squares (ALS) procedure. In this procedure, we start
with an initial guess for β1 and β2, then repeatedly solve the problem in (7) while keeping β2 fixed,
and the problem in (8) while keeping β1 fixed. This ALS approach requires O(N1N2r

2(n2
1 + n2

2))
operations which corresponds to the cost of computing the generalized SVDs. While this change in
complexity may only have a small impact in the two variable case, it can be critical when moving
to d > 2 variables where ALS requires O(N1 · · ·Ndr

2(n2
1 + · · · + n2

d)) operations. Additionally, we
note that the contracted Loewner matrices can be assembled efficiently by exploiting the Kronecker
structure present in Ld. These facts make it appealing to combine p-AAA with a separable repre-
sentation for the denominator d.
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We conclude this abstract by considering a simple example where our proposed low-rank version
of the p-AAA algorithm yields a high-fidelity rational approximant, while the standard p-AAA
algorithm runs out of memory on our machine during the construction of the Loewner matrix Ld.
Specifically, we consider approximating the function

f(x1, x2, x3, x4, x5) =
x1 + x2 + x3 + x4 + x5

10 + sin(x1) + sin(x2) + sin(x3) + sin(x4) + sin(x5)

on the domain [−3, 3]5. For each variable we choose the same sampling points corresponding to
20 linearly spaced values in the interval [−3, 3]. We run the proposed low-rank version of p-AAA
and enforce a rank r = 1 constraint on the coefficient tensor α. After 6 iterations the relative
maximum approximation error over the sampled data is approximately 8.514 × 10−3 and p-AAA
chose 6 interpolation nodes for each variable. The standard p-AAA algorithm does not make it
past the third iteration on our machine, due to running out of memory. Note that in this example
the memory requirement for L5 is around 24.4 GB in double precision once 4 interpolation nodes
are chosen for each variable. In order to evaluate the quality of the computed approximation for
unsampled data, we validate r on a set of samples obtained by sampling 50 linearly spaced points
in [−3, 3] for each variable. The maximum relative error on this validation set is approximately
8.704× 10−3, which closely matches the maximum error on the training data set.
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Robust Hierarchical Matrix Approximation from Sketches

Diana Halikias, Tyler Chen, Feyza D. Keles, Cameron Musco, Christopher Musco, David Persson

Abstract

Sketching is a tool for dimensionality reduction that lies at the heart of many fast and highly
accurate “matrix-free” algorithms for fundamental tasks such as solving linear systems and eigen-
value problems, low-rank approximation, and trace estimation. Broadly, to solve a problem in the
sketching model, one only queries a matrix of interest A ∈ Rn×n with relatively few matrix-vector
products x 7→ Ax and y 7→ A⊤y, as opposed to accessing and working with A’s individual entries.
The sketching model is increasingly prevalent in numerical linear algebra for three reasons. First, A
may be unknown and accessible only via sketching. Second, even if A is known, it may be too large
to operate on or fit in memory. Finally, many matrices that arise in applications exhibit structure
that enables fast matrix-vector products.
Hierarchical matrices are one such matrix class that frequently arises in practice. These matrices
exhibit low-rank structure away from the diagonal, which represents the smoothness of long-range
interactions between points in a discretized domain. Shorter-range interactions are treated recur-
sively, as they are subdivided into finer domains over which the matrix is approximately low-rank
again. This structure has been exploited in a variety of applications, including fast direct solvers for
differential and integral equations, discretizations of boundary integral operators, preconditioners,
and even infinite-dimensional operator learning. Below, we define H ∈ Rn×n, a hierarchical matrix
with 3 levels of partitioning. Each off-diagonal block is given by a rank-k factorization.

H =

H11 W3Z
⊤
3

U3V
⊤
3 H22

W1Z
⊤
1

U1V
⊤
1

H33 W4Z
⊤
4

U4V
⊤
4 H44

W0Z
⊤
0

U0V
⊤
0

H55 W5Z
⊤
5

U5V
⊤
5 H66

W2Z
⊤
2

U2V
⊤
2

H77 W6Z
⊤
6

U6V
⊤
6 H88

Peeling algorithms recover a hierarchical matrix like H using O(k log2(n)) sketches with H and
H⊤. In general, they selectively apply the randomized SVD to recover all of the low-rank blocks
at a given level, starting with the top level. That is, using O(k) cleverly constructed input vectors
which consist of alternating blocks of zeros and random Gaussian entries, one can restrict the
outputs to sketch each of the individual low-rank blocks. Then, one can recover W0Z

⊤
0 and U0V

⊤
0

to high accuracy using a low-rank approximation algorithm. The learned blocks are stored in an
approximation matrix H̃(1) ∈ Rn×n:

H̃(1) =

[
0 W̃0Z̃

⊤
0

Ũ0Ṽ
⊤
0 0

]
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These learned blocks are then “peeled” away, as the same process is applied to the matrix H− H̃(1)

to recover W1Z
⊤
1 , U1V

⊤
1 ,W2Z

⊤
2 , and U2V

⊤
2 simultaneously with O(k) sketches. This is because

H − H̃(1) zeros out the first level’s off-diagonal blocks, and subsequent matrix-vector products can
sketch the action of the low-rank blocks at the next level. Once learned, these blocks are stored
along with the first level’s blocks in H̃(2). The algorithm continues recursively, peeling away the
learned blocks repeatedly and moving to finer blocks toward the diagonal. There are log2(n) levels,
and each is recovered using O(k) sketches, yielding an overall complexity of O(k log2(n)) queries.
Peeling algorithms are extremely useful and observed to be stable in practice. However, the pre-
determined order of the algorithm, as well as its recursive subtraction, raise questions about its
theoretical stability, particularly when the underlying matrix does not have hierarchical structure.
For example, if the largest off-diagonal blocks are not exactly rank-k, but rather numerically rank-k
as is often the case in applications, error may be propagated from the first level to all subsequent
levels and deteriorate the overall approximation quality. In this talk, we describe the first provably
stable and near-optimal variant of the peeling algorithm. That is, for a general matrix B, we use
O(k log42(n)/ε

3) sketches to obtain an approximation B̃ satisfying ‖B − B̃‖F ≤ (1 + ε)‖B − B̂‖F ,
where B̂ is the best hierarchical approximation to B. We complement this upper bound by proving
that any matrix-vector query algorithm must use at least Ω(k log2(n) + k/ε) queries to obtain a
(1 + ε)-approximation.
We discuss the variety of techniques used to derive these results. To control the propagation of error
between levels of hierarchical approximation, we introduce a new perturbation bound for low-rank
approximation, which is of independent interest in numerical linear algebra. We show that the
widely used Generalized Nyström method enjoys inherent stability when implemented with noisy
matrix-vector products. This brings to light a surprising fact; the same result cannot be obtained
if the more standard randomized SVD method is used for low-rank approximation within peeling.
For even stronger control of error buildup across recursive levels, we also introduce a new “randomly
perforated” Gaussian sketching distribution. The key idea is to increase the sparsity of the query
vectors, so that a higher fraction of nonzero blocks are set to zero. Thus, when recovering each
block at a given level, we incur error due to a smaller number of inexactly recovered blocks from
the previous levels. We note that this may not decrease the magnitude of error if the error is
all concentrated on a few blocks. Thus, we choose the nonzero blocks of our sketches randomly,
ensuring that the expected error when recovering each block at each level is small.
We also describe lower bounds on the query complexity of hierarchical matrix recovery and approx-
imation. These results build on a growing body of work on lower bounds for adaptive matrix-vector
product algorithms. We reduce the problem to fixed-pattern sparse matrix approximation, which
arises when we restrict to recovering the diagonal block matrices of a hierarchical matrix, a strictly
easier problem than hierarchical matrix recovery. Formally, we prove that, if we had an algorithm
for finding a near-optimal hierarchical approximation with O(k/ε) sketches, then the result could
be post-processed to obtain a near-optimal block-diagonal approximation, which we know to be
impossible. This is then combined with a query complexity lower bound for exact recovery to
obtain the lower bound of Ω(k log2(n) + k/ε).
Finally, I will emphasize how our work in hierarchical matrix approximation fits into the new
paradigm of stability analysis for randomized sketching algorithms, which are increasingly common
in modern linear algebra techniques. Moving forward, we may also consider analyzing the stability of
recovery algorithms for the subfamily of hierarchical semi-separable matrices, which also frequently
arise in practice. Studying peeling also provides insight into an analysis of other similar recursive
algorithms, such as butterfly and skeletonization factorizations.
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Convergence Analysis for Nonlinear GMRES

Yunhui He

Department of Mathematics, University of Houston, Houston, USA

Abstract
We are interested in solving the following nonlinear system of equations

g(x) = 0, (1)

where x ∈ Rn and g : Rn → Rn.
Consider the following fixed-point iteration

xk+1 = q(xk) = xk − g(xk). (2)

In practice, the fixed-point iteration converges slowly or even diverges. We seek methods to accel-
erate it.
Define the k-th residual of the fixed-point iteration as

r(xk) = xk − q(xk) = g(xk). (3)

We revisit the nonlinear generalized minimal residual method (NGMRES) following [2, 1]. NGM-
RES has been used to accelerate the convergence of a fixed-point iteration, given by Algorithm 1.
In practice, we consider the windowed NGMRES, i.e., fixing m, denoted as NGMRES(m), which
is different than restart GMRES.

Algorithm 1 NGMRES with window size m, denoted as (NGMRES(m))
1: Given x0 and m ≥ 0
2: For k = 1, 2, · · · until convergence Do:

• set mk = min{k,m}

• compute

xk+1 = q(xk) +

mk∑
i=0

β
(k)
i (q(xk)− xk−i) , (4)

where β
(k)
i is obtained by solving the following least-squares problem

min
β
(k)
i

∥∥∥∥∥g(q(xk)) +
mk∑
i=0

β
(k)
i (g(q(xk))− g(xk−i))

∥∥∥∥∥
2

2

. (5)

EndDo

To the best of our knowledge, no convergence analysis exists for NGMRES(m) when applied to
nonlinear problems. In this work, under some standard assumptions used for iterative methods
in nonlinear problems, we prove that for general m > 0, the residuals of NGMRES(m) converge
r-linearly. For m = 0, we prove that the residuals of NGMRES(0) converge q-linearly.
Finally, we present numerical results to demonstrate the performance of the NGMRES(m) method,
and we make a comparison with the well-known Anderson acceleration [3]
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Efficient Iterative Methods for the Solution of Sparse Tree-Coupled
Saddle-Point Systems

Bernhard Heinzelreiter, John W. Pearson, Christoph Hansknecht, Andreas Potschka

Abstract

The efficient solution of huge-scale sparse systems of linear or linearized equations poses a pivotal
question in many applications of optimization and, with that, in numerical linear algebra. In
particular, the design of bespoke iterative solvers is often invaluable, in order to mitigate the
large storage requirements that may be required by off-the-shelf methods for systems of very high
dimensions. In order to make a numerical solver feasible and effective, information about the linear
system and the structure of the optimization problem from which it is obtained must frequently be
taken into account when designing the solver.
A broad class of optimization problems with numerous applications involves sparsely-connected
optimization problems. These consist of a series of constrained subproblems linked through a
relatively small subset of variables. A general form of such problems can be written as

min
ζ1,...,ζN

N∑
i=1

ϕi (ζi)

s.t. C+
i,jζi + C−

i,jζj = 0 for all (i, j) ∈ A,

ci (ζi) = 0 for all i ∈ V,

(1)

where V = {1, . . . , N} with N ∈ N is an index set for the subproblems, and A ⊆ V × V represent
the connecting graph. The functions ϕi denote the optimization functionals, ci the constraint for
each subproblem, and the vectors ζi ∈ Rni are to be determined. These problems play a crucial role
in engineering applications, including stochastic programming, robust nonlinear model predictive
control, and optimal control of networks (e.g., gas pipelines). They are also relevant in domain
decomposition methods for partial differential equations (PDEs) and parallel-in-time approaches.
Upon discretization and linearization, problem (1) reduces to a large-scale sparse linear system of
saddle-point structure of which the efficient solution is desirable.
In this talk, we derive a suite of direct and (in particular) iterative solvers for saddle-point sys-
tems with a tree-coupled structure [2], corresponding to a special case of a linearization of (1).
Specifically, we extend well-studied structure-exploiting approaches for saddle-point systems [1] by
incorporating the graph-based coupling structure, where interactions between the individual and
otherwise isolated subsystems are expressed via generic coupling constraints. This allows us to
make use of the special, sparse structure of the resulting Schur complement. We develop a range
of structured preconditioners which may be embedded within suitable Krylov subspace methods,
including block preconditioners, recursive preconditioners, and multi-level approaches. The major-
ity of these methods are vastly parallelizable, allowing them to be applied in a real-time fashion.
We prove a range of results relating to the convergence, complexity, and spectral properties of our
algorithms. The performance of the preconditioners is showcased by applying them to an array
of model problems. This includes model predictive control, multiple shooting for optimal control,
and domain decomposition for PDEs. The numerical experiments validate our theoretical results
and show improved performance over direct methods. Additionally, the experiments show that our
methods are capable of coping with very large regimes of N .
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We, furthermore, outline future work on the analysis of coupled systems with an even more general
graph-based structure, including cyclic dependencies and the derivation of methods to automatically
detect this exploitable structure within given linear systems. There is also the potential to combine
this with parallel-in-time methodologies derived by the author for fluid flow control problems [3].
Moreover, we discuss the potential of this method to be embedded within the sequential homotopy
method [4], which leads to global convergence for a number of nonlinear optimization problems.
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Randomized Householder-Cholesky QR Factorization with Multisketching

Andrew J. Higgins, Daniel B. Szyld, Erik G. Boman, Ichitaro Yamazaki

Abstract

Computing the QR factorization of tall-and-skinny matrices is a critical component of many sci-
entific and engineering applications, including the solution of least squares problems, block or-
thogonalization kernels for solving linear systems and eigenvalue problems within block or s-step
Krylov methods, dimensionality reduction methods for data analysis like Principal Component
Analysis, and many others. Two of the most popular high performance QR algorithms for tall-
and-skinny matrices are the CholeskyQR2 and shifted CholeskyQR3 algorithms [3, 4], thanks to
their communication-avoiding properties along with their exploitation of vendor provided highly-
optimized dense linear algebra subroutines, allowing them to achieve high performance on rapidly
evolving modern computer architectures. However, CholeskyQR2 may fail to accurately factor-
ize a matrix V when its condition number κ(V ) ⪆ u−1/2, where u is unit roundoff [12]. Shifted
CholeskyQR3 is numerically stable as long as κ(V ) ⪅ u−1, but it requires over 50% more com-
putational and communication cost than CholeskyQR2 [3]. Although TSQR [2] is a more stable
communication-avoiding algorithm than the aforementioned Cholesky-based methods, it relies on
a non-standard reduction operator, which can make it substantially slower than CholeskyQR2 in
practice [4], and is significantly harder to implement efficiently on high performance GPUs. Hence,
Cholesky-based QR methods remain popular on modern architectures.
Random sketching has become a popular dimension reduction technique in the fields of numerical
linear algebra and data analysis. The central premise of random sketching is to embed a set V ⊂ Rn

into a lower-dimensional space via some random projection S : Rn → Rs, with s ≪ n. In numerical
linear algebra applications, the random sketch matrix S ∈ Rs×n is often selected to be an (ε, d,m)
oblivious subspace embedding, i.e., for any m-dimensional subspace V ⊂ Rn and x ∈ V , there is
some ε ∈ [0, 1) such that √

1− ε ∥x∥2 ≤ ∥Sx∥2 ≤
√
1 + ε ∥x∥2,

with probability at least 1− d [8, 9]. Such (ε, d,m) oblivious subspace embeddings S are attractive
in numerical linear algebra, because if one chooses the subspace V ⊂ Rn to be the column space of
a matrix V ∈ Rn×m, the embeddings can be shown to approximately preserve singular values,

(1 + ε)−1/2 σmin(SV ) ≤ σmin(V ) ≤ σmax(V ) ≤ (1− ε)−1/2 σmax(SV ),

and therefore approximately preserve condition numbers,

κ(V ) ≤
√

1 + ε

1− ε
κ(SV ),

with probability at least 1 − d. In the context of QR factorizations, one can factorize the small
sketched matrix QR = SV , and use the triangular factor R as a preconditioner for the large
unsketched matrix V , which is effective because

κ(V R−1) ≤
√

1 + ε

1− ε
κ(SV R−1) =

√
1 + ε

1− ε
= O(1),

for ε sufficiently below 1. This approach is known as the sketch-and-precondition framework [7].
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In this talk, we present the results from our recent work [5], which analyzes a randomized tall-
skinny QR algorithm called randomized Householder-Cholesky QR (rand_cholQR). The algorithm
uses the sketch-and-precondition framework with Householder QR as a preprocessing step before
following up with a pass of CholeskyQR to fully orthogonalize the preconditioned matrix with
little computational and communication cost. In order to reduce the cost of the computations
even further, we propose to use “multisketching,” i.e., the use of two consecutive random sketch
matrices, within the sketch-and-precondition framework. Our approach is general in the sense that
our analysis applies to any two oblivious subspace embedding sketching matrices, but is specifically
motivated by the use of a large sparse sketch followed by a smaller dense sketch, such as a Gaus-
sian or Radamacher sketch [1], as this particular strategy significantly reduces the complexity of
applying the sketch operator. Our analysis applies in particular to Count-Gauss (one application
of CountSketch followed by a Gaussian sketch), as described in [6, 10, 11].
We prove that with high probability, the orthogonality error of rand_cholQR is on the order of
unit roundoff for any numerically full-rank matrix V (i.e., κ(V ) ⪅ u−1) and hence it is as stable
as shifted CholeskyQR3 and it is significantly more numerically stable than CholeskyQR2. Our
numerical experiments ilustrate the theoretical results and suggest that rand_cholQR often succeeds
for numerically rank-deficient problems as well, unlike either CholeskyQR2 or shifted CholeskyQR3.
In addition, the rand_cholQR algorithm may be implemented using the same basic linear algebra
kernels as CholeskyQR2. Therefore, it is simple to implement and has the same communication-
avoiding properties. We perform a computational study on a state-of-the-art GPU to demonstrate
that rand_cholQR can perform up to 4% faster than CholeskyQR2 and 56.6% faster than shifted
CholeskyQR3, while significantly improving the robustness of CholeskyQR2.
In summary, our primary contribution consists of a new error analysis of a multisketched ran-
domized QR algorithm, proving it can be safely used for matrices of larger condition number than
CholeskyQR2 can handle. Numerical experiments confirm and illustrate the theory. Our secondary
contribution is a computational study on a state-of-the-art GPU that tangibly demonstrates that
the multisketched algorithm has superior performance over the single sketch algorithms and similar
performance to the high performance but less stable CholeskyQR2 algorithm.

References

[1] Dimitris Achlioptas. Database-friendly random projections: Johnson- Lindenstrauss with binary
coins. Journal of Computer and System Sciences, 66:671–687, 2003. Special Issue on PODS 2001.

[2] James W. Demmel, Laura Grigori, Mark Hoemmen, and Julien Langou. Communication-
optimal parallel and sequential QR and LU factorizations. SIAM Journal on Scientific Com-
puting, 34:A206–A239, 2012.

[3] Takeshi Fukaya, Ramaseshan Kannan, Yuji Nakatsukasa, Yusaku Yamamoto, and Yuka Yanag-
isawa. Shifted Cholesky QR for computing the QR factorization of ill-conditioned matrices.
SIAM Journal on Scientific Computing, 42:477-503, 2020.

[4] Takeshi Fukaya, Yuji Nakatsukasa, Yuka Yanagisawa, and Yusaku Yamamoto. CholeskyQR2:
A simple and communication-avoiding algorithm for computing a tall-skinny QR factorization
on a large-scale parallel system. In Proceedings of ScalA: 5th Workshop on Latest Advances
in Scalable Algorithms for Large-Scale Systems, pages 31-38, Los Alamitos, CA, 2014. IEEE
Computer Society.

171



[5] Andrew J. Higgins, Daniel B. Szyld, Erik G. Boman, and Ichitaro Yamazaki. Analysis of Ran-
domized Householder-Cholesky QR Factorization with Multisketching, 2024. arXiv:2309.05868.

[6] Michael Kapralov, Vamsi Potluru, and David Woodruff. How to fake multiply by a Gaussian
matrix. In Proceedings of The 33rd International Conference on Machine Learning, volume 48,
pages 2101–2110. Proceedings of Machine Learning Research, 2016.

[7] Per-Gunnar Martinsson and Joel A. Tropp. Randomized numerical linear algebra: foundations
and algorithms. Acta Numerica, 29:403–572, 2020.

[8] Yuji Nakatsukasa and Joel A. Tropp. Fast & accurate randomized algorithms for linear systems
and eigenvalue problems, 2021. arXiv:2111.00113.

[9] Tamás Sarlós. Improved approximation algorithms for large matrices via random projections. In
Proceedings of 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS’06),
pages 143–152, Los Alamitos, CA, 2006. IEEE Computer Society.

[10] Aleksandros Sobczyk and Efstratios Gallopoulos. Estimating leverage scores via rank revealing
methods and randomization. SIAM Journal on Matrix Analysis and Applications, 42:199–1228,
2021.

[11] Aleksandros Sobczyk and Efstratios Gallopoulos. pylspack: Parallel algo- rithms and data
structures for sketching, column subset selection, regres- sion, and leverage scores. ACM Trans-
actions on Mathematical Software, 48:1–27, 2022.

[12] Yusaku Yamamoto, Yuji Nakatsukasa, Yuka Yanagisawa, and Takeshi Fukaya. Roundoff error
analysis of the Cholesky QR2 algorithm. Electronic Transactions on Numerical Analysis, 44:306–
326, 2015.

172



Optimal preconditioners for nonsymmetric multilevel Toeplitz systems with
application to solving non-local evolutionary PDEs

Yuan-Yuan Huang, Sean Y. Hon, Lot-Kei Chou, and Siu-Long Lei.

Abstract

Preconditioning for multilevel Toeplitz systems has long been a focal point of research in numerical
linear algebra. In this talk, we present a new preconditioning method for nonsymmetric multilevel
Toeplitz systems, including those from evolutionary PDEs. These systems have recently garnered
considerable attention in the literature. For these equations, we propose a symmetric positive
definite multilevel Tau preconditioner that is efficient and optimal, ensuring mesh-independent
convergence with the preconditioned generalized minimal residual method. Numerical examples
highlight our method’s effectiveness, particularly for non-local, time-dependent PDEs solved in
parallel.
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Contour Integral Methods for Exponentials of Matrices and Operators with
Explicit High-Order Error Bounds

Andrew Horning∗ and Adam R. Gerlach

∗Department of Mathematical Sciences, Rensselaer Polytechnic Institute

Abstract

Exponential integrators based on contour integral transforms lead to powerful numerical solvers for
a variety of ODEs, PDEs, and other time-evolution equations. They are easy to parallelize and lead
to global-in-time approximations that can be efficiently evaluated anywhere within a finite time
horizon. However, there are theoretical challenges that restrict their use-cases to classes of smooth
evolution equations called analytic semigroups. In this talk, we show how to use carefully regularized
contour integral representations to construct high-order quadrature schemes for the much larger
class of strongly continuous semigroups. Our algorithms are accompanied by explicit high-order
error bounds and near-optimal parameter selection. We illustrate the method’s attractive features
through several PDE examples associated with singular behavior, causality, and non-normality. Our
approach is firmly rooted in contour integral techniques for matrix functions. Along the way, we
highlight how simple ideas from semigroup theory can augment traditional techniques in numerical
linear algebra to tackle common tensions that arise while computing functions of operators.
Contour integral methods. Contour integral methods approximate the action of the matrix
exponential with a quadrature rule. Given γ, a Jordan curve winding once clockwise around the
spectrum of a square matrix A, quadrature nodes z1, . . . , zN , and weights w1, . . . , wN , then

exp(At)x =
1

2πi

∫
γ
ezt(zI −A)−1x dz ≈ 1

2πi

N∑
k=1

wke
zkt(zkI −A)−1x. (1)

The main cost of the scheme is solving a shifted linear equation at each quadrature node. These
can be done in parallel and may be accelerated with iterative methods. After solving these linear
systems, the approximation can be evaluated at any time t > 0 with only vector-vector operations.
When A is obtained by discretizing a differential operator, its spectrum may fill a large region of
the complex plane. As the discretization is refined, this region typically grows and the quadrature
approximation in (1) may rapidly deteriorate along with the performance of iterative methods
for the linear systems. Famously, this effect can be mitigated through Talbot quadrature if the
spectrum of A lies in a modest sector along the negative real axis [1]. These techniques have been
used to develop highly parallelizable schemes for a broad class of parabolic equations [2]. Recently,
Colbrook was awarded the Leslie Fox Prize for extending these techniques to analytic semigroups,
which are associated with smooth evolution problems like parabolic and damped wave equations [3].
Regularization. Fundamentally, Talbot contour integral schemes exploit regularity in the operator
exponential for analytic semigroups. Unfortunately, this is not possible for less regular evolution
equations associated with challenging causal, singular, or non-normal behavior. Instead, we show
how to regularize contour integral schemes to exploit regularity in the vector x. This is common in
time-stepping methods but global-in-time methods require new tools from semigroup theory.
To exploit regularity in x in our scheme and analysis, we develop the algorithm at the infinite-
dimensional level and then carefully assess the impact of discretization. Consider a linear operator
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A : D(A) → X on a separable Banach space X and replace x by u ∈ X and A by A. If A generates a
strongly continuous semigroup on X , then its spectrum is contained in a left half-plane Im(z) < ω
and its resolvent decays uniformly in the complimentary right-half plane. We use a regularized
analogue of the contour integral in (1) with form, for some δ > ω and integer m ≥ 2,

exp(At)u = (2δI − A)m
1

2πi

∫ δ+i∞

δ−i∞

ezt

(2δ − z)m
(zI − A)−1x dz, u ∈ D(A2). (2)

To approximate (2), we apply a truncated N -point trapezoidal rule with node spacing h > 0,

S
(m)
N (t)u = (2δI − A)m

[
h

2π

N∑
k=−N

e(δ+ihk)t

(δ − ihk)m
((δ + ihk)I − A)−1

]
u. (3)

For a practical computational scheme, the shifted linear equations can be solved with a suitable
discretization of smooth functions u ∈ D(A2) ⊂ X . The main requirement for convergence is that
Ax → Au and (zkI −A)−1x → (zkI − A)−1u, k = −N, . . . , N , as the discretization is refined.
Explicit Error Bounds. At the operator level, the regularized quadrature approximation in (2)-
(3) has several key advantages over (1). The integral converges absolutely and uniformly for u ∈
D(A2), while the amplification power of (2δI − A)m is controlled by the regularity of the vector
u. Moreover, the integrand decays at a controlled rate along the contour. These features allow
us to derive simple explicit error bounds for smooth vectors u ∈ D(Am). In fact, we can derive
closed-form expressions for quadrature parameters that achieve [4]

sup
0≤t≤T

∥ exp(At)u− S
(m)
N (t)u∥ ≤ C

(
δ

hN

)m−1

||(2δI − A)m∥, when u ∈ D(Am). (4)

Here, C is an explicit constant depending on A, the contour location δ, and the time horizon T .
In practice, one must discretize the infinite-dimensional objects for a numerical algorithm. We
show how semigroup theory provides simple, computable bounds for the action of the discretized
resolvent that hold for a very broad class of discretization techniques including Galerkin-based
schemes and modern spectral methods. These bounds are inspired by the residual bounds for
linear systems commonly used in numerical linear algebra.
Applications and Outlook. High-order contour integral schemes for strongly continuous semi-
groups open the door to highly parallelizable methods for traditionally challenging PDEs and related
time-evolution processes. They also provide a compact modal-like representation of semigroups
that may be useful in operator learning, system identification, and other data-driven modeling
techniques. We will illustrate some applications of our scheme to challenging simulation scenarios
related to uncertainty quantification, where verified simulation of Koopman semigroups is a key
ingredient. We will also discuss work in progress on applications of contour integral representations
in data-driven settings. Finally, we will outline the potential of semigroup theory to resolve related
tensions encountered while computing matrix functions of discretized operators.
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Least squares solvers based on randomized normal equations

Ilse C.F. Ipsen

Abstract

For the better part of my life I have taught that least squares problems are to be solved with a
QR decomposition or SVD, cautioning that formation of the normal equations is to be avoided if
possible.
Now I am re-thinking this advice, in light of developments underlying the Blendenpik least squares
solver [1, 2], and our version of the randomized preconditioned Cholesky-QR algorithm [3].

Proposed Algorithm. Given a real m×n matrix A with rank(A) = n, we investigate the solu-
tion of the least squares problems minx ∥Ax− b∥2 by solving the normal equation of a randomized
preconditioned problem. In the spirit of the original Householder meetings, this is work in progress.
Specifically, we right-precondition A with a randomized preconditioner Rs, to obtain A1 ≡ AR−1

s .
Instead of taking the Blendenpik route and solving miny ∥A1y − b∥2 via the iterative method
LSQR, we solve the normal equations. That is, the Gram matrix G ≡ AT

1 A1 is formed explicitly,
followed by solution of the normal equations Gy = AT

1 b. This can be done with a Cholesky
factorization of G or of the bordered matrix [A1 b] [4, §2.2]. At last, one recovers the solution of
the original problem via the triangular solve Rsx = y.
To compute the randomized preconditioner Rs, first improve the coherence of A with a random
orthogonal matrix FA, where F is the product of a fast transform (FFT, Walsh-Hadamard, DCT,
Hartley) and a random diagonal matrix with independent Rademacher variables on the diagonal.
Then sample c rows, uniformly and independently with replacement from FA to obtain the sampled
matrix As = SFA. At last compute the thin QR decomposition As = QsRs.

Advantages. Unlike Blendenpik [1] which solves a m×n least squares problem with an iterative
method, we solve a small n × n problem with a direct method. Direct methods, and Cholesky
decompositions in particular, tend to perform well on cache-based and parallel architectures, where
data movement and synchronization can dominate arithmetic. This is in contrast to the normal
equations like approach with iterative methods in [5, 6], which also requires an initial guess.
The simplicity of our approach, in contrast to the involved multi-stage [5, Algorithm 4], will lead
to a rigorous and informative perturbation analysis for the accuracy of the computed solution. The
potential backward stability issues due to the formation of the Gram matrix can be handled in the
same way as for the randomized Cholesky-QR algorithm in [3].
The preconditioner Rs needs to be applied only once and is applied explicitly, thereby improving
the backward stability issues discussed in [7]. Even for matrices A with worst case coherence and
a condition number κ(A) ≈ 1015, a sampling amount of c = 3n suffices to produce preconditioned
matrices A1 that are very well conditioned, with condition numbers κ(A1) ≈ 10.
Preliminary numerical results suggest that for matrices with condition number κ(A) ≤ 109, the
preconditioner Rs can be computed faster, in single precision, without loss of accuracy in the pre-
conditioned problem. We will show that solving the normal equations via a Cholesky decomposition
represents an efficient least squares solver on NVIDIA RTX 2080 GPUs.
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Randomized orthogonalization in GMRES with deflation and augmentation

Yongseok Jang, Laura Grigori

Abstract

In the context of large-scale linear algebra, random sketching has emerged as a powerful technique
to reduce computational costs and memory requirements. As data dimensions grow, traditional
methods often become impractical. Random sketching provides a way to approximate large matrices
and datasets by projecting them onto lower-dimensional subspaces using randomized linear maps,
which capture essential properties of the original data –such as norms of vectors– but at a fraction
of the size.
In this talk, we present the application of random sketching to Gram-Schmidt process for orthonor-
malizing a set of vectors. One [1] can provide a set of vectors, which are not l2 orthogonal but their
low dimensional images through random sketching are orthonormal. Using this method, called
randomized Gram-Schmidt (RGS) algorithm, for QR factorization of a matrix W ∈ Rn×m (with
m ≤ n), we obtain W = QR, where Q is not orthonormal, but ΘQ becomes orthonormal with a
random sketching matrix Θ ∈ Rt×n for t ≪ n. Furthermore, inspired by the reorthogonalization
techniques in classical Gram-Schmidt (CGS) and modified Gram-Schmidt (MGS) (namely CGS2
and MGS2, respectively), we develop the RGS2 algorithm [2]. The RGS2 algorithm combines RGS
with CGS/MGS to result improved numerical stability and l2 orthonormal Q.
By employing fast computation techniques for sketching, such as fast Walsh Hadamard transforma-
tion, our RGS algorithms bring significant computational cost reductions. RGS has half the com-
plexity of CGS/MGS, and RGS2 reduces computational costs by 25% compared to CGS2/MGS2.
Furthermore, with the probabilistic rounding model, we analyze rounding errors and show that
RGS exhibits better numerical stability than CGS and comparable stability to MGS. Additionally,
under a numerical non-singularity condition, the loss of orthogonality in RGS2 is independent of
the condition number of W . Thus, the randomized orthogonalization process offers both reduced
computational cost and enhanced numerical stability.
When solving linear systems with GMRES, the quality of Krylov basis vectors is crucial; poor
quality can deteriorate GMRES convergence. To accelerate the convergence of GMRES, a defla-
tion strategy is combined together. However, in GMRES with deflated restarting (GMRES-DR),
where the previous Krylov subspace is reused, loss of orthogonality may accumulate over iterations,
potentially leading to stagnation or divergence. Hence, the orthogonalizing process is particularly
important in GMRES-DR. Here, RGS-based Arnoldi iterations can ensure numerical stability in
generating Krylov basis vectors rather than other GS algorithms. Consequently, the randomized
GMRES and the randomized GMRES-DR exhibit better numerical performance [3].
In this presentation, we introduce the randomized variants of FGMRES-DR, FGCRO-DR, SVD
based deflation, and augmentation, (e.g., please refer to [4, 5, 6, 7] and the references therein for
the GMRES methods with deflation and augmentation). To validate the stability and conver-
gence improvements, we present numerical examples that solve ill-conditioned systems arising from
compressible turbulent CFD simulations.
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On the Convergence of the Singular Value Expansion of 2D functions

Sungwoo Jeong, Alex Townsend

Abstract

In this work we study the convergence of the singular value expansion (SVE) of 2D functions
(kernels). Consider a square-integrable kernel K : [a, b] × [c, d] → R, where [a, b], [c, d] ⊂ R. We
define (i) Right singular functions denoted by u1, u2, . . ., which are orthonormal with respect to
L2([a, b]) and (ii) Left singular functions denoted by v1, v2, . . ., which are orthonormal with respect
to L2([c, d]). These singular functions are defined to satisfy the relationships

σnun(x) =

∫ d

c
K(x, y)vn(y)dy, σnvn(y) =

∫ b

a
K(x, y)un(x)dx. (1)

The values σ1 ≥ σ2 ≥ · · · > 0 are called the (positive) singular values of K. The SVE of K is then
defined as

K(x, y) =
∞∑
n=1

σnun(x)vn(y). (2)

Recall that the singular vectors of a matrix A is defined with relationships Avn = σnun, u∗nA = σnv
∗
n

and the singular value decomposition (SVD) can be defined as A =
∑

n σnunv
∗
n. Thus, the SVE

can be thought of as a continuous analogue of the SVD [1].
Before the SVD of a matrix, several pioneers of modern functional analysis in the early 20th century
figured out the existence and properties of the SVE for a general square-integrable kernel. Within
these developments, Mercer [2], in 1909, showed that any continuous, symmetric positive definite
kernel K : [a, b]× [a, b] → R has a uniformly and absolutely converging SVE,

K(x, y) =

∞∑
n=1

λnun(x)un(y), (x, y) ∈ [a, b]× [a, b], (3)

which is also equivalent to its eigenfunction expansion. This is often called Mercer’s theorem. For
general kernels without positive definiteness or symmetricity, the convergence property (pointwise,
uniform, and absolute) of the SVE is an open problem.
In this work, we first prove that the conclusion of Mercer’s theorem does not hold for general
symmetric and asymmetric kernels, whenever the positive-definiteness condition is dropped. We
provide novel examples which lead to the following result.

Theorem 1. For any [a, b] ⊂ R there are continuous symmetric indefinite kernels on [a, b]× [a, b]
such that the SVE, equation (2), (i) does not converge pointwise, (ii) converges pointwise but not
uniformly, or (iii) converges pointwise but not absolutely.

We hope this theorem will clarify some confusion in the literature regarding the convergence of
the SVE whenever a symmetric kernel is not positive definite. In practice, a symmetric indefinite
kernel often possesses a pointwise converging SVE but we prove that such convergence is not always
guaranteed. Our work provides a rigorous underpinning for kernel methods using indefinite and
asymmetric kernels.
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We then prove our second main result, which is the convergence result of the SVE when a kernel
is equipped with a mild regularity condition. We say a kernel K : [a, b] × [c, d] → R is of uniform
bounded variation if ∫ b

a

∂

∂x
K(x, y)dx < V,

∫ d

c

∂

∂y
K(x, y)dy < V, (4)

holds for any fixed x, y and a uniform constant V > 0. We remark that this is a larger class
of general continuous kernels which includes, for instance, Lipschitz continuous kernels. For a
continuous kernel of uniform bounded variation, we prove the following result using the singular
value decay and a generalization of the Rademacher-Menchov theorem. (In fact, we prove that the
same conclusion holds for any continuous kernel that has a singular value decay σn = O(n−α) with
α > 1

2 .)

Theorem 2. For any [a, b], [c, d] ⊂ R, let K : [a, b]× [c, d] → R be a continuous kernel of uniform
bounded variation (see equation (4)). Then, the SVE of K, equation (2), converges pointwise almost
everywhere, unconditionally almost everywhere, and almost uniformly.

To prove the second theorem, we also provide a new bound on the decay of singular values, which is
state in the following proposition. We use a recent result [3] on the decay of the error of truncated
Legendre series approximation to prove the decay bound.

Proposition 1. For any [a, b], [c, d] ⊂ R, a continuous kernel K : [a, b] × [c, d] → R of uniform
bounded variation has σn = O(n−1) as n → ∞.

Furthermore, we provide an efficient numerical algorithm for computing the SVE of a given function.
The algorithm is divided into two steps. In the first step, we compute a pseudo-skeleton approxi-
mation using Gaussian elimination with complete pivoting (GECP), which is an iterative procedure
to approximate the kernel K(x, y) as a sum of rank-1 functions [4]. After we have computed a rank
≤ R pseudo-skeleton approximation, KR(x, y), in the first step, we improve it by performing a low-
rank SVD. The SVD decomposes KR(x, y) into a sum of outer products of orthonormal functions
with singular values and gives us an accurate truncated singular value expansion of K.
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On a Multi-Stage Tensor Reduction Strategy for Arbitrary Order-p
Tensorial Data under the Tensor T-Product Algebra

Harshit Kapadia, Lihong Feng, Peter Benner

Abstract

We present a novel multi-stage tensor reduction (MSTR) framework for tensorial data arising from
experimental measurements or high-fidelity simulations of physical systems. The order p of the
tensor under consideration can be arbitrarily large. At the heart of the framework are a series
of strategic tensor factorizations and compressions, ultimately leading to a final order-preserving
reduced representation of the original tensor. We also augment the MSTR framework by per-
forming efficient kernel-based interpolation/regression over certain reduced tensor representations,
amounting to a new non-intrusive model reduction approach capable of handling dynamical, para-
metric steady, and parametric dynamical systems. Furthermore, to efficiently build the parametric
reduced-order model in the offline stage, we develop a tensor empirical interpolation method (t-
EIM). We formalize our ideas using the tensor t-product algebra [7, 3, 6] and provide a rigorous
upper bound for the error of the tensor approximation from the MSTR strategy.
The idea to factor any order-3 tensor in two orthogonal tensors of order-3 and an f -diagonal
tensor of order-3 first appeared in [7]. The notion of orthogonal tensors and such a factorization
strategy, analogous to matrix factorization—rendered by the singular value decomposition (SVD)—
is possible due to the tensor multiplication, referred to as the t-product [7]. An extension for order-p
tensors of the t-product and t-SVD is proposed in [8], which is used in our work. Moreover, by
following the approach taken in [9] for order-3 tensors, we develop a randomized variant of t-SVD
for order-p tensors, which is utilized to accelerate the tensor factorizations in our MSTR framework.
To aid our discussion, let us define the t-SVD for an order-p tensor T :

T = L ∗M ∗R⊤, (1)

where T ∈ Rn1×n2×n3×···×np , L ∈ Rn1×n1×n3×···×np , R ∈ Rn2×n2×n3×···×np , and M ∈ Rn1×n2×n3×···×np .
Here, L and R are orthogonal, and M has entries Mi1i2i3···ip such that Mi1i2i3···ip = 0 unless i1 = i2.
When p = 3, authors in [7] refer to M as an f -diagonal tensor. The symbol ∗ in (1) refers to the
t-product, and R⊤ is the t-transpose of R.
We are concerned with data arising from high-fidelity simulations or physical measurements. In
the most general setting, the solution tensor S can have the following form:

S ∈ RNx×Ny×Nz×m1×m2×···×mNµ×Nt , (2)

where Nx, Ny, and Nz refer to the size of each spatial dimension; Nµ refers to the parameter space
dimensions, with m1,m2, · · · ,mNµ corresponding to the size of each dimension of the parameter
space; Nt refers to the total number of time steps or the frequency of measurements. We seek to
efficiently reduce this high-dimensional tensorial data, obtaining its reduced tensor representation,
which describes the original tensor with reasonable accuracy.
The MSTR strategy begins by identifying the target variable of interest, along which we do not seek
to perform a tensor compression. For physical systems, it is typical to either collect measurements
or high-fidelity solution values across the spatial domain, corresponding to various time instances
and/or parameter configurations. As a result, the target variable could be either time or parameter.
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We seek to compress the solution tensor along all remaining dimensions. For instance, consider
an order-5 tensor S ∈ RNx×Ny×Nz×m×Nt , where m =

∏
j={1,2,...,Nµ}mj . If the target variable is

the parameter, then the reduced representation we aim for lies in Rr1×r2×r3×m×r5 , whereas if the
target variable is time, then the reduced representation we aim for lies in Rr1×r2×r3×r4×Nt . Here,
r1 ≪ Nx, r2 ≪ Ny, r3 ≪ Nz, r4 ≪ m, and r5 ≪ Nt.
Based on the t-SVD in (1), we can seek a compression of any tensor T ∈ Rn1×n2×n3×···×np by
truncating L ∈ Rn1×n1×n3×···×np along the second dimension, obtaining L̃ ∈ Rn1×r×n3×···×np , where
r ≪ n1, projecting T on L̃, and producing A ∈ Rr×n2×n3×···×np . Note that A provides a reduced
representation of T , where information along the first dimension is compressed.
The central idea pertaining to the MSTR strategy is to recursively perform a tensor factorization for
obtaining a truncated orthogonal tensor, onto which the parent unfactored tensor can be projected,
leading to compression along one tensor dimension at every stage. The tensor factorizations are
performed sequentially over subsequent intermediate reduced representations of the original tensor
S, ultimately leading to the final reduced tensor representation where all dimensions except the
one corresponding to the target variable are compressed. While employing t-SVD to undertake the
multi-stage tensor factorizations, it is imperative to appropriately permute the dimensions of the
intermediate reduced tensor representations, allowing us to attack all relevant dimensions, leading
to a compression of information along them. Moreover, for S and all subsequent intermediate
reduced tensor representations, it is important to maintain a specific tensor orientation. We will
provide further details about these intricacies in our talk.
We demonstrate an application of the MSTR strategy in the context of reduced-order modeling
by using it to extract the final reduced tensor representation Ans for any given S, along with
the truncated orthogonal tensors {L̃i}ns

i=1 from ns tensor reduction stages. The primary motiva-
tion is to utilize the order-preserving compressed version of S, enabling efficient operations within
our reduced-order model, which can then deliver reliable predictions during the online phase at
previously unseen parameter and/or time locations. After carrying out the MSTR procedure, we
interpolate/regress between specific slices of Ans , generating a map Mtv capable of accurately ren-
dering the final reduced tensor representation corresponding to new locations of the target variable,
i.e., either parameter or time. We denote this approximation as Âns , which is obtained in the online
phase. Note that the subscript tv in Mtv refers to the target variable. Using the truncated orthog-
onal tensors {L̃i}ns

i=1 and Âns , we obtain an approximation of the solution tensor at new locations
of the target variable. Mtv is built using a kernel-based shallow neural network (KSNN) with train-
able kernel activation functions, where the parameters—kernel widths and center locations—are
automatically determined via an alternating dual-staged iterative training procedure from our prior
work [4].
In the final reduced tensor representation, the variable staying uncompressed is viewed as the target
variable, whereas the variable compressed in the final stage of the MSTR procedure is referred to
as the secondary target variable. To build a reduced-order model capable of providing predictions
at new locations of both the parameter and time, it is necessary to ensure that they correspond to
either the target variable or the secondary target variable. Upon ascertaining this, another inter-
polation/regression map Mbasis is created, which can provide an approximation of the truncated
orthogonal tensor appearing in the second-last stage of the MSTR procedure, i.e., L̃ns−1, at new
locations of the secondary target variable. The approximation from Mbasis is denoted as ˆ̃Lns−1.
For this variant of our reduced-order model, the online phase involves querying Mtv to obtain Âns .
This is then used, along with L̃ns , to construct Âns−1. Later, yet another map Mstv is constructed
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by interpolation/regression between specific slices of Âns−1, capable of providing an approximation
of the intermediate reduced tensor representation from the second-last stage, corresponding to new
locations of the secondary target variable. We denote this approximation by ˆ̂Ans−1. Next, ˆ̃Lns−1 is
obtained by querying Mbasis, and in conjugation with ˆ̂Ans−1, an approximation of the intermediate
reduced tensor representation from the third-last stage is constructed. By using this approximation
in conjugation with the truncated orthogonal tensors {L̃i}ns−2

i=1 , we obtain the approximation of
the high-dimensional solution tensor at new locations of the target variable and secondary target
variable, i.e., parameter and time. We create Mbasis and Mstv using KSNNs, which is especially
useful for efficiently constructing Mstv during the online phase. Moreover, an accurate construction
of Mbasis is non-trivial, requiring interpolation over a Grassmann manifold. We investigate several
approaches to accomplish this.
To train the MSTR-based reduced-order model, we need the solution tensor S ∈ RNx×Ny×Nz×m×Nt ,
which requires data from either physical measurements or high-fidelity simulations across Nt time
instances and m parameter configurations. This can be challenging if obtaining spatio-temporal
solution fields for many parameters is infeasible or computationally expensive. To address this, we
develop a method to progressively expand the solution tensor S along the parameter dimension from
a small initial value m0 to a moderate final value mfinal. This incremental-learning procedure in-
volves iterative applications of the MSTR strategy to create a surrogate Ŝ ∈ RNx×Ny×Nz×mfine×Nt ,
where the growth of S is guided by iteratively applying our t-EIM [5] over cheaply computable Ŝ to
extract critical parameter locations from a fine candidate set with cardinality mfine. Moreover, em-
ploying randomized t-SVD for all factorizations in the MSTR procedure further enhances efficiency
during the offline phase. Related to our t-EIM are the recently proposed tensor discrete empirical
interpolation methods [1, 2] that use t-SVD to get the interpolation basis. In [1], a greedy proce-
dure is used to pick the interpolation indices, while [2] uses the pivoted t-QR decomposition [3]. In
contrast, t-EIM employs a greedy procedure to select both the interpolation indices and the basis.
We have observed excellent performance of the proposed framework over numerous high-dimensional
tensor-valued datasets, comprising climate measurements as well as various parametric spatio-
temporal flow phenomena exhibiting rich dynamics, including convection-dominated behavior. In
the talk, we primarily intend to highlight the theoretical and algorithmic contributions of our work.
Furthermore, we will illustrate the robustness of the MSTR strategy and the reduced-order model
based on it over an appropriately selected numerical example.
Numerical results: Table 1 provides the configurations of selected order-3 and order-4 tensor
datasets, detailing the training set dimensions, representing about half of the parameter samples
and time steps; the rest form the test sets. Table 3 lists the average relative errors for tensor approx-
imations using the MSTR procedure and the MSTR-based reduced-order model. To demonstrate
the MSTR procedure’s advantage, Table 3 also includes average relative errors when the tensor is
matricized to S ∈ RNxNy×mNt , thereby obtaining the truncated left singular matrix in RNxNy×r via

Tensor datasets Spatial dimension(s) # parameter samples # time steps
Wave equation N = 10201 m = 19 Nt = 401

Burgers’ equation Nx = 161, Ny = 161 m = 34 Nt = 101
Navier-Stokes equations N = 37514 m = 18 Nt = 201

Table 1: Details about the dimensions of selected order-3 and order-4 tensor datasets. All the
examples have a 2D spatial domain with N denoting the total number of unstructured grid nodes.
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Tensor datasets SVD MSTR % drop
Matricized Compressed Original Compressed

Wave equation R10201×7619 R10×7619 R10201×19×401 R10×19×10 97.51%
Burgers’ equation R25921×3434 R60×3434 R161×34×161×101 R10×34×10×10 83.49%

Navier-Stokes equations R37514×3618 R10×3618 R37514×18×201 R10×18×10 95.02%

Table 2: Details about the achieved level of compression for SVD and MSTR. The last column
highlights % reduction in the entries of the final reduced tensor representation from MSTR in com-
parison with the compression achieved via SVD. The corresponding errors are reported in Table 3.

Tensor datasets SVD SVD-based ROM MSTR MSTR-based ROM
Wave equation 3.91× 10−3 4.08× 10−3 6.98× 10−4 1.21× 10−3

Burgers’ equation 1.14× 10−2 8.61× 10−2 5.45× 10−3 6.14× 10−3

Navier-Stokes equations 2.25× 10−2 2.26× 10−2 4.29× 10−4 6.38× 10−4

Table 3: An illustrative comparison between average relative errors of the SVD, MSTR, and their
respective reduced-order model (ROM) approximations over the test sets for selected datasets.

its SVD, projecting the matricized tensor on it, and producing the compressed representation in
Rr×mNt , where r ≪ mNt. The comparison between the results from SVD and MSTR is for equiv-
alent compressions of the spatial dimensions. Table 2 details the compression levels, showing that
the representation from MSTR possesses fewer total entries than the representation from SVD.
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QCLAB: A MATLAB Toolbox for Quantum Numerical Linear Algebra

Sophia Keip, Daan Camps, Roel Van Beeumen

Abstract

Quantum numerical linear algebra is about solving numerical linear algebra problems on quantum
computers - a field that has seen exciting and significant progress in the past few years. Rapid
advancements in quantum hardware continue to drive this momentum forward and highlight the
fast-paced progress of the field. To facilitate quantum algorithm research, especially as quantum
hardware is still maturing, access to robust computational tools is crucial. We present QCLAB
(https://github.com/QuantumComputingLab/qclab) [1], an object-oriented MATLAB toolbox
for creating, representing and simulating quantum circuits. What sets QCLAB apart is its emphasis
on numerical linear algebra, prioritizing numerical stability, efficiency, and performance. This
dedication to robust numerical techniques underlies its role as the foundational framework for a
range of derived software packages and quantum compilers.
In this talk, featuring a MATLAB tutorial on QCLAB, we will not only showcasing the key features
of QCLAB, but also providing an overview of the state of the art in quantum numerical linear
algebra research. To offer concrete insights, the presentation will focus on three landmark quantum
algorithms: the Quantum Fourier Transform (QFT) [2], Quantum Phase Estimation (QPE) [4],
and the Quantum Singular Value Estimation (QSVE) [3]. By demonstrating QCLAB along the
way and introducing fundamental concepts in quantum computing, the audience will be encouraged
to engage actively with this promising research area.
The QFT is a quantum version of the discrete Fourier transform forming the foundation for nu-
merous quantum algorithms in quantum numerical linear algebra. Building on the QFT, QPE is
a principal quantum algorithm used to determine the eigenvalue (or phase) corresponding to an
eigenvector of a unitary operator. In simple terms, it estimates the phase θ in the equation:

U |ψ⟩ = e2πiθ|ψ⟩,

where U is a unitary operator and |ψ⟩ is an eigenvector of U . QPE is essential for applications like
factoring large numbers (as in Shor’s algorithm) and finding eigenvalues in quantum simulations.
Finally, the QSVE extends these principles to non-unitary matrices, allowing singular values to
be estimated directly through quantum methods. Both, QPE and QSVE promise polynomial
complexity in n when applied to matrices of size 2n.
To better understand how these quantum algorithms function, we will begin with the underlying
principles of quantum computation, highlighting its accessibility for researchers with a linear algebra
background [5, 6]. A quantum computation involves the following three key components:

• Quantum State: The representation of information, a unit vector in a complex vector space.

• State Evolution: The transformation of the quantum state via unitary operators.

• Measurement: The process of extracting information from the quantum state.

A common way of representing those three components is a so-called quantum circuit. A Quantum
circuit is an intuitive visual way to track the evolution and measurement of a quantum state.
QCLAB, based on this circuit model, offers a user-friendly interface for constructing, simulating,
and visualizing quantum circuits, in line with most modern quantum hardware platforms.
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Quantum states and qubits: A quantum circuit acts on a register of qubits, which hold
quantum information. Qubits are the quantum counterpart to classical bits. While a classical bit
is either 0 or 1, a qubit can exist in a linear combination, called superposition, of two basis states
|0⟩ and |1⟩. To represent a state |ϕ⟩ of a single qubit as vector in C2, we choose the standard basis
|0⟩ = [1, 0]T , |1⟩ = [0, 1]T . This leads to

|ϕ⟩ = α|0⟩+ β|1⟩ = α

[
1
0

]
+ β

[
0
1

]
=

[
α
β

]
,

where α and β are complex numbers, called amplitudes, and |α|2 + |β|2 = 1. For multiple qubits,
the state space grows exponentially. Consequently, the state of a n-qubit register corresponds to
a vector in C2n and is described by a linear combination of 2n basis states. These basis states are
formed as tensor products of the 1-qubit basis states, i.e., |b1b2 · · · bn⟩ = |b1⟩⊗ |b2⟩⊗ · · · ⊗ |bn⟩ with
bi ∈ {0, 1}. Note that b1b2 · · · bn are bit strings that can be interpreted as the binary representation
of the integers from 0 to 2n − 1. The n-qubit state can thus be represented as

∑2n−1
b=0 αb|b⟩, with

normalization
∑2n−1

b=0 |αb|2 = 1. For instance, a 2-qubit register has the four basis states |00⟩, |01⟩,
|10⟩, |11⟩ with |00⟩ = |0⟩ ⊗ |0⟩ = [1, 0, 0, 0]T and analogous expressions for the rest.
To set up a 2-qubit quantum circuit in QCLAB, we use the following code:

>> circuit = qclab.QCircuit(2);
q0

q1

where the circuit diagram on the right represents the empty qubits q0 and q1.
State evolution: Once we have prepared an n-qubit register in a certain state |ψ⟩ ∈ C2n ,

we can evolve it over time. To ensure that the quantum state remains normalized, this evolution
is achieved by applying unitary transformations |ψ⟩ → |ψ′⟩, known as quantum gates, which are
represented by unitary matrices U ∈ C2n×2n and are depicted in circuit formulas as blocks:

|ψ′⟩ = U |ψ⟩, |ψ⟩ U |ψ′⟩

In theory, any unitary U can serve as quantum gate. However, in practice, the implementation of
these gates is constrained by the underlying hardware, which determines which gates can actually
be realized. An important 1-qubit gate is the Hadamard gate H, which transforms the basis states
into equal superpositions, i.e. a linear combination with equal amplitudes.

H|0⟩ = 1√
2
(|0⟩+ |1⟩) , H|1⟩ = 1√

2
(|0⟩ − |1⟩) .

A common 2-qubit gate is the controlled NOT gate, abbreviated to CNOT. This gate flips the state
of the target qubit if and only the control qubit is in state |1⟩. The unitary matrix representations
of these two gates are

H =
1√
2

[
1 1
1 −1

]
, CNOT =

[
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
.

QCLAB natively implements a wide variety of commonly used quantum gates as well as the option
to implement your own gate based on its matrix representation. Going back to our example circuit,
we can add a Hadamard gate to the first qubit (qubit 0) and a CNOT gate with control qubit 0
and target qubit 1 using the push_back function. On the right you see that our quantum circuit
grows from left to right, which reflects the order the gates are applied to the state.
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>> circuit.push_back(qclab.qgates.Hadamard(0));
>> circuit.push_back(qclab.qgates.CNOT(0,1));

q0 H •
q1

Measurement: In contrast to classical bits, it is not possible to observe the quantum state
directly. Instead, we can only gain information through measurements, which inherently affect the
state itself since they collapse the state to one of the basis states. In a 1-qubit state α|0⟩+β|1⟩, the
probability of measuring 0 is |α|2, while the probability of measuring 1 is |β|2. After measurement,
the state collapses to either |0⟩ or |1⟩, based on the observed outcome. For a general state |ψ⟩ =∑

b αb|b⟩, the probability of measuring a basis state |b⟩ is

P (b) = |αb|2.

Since |ψ⟩ is normalized, this defines a valid probability distribution over the possible measurement
outcomes. For instance, for a 2-qubit register in the state α00|00⟩ + α01|01⟩ + α10|10⟩ + α11|11⟩,
the probability of measuring 0 for both qubits is |α00|2, and the system collapses to |00⟩ after the
measurement.
Let us add measurements to both qubits in our QCLAB example circuit:

>> circuit.push_back(qclab.Measurement(0));
>> circuit.push_back(qclab.Measurement(1));

q0 H • 




q1 




Simulating quantum circuits: After constructing a circuit, the next step is to execute it and
observe the results. Here, we set up a 2-qubit circuit consisting of a Hadamard gate on the first
qubit, a CNOT gate with control qubit 0 and target qubit 1, and two measurements. Let us see
what the circuit does on the initial state |00⟩ = |0⟩ ⊗ |0⟩. Applying the Hadamard gate to the first
qubit yields

H|0⟩ ⊗ |0⟩ = 1√
2
(|0⟩+ |1⟩)⊗ |0⟩ = 1√

2
|00⟩+ 1√

2
|10⟩.

Next, the CNOT gate flips the bit of the second qubit whenever the first qubit is 1, so

CNOT
(

1√
2
|00⟩+ 1√

2
|10⟩

)
=

1√
2
|00⟩+ 1√

2
|11⟩.

Finally, by measuring both qubits, we measure |00⟩ and |11⟩ both with probability | 1√
2
|2 = 0.5. To

simulate the circuit in QCLAB, we use the simulate function with the initial state as input:

>> simulation = circuit.simulate('00');

For all measurements we can get the possible measurement results together with the corresponding
probabilities and collapsed states by

>> simulation.results
ans = 2x1 cell

'00'
'11'

>> simulation.probabilities
ans = 2x1 cell

0.5000
0.5000

>> simulation.states
ans = 2x1 cell

[1;0;0;0]
[0;0;0;1]

QCLAB provides a full state simulation, meaning it accurately represents the entire quantum state
vector, allowing precise tracking of amplitudes and phase information for each qubit throughout the
computation. The straightforward simulation of quantum circuits in QCLAB makes it a valuable
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tool for rapid prototyping of quantum algorithms. This capability allows researchers to efficiently
experiment with and refine their algorithms prior to moving on to more advanced stages.

Additional features: Other than the computational tasks, QCLAB enables the visualization of
quantum circuits directly in the MATLAB command window and supports saving a circuit diagram
to LaTeX source files, as demonstrated in the diagrams presented within this abstract. Both can
be done using the following commands:

>> circuit.draw;
>> circuit.toTex;

This functionality makes it particularly useful for research documentation and presentations. QCLAB
also provides input/output compatibility with openQASM, a low-level programming language used
to describe quantum circuits, which is compatible with quantum hardware. This allows users to
test their quantum circuits on real quantum computers and is achieved by the command:

>> circuit.toQASM;

Alongside the numerical linear algebra applications we present in this talk, QCLAB offers a variety
of other examples that help users getting familiar with both quantum computing concepts and the
toolbox itself. Additionally, extensive documentation is available to make the learning process as
smooth as possible.
QCLAB also has a C++ counterpart, QCLAB++ [7, 8], which is designed for more computationally
demanding tasks by leveraging GPU capabilities. QCLAB++ retains the same user-friendly syntax
as QCLAB, allowing researchers to easily transition from prototyping in MATLAB to scaling up
simulations with C++ on GPUs.
This talk is designed for both researchers in numerical linear algebra seeking an easy entry point
into quantum computing, and experienced quantum computing practitioners looking for a tool to
facilitate rapid prototyping of quantum algorithms.
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A Memory-efficient MM-GKS Variant for Large-scale Dynamic or
Streaming Inverse Problems

Misha E. Kilmer, Mirjeta Pasha, Eric de Sturler

Abstract

Reconstructing high-quality images with sharp edges requires edge-preserving regularization oper-
ators. Using a general ℓq-norm on the gradient of the image is a common approach. For implemen-
tation purposes, the ℓq-norm regularization term is typically replaced with a sequence of ℓ2-norm
weighted gradient terms with the weights determined from the current solution estimate. While (hy-
brid) Krylov subspace methods can be employed on this sequence, it would require generating a new
Krylov subspace for every update of the regularization operator. The majorization-minimization
generalized Krylov subspace method (MM-GKS) addresses this disadvantage by combining the
updating of the regularization operator with generalized Krylov subspaces (GKS). After projecting
the problem onto a lower dimensional subspace - one that expands each iteration - the regulariza-
tion parameter is selected for the projected problem. Basis expansion continues until a sufficiently
accurate solution is found. Unfortunately, for large-scale problems that require many iterations
to converge, storage and the cost of repeated orthogonalization present overwhelming memory
requirements and computational costs.
We present a variant of MM-GKS that provably converges to the minimum of the smoothed func-
tional even if the search space dimension remains very small. This substantially improves theoretical
results for MM-GKS where the convergence proof relies on (eventually) spanning the full problem
space. Using this result, we develop a new method that solves the minimization/imaging problem
by alternatingly compressing and expanding the search space while maintaining strict monotonic
convergence. Our method can solve large-scale problems efficiently both in terms of computational
complexity and memory requirements. In the compression phase, we select a subspace of small
dimension that is considered the most “important” for convergence by one of four compression
strategies. We further generalize our proposed method to handle streaming problems where the
data is either not all available simultaneously or the size of the problem demands it be treated as
such. We demonstrate the utility of our approach on several image reconstruction and restoration
problems.
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Randomized solvers for joint eigenvalue problems

Daniel Kressner, Haoze He

Abstract

Here is a Matlab one-liner for computing the eigenvectors of a normal matrix A:

H = A+A’; S = A-A’; [U,~] = eig(randn*H+randn*1i*S);

This talk will explain why this one-liner works and what accuracy we can expect.
More generally, this talk is concerned with randomized methods for solving joint eigenvalue prob-
lems associated with a matrix family A1, . . . , Ad. This problem class includes the diagonalization of
(nearly) commuting symmetric or nonsymmetric matrices, as well as simultaneous diagonalization
by congruence. As in the Matlab one-liner above (which exploits that the Hermitian and skew-
Hermitian parts of a normal matrix commute), a common idea of these randomized methods is
to first reduce the matrix family to one or two matrices by random linear combinations and then
apply a standard eigensolver. These methods are remarkably simple and robust, and provide a
decent level of accuracy with very high probability. If needed, accuracy can be improved further
with optimization techniques or other refinement strategies.
Besides algorithms, we will also discss the theory and applications of randomized solvers for joint
eigenvalue problems. It turns out that classical eigenvalue perturbation theory, with a small dose
of probabilistic analysis, can explain much of the success of these solvers. Applications include
signal processing tasks (e.g., for image separation and EEG analysis) and tensor decomposition
(e.g., for learning latent variable models). A particularly successful and important application are
joint eigenvalue methods for multivariate root-finding problems, which we have explored in joint
work with Bor Plestenjak.
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Most matrix manifold optimization problems are NP-hard

Zehua Lai, Lek-Heng Lim, Ke Ye

Abstract

Some of the most common Riemannian manifolds in geometry, including many that are important
in engineering applications, may be represented as matrix manifolds, i.e., submanifolds or quotient
manifolds of Rm×n endowed with various Riemannian metrics.
We consider four of the best known ones: The Cartan manifold of ellipsoids in Rn may be modeled
as the set of positive definite matrices

E(Rn) ∼= {A ∈ Rn×n : AT = A, xTAx > 0 for all x ̸= 0}. (1)

The compact Stiefel manifold of orthogonal k-frames in Rn may be modeled as the set of n × k
orthonormal matrices

Vk(Rn) ∼= {Y ∈ Rn×k : Y TY = I} (2)

The noncompact Stiefel manifold of k-frames in Rn may be modeled as the set of n × k full-rank
matrices

Stk(Rn) ∼= {S ∈ Rn×k : rank(S) = k} (3)

The Grassmannian of k-planes in Rn may be modeled either as projection matrices, involution
matrices, or, more generally, quadratic matrices with appropriate trace values:

Grk(Rn) ∼= {P ∈ Rn×n : P 2 = P = P T, tr(P ) = k} (4)
∼= {Q ∈ Rn×n : QTQ = I, QT = Q, tr(Q) = 2k − n}
∼= {W ∈ Rn×n : W T = W, (W − aI)(W − bI) = 0, tr(W ) = ka+ (n− k)b}.

Further examples may be obtained from these four basic cases as product, quotient, or submanifolds.
We will show that unconstrained quadratic optimization over any of these models of Grassmannian
is NP-hard. Our results cover all scenarios: (i) when k and n are both allowed to grow; (ii) when
k is arbitrary but fixed; (iii) when k is fixed at its lowest possible value of 1.
For example, the clique decision problem, i.e., deciding if a clique of size k exists in a graph
G = (V,E), may be formulated as the maximization problem

max
P∈Gr(k,n)

[ ∑
(i,j)∈E

eTiPeie
T
jPej +

∑
i∈V

eTiPeie
T
iPei

]
, (5)

where Gr(k, n) is the projection model of Grassmannian in (4) and e1, . . . , en ∈ Rn the standard
basis. This establishes NP-hardness of (i) for the projection model but we will extend it to other
models and also to (ii) and (iii).
We will establish similar NP-hardness results for unconstrained quadratic optimization over the
Cartan manifold in (1), as well as unconstrained cubic optimization over the compact and noncom-
pact Stiefel manifolds in (2) and (3).
In all cases, we will rule out the existence of FPTAS and show that these hardness results hold
regardless of the choice of Riemannian metrics one puts on these manifolds. If time permits, we
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will also discuss the NP-hardness of optimizing over various representations of these manifolds as
quotient matrix manifolds, including

Grk(Rn) ∼= O(n)/(O(k)×O(n− k)), Vk(Rn) ∼= O(n)/O(n− k),

Stk(Rn) ∼= GL(n)/P1(k, n), E(Rn) ∼= GL(n)/O(n).
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Randomized low-rank Runge-Kutta methods
Hei Yin Lam, Gianluca Ceruti, Daniel Kressner

Abstract

In this work, we aim at approximating the solution A(t) to large-scale matrix differential equations
of the form

Ȧ(t) = F (A(t)), A(0) = A0 ∈ Rm×n. (1)

For large m and n, the solution of (1) becomes expensive; in fact, it may not even be possible
to store the entire matrix A(t) explicitly. To circumvent this limitation, model order reduction
techniques based on exploiting (approximate) low-rank structure of A(t) can be employed. In
particular, dynamical low-rank approximation [3] approximates A(t) by evolving matrices Y (t) on
the manifold Mr of rank-r matrices, reducing memory usage when r ≪ m,n. By the Dirac-Frenkel
variational principle, the matrix Y (t) is obtained by solving the differential equation

Ẏ (t) = Pr(Y (t))F (Y (t)), Y (0) = Y0 ∈ Mr, (2)
where Pr(Y (t)) denotes the orthogonal projection onto TY (t)Mr, the tangent space of Mr at Y (t).
However, the stiffness of this equation leads to a severe step size restriction for standard explicit
time integration methods. To address this issue, special integrators for this equation have been
proposed [4, 2, 5]. Under the assumption

∥F (Y )− Pr(Y )F (Y )∥F ≤ ϵ̃, for all Y ∈ Mr ∩ {suitable neighbourhood of A(t)} (3)
all these methods exhibit at least first-order convergence up to O(ϵ̃).
Assumption (3), which states that F (Y ) is nearly contained in the tangent space, is arguably a
strong assumption. According to [2] and the examples shown, it is possible that A(t) can be well
approximated by a rank-r matrix even if (3) is not satisified with small ϵ̃. When this assumption
fails for small ϵ̃, using tangent space projections in numerical methods risks introducing significant
errors.
In this work, we develop low-rank time integration methods for (1) that do not rely on (3) but only
require A(t) to admit accurate low-rank approximations. Our approach is based on the notion of
projected integrators, which first perform a standard time integration step and then project back
to the manifold. For the manifold Mr, the efficiency of projected integrators is impaired by the
occurrence of high-rank matrices, e.g., during the intermediate stages of a Runge-Kutta method.
Previous work [2] mitigated this with repeated tangent space projections. Here, we propose a
novel alternative using randomized low-rank approximation, employing random sketches instead of
tangent projections to control rank growth efficiently.
To the best of our knowledge, this is the first work to propose and analyze randomized low-rank
approximation methods for time integration. The randomized low-rank Runge-Kutta (RK) methods
proposed in this work combine explicit RK methods with randomized low-rank approximation.
Assuming that the dynamics generated by F preserve rank-r matrices approximately, we derive a
probabilistic result that establishes a convergence order (up to the level of rank-r approximation
error) based on the so-called stage order of the underlying RK method, which matches the order
established in [2] for projected RK methods. However, unlike the results in [2], our numerical
experiments indicate that randomized low-rank RK methods actually achieve the usual convergence
order of the RK method, which can be significantly higher. For the randomized low-rank RK 4,
we also establish order 4 theoretically when allowing for modest intermediate rank increases in the
stages. This compares favorably to order 2 implied by the techniques in [2].
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Inner-product free Krylov subspace methods for inverse problems

Malena Sabaté Landman, Ariana Brown, Julianne Chung, James G. Nagy

Abstract

We consider linear discrete inverse problems, which involve the reconstruction of hidden objects from
possibly noisy indirect measurements. Rapid advances in technology and computation have resulted
in enormous and growing data-sets, creating an urgent need for more efficient algorithms that can
handle the increasing dimension of these problems while maintaining both reliability and, crucially,
speed. New (and not so new) promising directions include reducing the working floating point
arithmetic and increase parallelization, both of which can suffer from problems related to the use
of inner-products in the algorithms. In this work, I present a general class of Krylov methods
that are inherently inner-product free, while maintaining regularizing properties, making them a
powerful and efficient alternative to traditional Krylov solvers in the context of large-scale linear
inverse problems. Important applications appear, for example, in medical imaging (computed
tomography), non-destructive testing of engineering designs, and geophysics (seismic exploration).
We write a linear system with additive noise as

Ax+ e = b, A ∈ Rm×n, (1)

where we typically consider e to be a realization of a white Gaussian random variable, and we
focus on problems that are ill-posed in the sense that the system matrix A has decaying singular
values which cluster at zero, but where A has an ill-determined numerical rank. Therefore, the
reconstructions of x are typically very sensitive to perturbations in the measurements (a.k.a. noise)
and need regularization.
Krylov subspace methods are a class of very popular projection methods to solve (1) which show very
fast convergence and have inherent regularization properties when equipped with early stopping of
the iterations [1]. In other words, the approximate solutions approach the true solution in the first
iterations but, if the algorithms are not stopped, they continue to converge towards to unwanted
solution of the least-squares problems associated with the noisy right hand side, which suffers badly
from noise amplification: this is also referred to as semi-convergence. These are typically based on
the stable construction of bases for Krylov subspaces, or search spaces for the solution x, defined
as:

Kk(C, d) = R(Vk), Vk = [d,Cd, ..., Ck−1d], (2)

which are related to the original linear system and where R(·) represents the range of a matrix.
Moreover, these are iterative methods, so that a new direction is added to the space Kk(C, d) at
each iteration k. Usually, this is done using either the Arnoldi or Golub-Kahan bidiagonalization
(GKB) algorithms, which, applied to (1), differ on the choice of the matrix-vector pair {C, d}.
In particular, Arnoldi considers {A, b}; and GKB constructs basis for two Krylov subspaces; one
taking {ATA,AT b} and one taking {AAT , b}. Both methods rely on the implicit construction of a
QR factorization of the matrix Vk in (2), and they require the orthogonalization and normalization
of the new basis vectors against the previous vectors in the basis, see, e.g. [2, Chapter 4]. However,
there are scenarios where the inner-products required in this process can hinder the usability of
the solvers. For example, in low precision arithmetic, standard Krylov solvers might break-down
too early due to the norm of the new vector after orthogonalization being numerically zero in
the given working precision, or over/under-flows can occur during norm computations. Moreover,
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inner-products can be a limiting factor for high performance computing, since they require global
communication [3]. On the other hand, the most used inner-product free solvers, e.g. Chebyshev
semi-iterations, can show very slow convergence.
In this work, we present a general family of solvers which leverage the fast converge of Krylov meth-
ods while being inherently inner-product free, and which are based off implicit LU factorizations of
the matrix Vk in (2). These solvers construct bases that span the same Krylov subspaces as those
associated to their traditional counterparts, but contain only linearly independent vectors that are
not orthogonal by construction. The choice of the matrix-vector pair {C, d} in (2) gives rise to
different frameworks, which hold a strong parallelism to the Arnoldi and GKB algorithms: on the
one hand, we use the standard Hessenberg method for {A, b}, see [4, 5], and on the other hand we
develop a new modified version of the Hessenberg method for {ATA,AT b} and for {AAT , b}, see [7].
Note that, in practice, partial pivoting is needed to avoid unwanted break-down of the algorithms.
Moreover, we describe the (quasi minimal residual) solvers associated with each approach. In the
first place, we revisit the changing minimal residual Hessenberg method (CMRH), see e.g. [4, 5],
and then we develop a completely new method, which we call the least squares LU (LSLU) [7]. In
particular, we show that CMRH and LSLU can be used to tackle large-scale linear inverse problems
efficiently, since they both present very fast convergence and regularization properties. Note that
previous work on the CMRH method did not consider its application to ill-posed problems, and it
was therefore not known if it was a regularizing method. Now we know that both CMRH and LSLU
have empirical spectral filtering properties, i.e., early iterations reconstruct smooth component of
the solution, and later iterations reconstruct high frequency components, so that early stopping
of the iterations gives rise to a regularized solution. Finally, we extend both methods to include
Tikhonov regularization, in the fashion of hybrid regularization [8], so that a projected Tikhonov
regularization problem is solved at each iteration. This is a very powerful framework, since the
solution of such problems does not show semi-convergence (and therefore is less sensitive to the
stopping criteria), and we can choose the regularization parameters throughout the iterations using
standard parameter choice criteria.
For more details on this work, where theoretical results and extensive numerical experiments suggest
that inner-product free variants exhibit comparable performance to established methods, see [6, 7].
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New results on the I/O complexity of some Numerical Linear Algebra
kernels

Julien Langou

Abstract

When designing an algorithm, one cares about arithmetic/computational complexity, but data
movement (I/O) complexity is playing an increasingly important role that highly impacts perfor-
mance and energy consumption. The objective of I/O complexity analysis is to compute, for a
given program, its minimal I/O requirement among all valid schedules. We consider a sequential
execution model with two memories, an infinite one, and a small one of size S on which a com-
putation unit retrieves and produces data. The I/O is the number of reads and writes between
the two memories. From this model, we review various Numerical Linear Algebra kernels that are
increasingly complicated from matrix-matrix multiplication, to LU factorization, then to symmet-
ric rank-k update, to Cholesky factorization, then to Modified Gram-Schmidt to Householder QR
factorization. We will show practical examples of these results too.
In particular, we will focus on two recent results.
First, we present the “hourglass pattern” which is useful in analysing algorithm such as, for example,
Modified Gram-Schmidt or Householder QR factorization. We identify a common hourglass pattern
in the dependency graphs of several common linear algebra kernels. Using the properties of this
pattern, we mathematically prove tighter lower bounds on their I/O complexity, which improves
the previous state-of-the-art bound by a parametric ratio. This proof was integrated inside the
IOLB automatic lower bound derivation tool. These results were presented in [1]. In addition
to lower bound results, we will show a tiling (valid for Modified Gram-Schmidt or Householder
QR factorization) which enables to reach the lower bound. We present numerical experiments on
modern platforms that shows the effectiveness of the new tiling.
Second, in [6], we focus on the problem of to apply a chain of sequences of Givens rotations to a
matrix A. Applying a chain of Givens rotations efficiently is an important building tool in numerical
linear algebra. Some examples are the implicit QR algorithm [2] and the Jacobi method for the
singular value decomposition [3]. To achieve high performance, many factorizations limit their
initial calculations to a smaller submatrix of the original matrix. Updating the rest of the matrix
(which often involves the bulk of the floating-point operations) can then be done efficiently with an
optimized routine. In practice, we observe that a vanilla algorithm performs poorly and is memory-
bound. However this algorithm has a three-loop structure reminiscent of a Level 3 BLAS subroutine,
and one would want to reorganize the operations to get a compute-bound algorithm. Kågström et
al. [4] and later Van Zee et al. [5] demonstrated two ways to increase efficiency: wavefront pattern
and fused rotations. We present a new algorithm that is innovative in three main ways. Firstly,
we introduce a kernel that is optimized for register reuse in a novel way. Secondly, we introduce
a blocking and packing scheme that improves the cache efficiency of the algorithm. Finally, we
thoroughly analyze the memory operations of the algorithm which leads to important theoretical
insights and makes it easier to select good parameters. Numerical experiments show that our
algorithm outperforms the state-of-the-art and achieves a flop rate close to the theoretical peak on
modern hardware. In addition to a practical new algorithm, we use our I/O lower bound theory to
prove that our tiling is optimal in terms of I/O. A technical report explaining these new findings
will be released soon.
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Optimal accuracy for linear sets of equations with the graph Laplacian

Rich Lehoucq, Jon Berry, Danny Dunlavy, Natalie Wellen & Michael Weylandt

Abstract

An approximate solution x̂ for a linear set of equations Lx = b has roughly d digits of accuracy
when ∥x̂− x∥/∥x∥ ≈ 10−d. The classical two-sided inequality

1

κ(L)

∥b− Lx̂∥
∥b∥

⩽ ∥x− x̂∥
∥x∥

⩽ κ(L)
∥b− Lx̂∥

∥b∥
x, b ̸= 0 (1)

implies that the relative error is norm-equivalent to the relative residual error ∥b − Lx̂∥/∥b∥ with
constants given by the condition number κ(L) and its reciprocal. For us, the matrix L is a graph
Laplacian and the vector x represents a network centrality measure indicating the importance of
the vertices, e.g., the PageRank [1] vector or the vector of mean hitting-times. Unfortunately, the
condition number κ(L) increases with graph size or with the PageRank teleportation parameter
rendering (1) useless in practice. We establish improved variants of the two-sided inequality and
explore their profound computational implications.
We focus our analysis on the relationship between the relative error and the relative residual. This
relationship is key to assessing the quality of x̂ because it relates the observable quantity ∥Lx̂− b∥
with the unobservable quantity ∥x̂−x∥. We show that the strength of this relationship is determined
by the angle between b and the vector of all ones on an undirected graph. This relationship is also
dependent on the so-called Markov chain discount, a classical concept that we find is equivalent to
the PageRank teleportation parameter for undirected graphs. This provides an elegant probabilistic
basis for the degree-normalized PageRank variant and the simple characterization of PageRank on
an undirected graph sought by Gleich [2, p.356].
Our contributions are twofold: i) we establish a more informative variant of (1) using a data-
dependent condition number and ii) we reframe graph centrality measures in the language of discrete
potential theory and show how certain potentials can achieve asymptotically optimal accuracy. We
discuss the application of these results to PageRank and conclude with numerical simulations high-
lighting the impact of our improved bounds. We refer the reader to the associated report Optimal
accuracy for linear sets of equations with the graph Laplacian available at https://arxiv.org/.
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Spectral Density Estimation of Kernel Matrices with Applications

Mikhail Lepilov

Abstract

Kernel matrices formed from large sets of observations arise frequently in data science, for example
during classification tasks. It is desirable to know the eigenvalue decay properties of these matrices
without explicitly forming them, such as when determining if a low-rank approximation is feasible.
In this talk, I will introduce a new spectral density framework based on quantile bounds. This
framework gives meaningful bounds for all the eigenvalues of a kernel matrix while avoiding the
cost of constructing the full matrix. The kernel matrices under consideration come from a kernel
with quick decay away from the diagonal applied to uniformly-distributed sets of points in Euclidean
space of any dimension. I will prove certain results enabling this framework whenever the kernel
function satisfies a certain decay condition, and I will give empirical evidence for its accuracy. In
the process, I will also prove a very general interlacing-type theorem for finite sets of numbers.
Additionally, I will give an application of this framework to the study of the intrinsic dimension of
data. In doing so, I introduce a new “local” notion of intrinsic dimension, which has the power to
test a certain interpretation of the so-called “manifold hypothesis” for a given dataset.

203



Fast Solvers for the Runge–Kutta Integration of the Instationary
Incompressible Navier–Stokes Equations

Santolo Leveque, Yunhui He, and Maxim Olshanskii

Abstract

Time-dependent PDEs arise very often in many scientific areas, such as mechanics, biology, eco-
nomics, or chemistry, just to name a few. The lack of a closed form solution for general time-
dependent PDEs requires one to employ numerical methods in order to find an approximation of
it. These methods consider suitable discretizations of the quantity involved; in particular, they
employ suitable time-stepping schemes as discretization of the time derivative. The majority of
the solvers for time-dependent PDEs is based on classical linear multistep methods. Within this
framework, the approximation of the solution at time tn is evaluated as a linear combination of the
s previous steps. The wide use of multistep methods is due to their simplicity; in fact, the structure
of the discretized problem allows one to employ solvers for the corresponding stationary PDE as
a solver for the time-dependent one. Despite this favourable quality, multistep methods have a
drowback: they are (in general) not A-stable, a property that allows one to choose an arbitrary
time-step for the integration. In fact, as stated by the second Dahlquist barrier, see for example [4,
Theorem 6.6], an A-stable linear multistep method cannot have order of convergence greater than
two. By contrast, one can devise an implicit Runge–Kutta method so that not only it is A-stable,
but also such that the method possesses more desirable stability properties (e.g., L- or B-stability,
see for instance [2, 3, 4]). However, the better stability properties of Runge–Kutta methods come
to a price: the discretization results in a non-linear block system, to be solved for the so called
stages of the method at each time step. For this reason, in recent years researchers have devoted
their effort in devising efficient and robust linear solvers for the solution of block systems arising
from the Runge–Kutta discretization of a time-dependent PDE, see for example [1, 5, 6, 7].
Consider the integration of an ODE of the form v′(t) = f(v(t), t) between 0 and a final time tf > 0,
given the initial condition v(0) = v0. By employing a constant time-step τ , an s-stage Runge–Kutta
time-stepping scheme applied to v′(t) = f(v(t), t) reads as follows:

vn+1 = vn + τ
s∑

i=1

biki,n, n = 0, . . . , nt − 1,

where the stages ki,n are given by

ki,n = f

vn + τ
s∑

j=1

ai,jkj,n, tn + ciτ

 , i = 1, . . . , s, (1)

with tn = nτ . The Runge–Kutta method is uniquely defined by the coefficients ai,j , the weights bi,
and the nodes ci, for i, j = 1, . . . , s. For this reason, an s-stage Runge–Kutta method is represented
by the following Butcher tableau:

cRK ARK

b⊤
RK

where ARK = {ai,j}si,j=1, bRK = [b1, . . . , bs]
⊤, and cRK = [c1, . . . , cs]

⊤.
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In this talk, we consider the following instationary incompressible Navier–Stokes equations
∂v⃗
∂t − ν∇2v⃗ + v⃗ · ∇v⃗ +∇p = f⃗(x, t) in Ω× (0, tf ),

−∇ · v⃗ = 0 in Ω× (0, tf ),

v⃗(x, t) = g⃗(x, t) on ∂Ω× (0, tf ),

v⃗(x, 0) = v⃗0(x) in Ω.

The functions f⃗ and g⃗ as well as the initial condition v⃗0(x) are known. Further, ν is the viscosity
of the fluid. We integrate the problem with a Runge–Kutta scheme in time. The time discretiza-
tion results in a non-linear system to be solved for the stages of the method at each time step.
Specifically, introducing the variables

w⃗ v
n,i = v⃗n + τ

∑s
j=1 ai,j k⃗

v
j,n, i = 1, . . . , s,

wp
n,i = pn + τ

∑s
j=1 ai,jk

p
j,n, i = 1, . . . , s,

at each time step the non-linear system (1) that characterizes the stages of the Runge–Kutta method
reads as follows:{

w⃗ v
n,i − ν∇2w⃗ v

n,i + w⃗ v
n,i · ∇w⃗ v

n,i +∇wp
n,i = f⃗(x, t) i = 1, . . . , s,

−∇ · w⃗ v
n,i = 0 i = 1, . . . , s.

(2)

Then, the solutions at time tn + τ are given by

v⃗n+1 = v⃗n + τ
∑s

i=1 bik⃗
v
i,n,

pn+1 = pn + τ
∑s

i=1 bik
p
i,n.

In order to find a numerical solution, we consider a Newton linearization of the non-linear problem
in (2), which is then discretized with suitable finite elements. The resulting linear system presents
a saddle-point block structure, and can be very large and sparse in real-life applications. For this
reason, in order to find a solution one requires the use of preconditioned iterative methods. We
adopt an augmented Lagrangian-based preconditioner, and employ saddle-point theory for deriving
approximations of the (1, 1)-block and the Schur complement. Numerical experiments show the
effectiveness and robustness of our approach, for a range of problem parameters.
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The NPDo Approach For Optimization On The Stiefel Manifold with
Applications

Ren-Cang Li

Abstract

NPDo stands for nonlinear polar decomposition with orthogonal factor dependency. The NPDo
approach is a unified framework recently proposed in [3] for solving certain optimization on the
Stiefel manifold. Previously, the approach was implicitly employed in [5]. In this talk, we will
explain the theory behind the approach, why it works, the known types of problems for which it is
guaranteed to work, and discuss some of its applications in today’s data science, including subspace
learning and partially joint block diagonalization of several Hermitian matrices.
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Adaptive Sketching Based Construction of H2 Matrices on GPUs

Sherry Li, Wajih Boukaram, Yang Liu, Pieter Ghysels

Abstract

We present a novel linear-complexity bottom-up sketching-based algorithm for constructing a H2

matrix and its high performance GPU implementation. The construction algorithm requires both
a black-box sketching operator and an entry evaluation function. The novelty of our GPU ap-
proach centers around the design and implementation of the above two operations in batched mode
on GPU with accommodation for variable-size data structures in a batch. The batch algorithms
minimize the number of kernel launches and maximize the GPU throughput. When applied to
covariance matrices, volume IE matrices and H2 update operations, our proposed GPU implemen-
tation achieves up to 13× speedup over our CPU implementation, and up to 1000× speedup over an
existing GPU implementation of the top-down sketching-based algorithm from the H2Opus library.
This is the first GPU implementation of the class of bottom-up sketching-based H2 construction
algorithms.
Reference
W. Boukaram, Y. Liu, P. Ghysels, X.S. Li, “Adaptive Sketching Based Construction of H2 Ma-
trices on GPUs”, Proc. of IPDPS Workshop Parallel and Distributed Scientific and Engineering
Computing, Milano, Italy, June 3-7, 2025.
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Stochastic algebraic Riccati equations are almost as easy as deterministic
ones

Xin Liang, Zhen-Chen Guo

Abstract

Algebraic Riccati equations (AREs) arise in various models related to control theory, especially
in linear-quadratic optimal control design. The deterministic/classical ones are considered for
the deterministic linear time-invariant systems, including discrete-time algebraic Riccati equations
(DAREs)

X = ATXA+Q− (ATXB + L)(R+BTXB)−1(BTXA+ LT),

and continuous-time algebraic Riccati equations (CAREs)

ATX +XA+Q− (XB + L)R−1(BTX + LT) = 0.

During many years, people have developed rich theoretical results and numerical methods for the
DAREs and CAREs. See [22, 21, 18, 3, 16, 2] to obtain an overview for both theories and algorithms.
In comparison, the stochastic/rational ones are considered for the stochastic linear time-invariant
systems, including stochastic discrete-time algebraic Riccati equations (SDAREs)

X = AT
0 XA0 +

r−1∑
i=1

AT
i XAi +Q

− (AT
0 XB0 +

r−1∑
i=1

AT
i XBi + L)(BT

0 XB0 +

r−1∑
i=1

BT
i XBi +R)−1(BT

0 XA0 +

r−1∑
i=1

BT
i XAi + LT),

and stochastic continuous-time algebraic Riccati equations (SCAREs)

AT
0 X +XA0 +

r−1∑
i=1

AT
i XAi +Q

− (XB0 +

r−1∑
i=1

AT
i XBi + L)(

r−1∑
i=1

BT
i XBi +R)−1(BT

0 X +

r−1∑
i=1

BT
i XAi + LT) = 0.

Here r− 1 is the number of stochastic processes involved in the stochastic systems dealt with, and
it is easy to check that for the case r = 1 SDAREs and SCAREs degenerate to DAREs and CAREs
respectively. Due to the complicated forms, we may recognize it would be much more difficult
to analyze their properties and obtain their solutions. There are still literature, e.g., [6, 7, 8],
discussing the stochastic linear systems and the induced stochastic AREs.
As we can see, the stochastic AREs are still algebraic, and it is quite natural to ask whether
algebraic methods could be developed to solve them. However, limited by lack of clear algebraic
structures, to the best of the authors’ knowledge, nearly all of the existing algorithms are based
on the differentiability or continuity of the equations, such as Newton’s method [6, 5], modified
Newton’s method [12, 19, 4], Lyapunov/Stein iterations [9, 20, 24], comparison theorem based
method [10, 11], LMI’s (linear matrix inequality) method [23, 17], and homotopy method [25].
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The key to the problem is the algebraic structures behind the equations. In this talk, we will build
up a simple and clear algebraic interpretation of SDAREs and SCAREs with the help of the so-
called left semi-tensor product. In the analysis we find out the Toeplitz structure and the symplectic
structure appearing in the equations, and illustrate the fact that the fixed point iteration and the
doubling iteration are also valid for them. The algebraic structures found here will shed light on
the theoretical analysis and numerical algorithms design, and strongly imply that stochastic AREs
are almost as easy as deterministic ones.
As an example, we show how to propose a RADI-type method for large-scale stochastic continuous-
time algebraic Riccati equations with sparse and low-rank matrices (Ai are large-scale and sparse,
and Bi and Q − LR−1LT are low-rank), based on revealed algebraic structure and motivated by
the relation illustrated in [13] between the algebraic structure and the efficient RADI method [1]
for CAREs. Unlike many existing methods for large-scale problems such as Newton-type methods
and homotopy method, it calculates the residual at a low cost and does not require a stabilizing
initial approximation, which can often be challenging to find. Numerical experiments are provided
to demonstrate its efficiency.
This talk is based on [13, 14, 15].
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Mixed precision HODLR matrices

Xiaobo Liu1, Erin Carson2, Xinye Chen2

Abstract

Introduction and overview. Hierarchical matrices, often abbreviated asH-matrices [1], comprise
a class of dense rank-structured matrices with a hierarchical low-rank structure, which is used to
approximate a dense or sparse matrix by dividing it into multiple submatrices in a hierarchical way,
where a number of submatrices are selected to be approximated by low-rank factors according to
an admissibility condition.
Computations of hierarchical matrices have attracted significant attention in the science and en-
gineering community as exploiting data-sparse structures can significantly reduce the computa-
tional complexity of many important kernels such as matrix–vector products, matrix factorizations,
etc. One particularly popular option within this class is the Hierarchical Off-Diagonal Low-Rank
(HODLR) format, whose definition is associated with the binary cluster tree Tℓ of depth ℓ ∈ N+ [4].

Definition 1 ((Tℓ, p)-HODLR matrix). H ∈ Rn×n is (Tℓ, p)-HODLR matrix if every off-diagonal
block H(Iki , I

k
j ) associated with siblings Iki and Ikj in Tℓ, k = 1, . . . , ℓ, has rank at most p.

In the proposed talk, we consider constructing HODLR matrices in a mixed precision manner and
offer insights into the resulting behavior of finite precision computations. Our analysis confirms
what is largely intuitive: the lower the quality of the low-rank approximation, the lower the precision
which can be used without detriment. We provide theoretical bounds which determine which
precisions can safely be used in order to balance the overall error.
Practical definition of HODLR matrix. In order to quantify the error incurred in the low-rank
factorization of the off-diagonal blocks, we introduce the practical definition of (Tℓ, p, ε)-HODLR
matrix as in Definition 2. The approximation error in the diagonal blocks of all levels of the (Tℓ, p, ε)-
HODLR matrix H̃ is immediately obtainable following Definition 2 in the Frobenius norm, and, as
a special case, one can show ∥H̃ −H∥F ≤ ε∥H∥F .

Definition 2 ((Tℓ, p, ε)-HODLR matrix). Let H ∈ Rn×n be a (Tℓ, p)-HODLR matrix. Then H̃ ∈
Rn×n is defined to be a (Tℓ, p, ε)-HODLR matrix to H, if every off-diagonal block H̃(Iki , I

k
j ) associated

with siblings Iki and Ikj in Tℓ, k = 1, . . . , ℓ, satisfies ∥H̃(Iki , I
k
j )−H(Iki , I

k
j )∥ ≤ ε∥H(Iki , I

k
j )∥, where

0 ≤ ε < 1.

Mixed-precision representation. First, we develop a mixed precision algorithm for constructing
HODLR matrices. Let us assume that the off-diagonal blocks from the kth level of H̃, 1 ≤ k ≤ ℓ,
are compressed in the form

H̃
(k)
ij = Ũ

(k)
i (Ṽ

(k)
j )T , |i− j| = 1, (1)

where Ũ
(k)
i ∈ Rn/2k×p has orthonormal columns to precision u and Ṽ

(k)
j ∈ Rn/2k×p. Our idea is to

compress the low-rank blocks H̃
(k)
ij and represent the low-rank factors Ũ

(k)
i and Ṽ

(k)
j in precisions

potentially lower than the working precision; given a set of available precisions, the same precision,
say, uk, is used for the storage of all low-rank factors at level k. To keep the global error in the

1Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
2Department of Numerical Mathematics, Charles University, Prague, Czech Republic.
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mixed-precision representation at the same level as an unified working-precision representation, we
choose

uk ≤ ε/(2k/2ξk),

where ε > u (since the factorizations are calculated in the working precision u) can be thought of
as the accuracy threshold in the low-rank factorizations (1) and

ξk := max
|i−j|=1

∥H̃(k)
ij ∥F /∥H̃∥F , 1 ≤ k ≤ ℓ,

which essentially characterizes the relative importance of the off-diagonal blocks in level-k to the
whole matrix in terms of magnitude. This means that, as the tree depth increases, the unit roundoff
uk must be smaller to offset the error between the HODLR matrix and the original matrix and
that, since 0 < ξk < 1 holds for k = 1: ℓ, generally no higher-than-working precisions are needed
among uk for a HODLR matrix with mild depth ℓ, say, ℓ ≤ 10 (so 2k/2 ≤ 32). We then propose
an adaptive scheme for precision selection, which dynamically determines what degree of precision
is required for the computations in each level of the cluster tree. We show that the error in the
resulting mixed-precision representation Ĥ satisfies

∥H − Ĥ∥F ≲ (2
√
2ℓ+ 1)ε∥H∥F .

Matrix–vector products. Next, we give error bounds on the working precision u so that the
backward error in computing the matrix–vector product in finite precision does not exceed the
error resulting from inexact representation of the matrix. The key idea is that, if the HODLR
matrix H is approximated by the mixed-precision representation Ĥ, to calculate the matrix–vector
product b ← Ĥx we should try to balance the errors occurring in the approximation of Ĥ and in
the finite-precision computation, as shown from the following result.
Lemma 1. Let Âp an approximation of A such that ∥A − Âp∥F ≲ η for some η > 0. Then the
error due to finite precision computation of ŷ = fl(Âpx) will be no larger than the error due to the
computed inexact representation when the working precision has unit roundoff u ≤ η/(n∥Âp∥F ).

Applying Lemma 1 to the computation of the matrix–vector product associated with Ĥ
(k)
ij and

ignoring the errors in the summation of the vector elements (which are usually negligible compared
with the error in the block matrix–vector products), we can obtain the following result.
Theorem 1. Let H̃ be a (Tℓ, p, ε)-HODLR matrix associated with the HODLR matrix H, and let
Ĥ denote our mixed-precision representation. If b = Ĥx is computed in a working u ≤ ε/n, then
the computed b̂ satisfies

b̂ = fl(Ĥx) = (H +∆H)x, ∥∆H∥F ≤ 10 · 2ℓ/2ε∥H∥F .

LU factorization. Finally, we derive error bounds on the LU factorization of the mixed-precision
HODLR matrix Ĥ. The factorization is done by a recursive algorithm which computes for all but
the bottom level the block LU factorization[

H11 H12

H21 H22

]
=

[
L11

L21 L22

] [
U11 U12

U22

]
,

where L11 and L22 are lower triangular and U11 and U22 are upper triangular, and it invokes dense
routines on the bottom level. Based on the results from [3, sect. 3.5] and [3, Thm. 8.5], we first
look at the backward error in the LU factorization of the HODLR matrices at level k = ℓ− 1 and
then use induction to quantify the backward error in the LU decomposition of diagonal blocks in
the other levels, up to the level k = 0 (H(0)

11 := H). We arrive at the following result.
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Theorem 2. Let Ĥ be the mixed-precision ℓ-level HODLR representation. If the LU decomposition
of Ĥ is computed in a working precision u ≲ ε/n, then the LU factorization of the HODLR matrix
Ĥ satisfies

L̂Û = H +∆H, ∥∆H∥F ≲ 2ℓ+1ε∥H∥F + 11 · 2ℓε∥L̂∥F ∥Û∥F .

Noted that our finite precision analysis remains valid in the case where the HODLR matrices are
stored in one precision and therefore also provides new results for this case. We will also present
the numerical simulations we performed across various datasets to verify our theoretical results.
The talk is based on [2]. We have also developed a MATLAB toolbox called mhodlr for matrix
computations with HODLR representation and mixed-precision simulations, which supports other
important operations within the class of HODLR matrix such as (mixed-precision) matrix multi-
plication and Cholesky factorization. The documentation webpage of mhodlr MATLAB toolbox is
at https://mhodlr.readthedocs.io/en/latest/index.html.
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Convergence Analysis of SCF Iteration for Eigenvector-Dependent
Nonlinear Eigenvalue Problems

Ding Lu

Abstract

Eigenvector-dependent Nonlinear Eigenvalue Problems (NEPv) are fundamental in computational
science and engineering, presenting intriguing challenges for both analysis and computation. In an
NEPv, the goal is to find an orthonormal matrix V ∈ Cn×k, i.e., V HV = Ik, and a square matrix
Λ ∈ Ck×k that satisfy the nonlinear equation:

H(V )V = V Λ,

where H(V ) ∈ Cn×n is a Hermitian matrix that continuously depends on the eigenvectors V . It
is typically assumed that the matrix-valued function H(V ) is right unitarily invariant, meaning
H(V Q) = H(V ) for any unitary matrix Q ∈ Ck×k, and that the eigenvalues of Λ ≡ V HH(V )V
correspond to the k smallest (or largest) eigenvalues of H(V ).
NEPv arise in various fields, from traditional applications such as electronic structure calculations
in computational physics and chemistry, to more recent uses in machine learning in data science,
and signal processing of brain–computer interface in neuroscience and biomedical engineering.
The self-consistent field (SCF) iteration, originally introduced in molecular quantum mechanics in
the 1950s, is the most general and widely used method for solving NEPv and serves as a foundation
for other approaches. Starting from an orthonormal matrix V0 ∈ Cn×k, SCF iteratively computes

H(Vi)Vi+1 = Vi+1Λi+1, for i = 0, 1, 2, . . . ,

where Vi+1 ∈ Cn×k is orthonormal and Λi+1 is a diagonal matrix containing the k smallest eigen-
values of H(Vi). This basic form is known as the plain SCF iteration. Despite its simplicity, plain
SCF can suffer from slow convergence or even non-convergence in practice. Understanding when
and how plain SCF converges has been a longstanding research challenge, as these insights are
crucial for developing techniques to stabilize and accelerate the convergence of SCF iteration.
In this presentation, we cover some of our recent advances in the convergence analysis of plain SCF
and its variants. The first part focuses on the local convergence analysis of plain SCF. Using tangent-
angle matrix as an intermediate measure for approximation error, we establish new formulas for
two fundamental quantities that characterize the local convergence behavior of the plain SCF: the
local contraction factor and the local asymptotic average contraction factor. Our new convergence
rate estimates yield sharper bounds on the convergence speed compared to previously established
results. These findings also provide a new justification for the guaranteed local convergence of a
popular SCF variant—the level-shifted SCF. Details are found in [1]. We also mention [3], where
we extended the analysis to an SCF-type iteration for unitarily-invariantizable NEPv.
The second part presents a geometric interpretation of SCF to improve our understanding of its
global convergence behavior. We begin by focusing on a class of NEPv which we refer to as monotone
NEPv (mNEPv). Using a variational characterization of mNEPv, we can visualize plain SCF as
a steepest feasible direction method for the associated optimization problem. This interpretation
reveals the global and monotonic convergence of plain SCF for mNEPv; Further details can be
found in [2]. Finally, we will show how to extend this geometric framework to the level-shifted SCF
for general NEPv, thereby establishing its guaranteed global convergence.
This presentation is based on joint work with Zhaojun Bai and Ren-Cang Li.
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A MATLAB Toolbox for Toeplitz-Like Matrix Computations

Robert Luce

Abstract

A Toeplitz matrix T ∈ Cn,n is defined by 2n− 1 parameters t−n+1, . . . , tn−1 ∈ C by

T =
[
t|i−j|

]
i,j

=


t0 t1 . . . tn−1

t−1 t0
. . . ...

... . . . . . . t1
t−n+1 . . . t−1 t0

 .

Such matrices arise in many applications from signal processing to finance, and the design and
analysis of algorithms for computations with Toeplitz matrices that take advantage of the matrix
structure is an ever-continuing quest. In this work we present a MATLAB toolbox for convenient
and efficient computations with Toeplitz matrices and ”Toeplitz-like“ matrices, which we will define
in the following, based on displacement structure. This more general class of structured matrices
enables fast algorithms not only for Toeplitz matrices themselves, but all matrices that satisfy a
certain low-rank property, which includes products, polynomials and rational functions of Toeplitz
matrices.
We will now discuss the crucial low-rank property that enables fast algorithms in more detail. In
the following we need notation for the two unit circulant matrices

Z±1 := [e2, e3, . . . , en,±e1] =


±1

1
. . .

1

 ,

and for a vector x ∈ Cn we denote Z±1(x) :=
∑n

k=1 xiZ
k−1
±1 .

For a matrix A ∈ Cn,n the displacement of A is defined as

∇(A) := ∇Z1,Z−1(A) := Z1A−AZ−1 ∈ Cn,n.

The displacement rank of A is the rank of ∇(A), and when we have a decomposition

∇(A) = GB∗, G,B ∈ Cn,d,

we call the pair (G,B) a generator of A. It is easily seen that the displacement rank of a Toeplitz
matrix cannot exceed 2, and whenever rank(∇(A)) ≪ n we will say that A is Toeplitz-like. The
overall mechanics of displacement structure are much more general than what we need for our
purpose here; we refer to the classic volume of Kailath et. al. [4] for a broader presentation.
The property of ∇(A) having low rank has several important algorithmic consequences for compu-
tations involving Toeplitz-like matrices, which we take advantage of in our toolbox. For example,
from a generator (G,B) of A, having columns g1, . . . , gd and b1, . . . , bd, respectively, one obtains
the representation (e.g., [6])

A =
d∑

k=1

Z1(gk)Z−1(Jbk), (J is the anti-identity),
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enabling fast multiplication with A via the FFT without ever forming A explicitly.
Another important property is that Schur complements of displacement structured matrices inherit
the displacement rank [4]. A compact and constructive way to state this property is as follows.

Theorem. Let M =
[
M11 M12
M21 M22

]
∈ C2n×2n with each block being an n×n matrix. If M satisfies the

displacement equation

(Z1 ⊕ Z1)M −M(Z−1 ⊕ Z−1) =

[
G1

G2

] [
B∗

1 B∗
2

]
=: GMB∗

M ,

where GM , BM ∈ C2n×d are conformally partitioned with M , then the Schur complement S :=
M22 −M21M

−1
11 M12 of M11 in M satisfies the displacement equation ∇(S) = GSB

∗
S with

GS = G2 −M21M
−1
11 G1, BS = B2 −M∗

12M
−∗
11 B1.

In particular S has displacement rank at most d.

The preceding theorem actually applies to other displacement operators, and forms the basis of
the famous GKO algorithm [3], which allows solving linear systems with A via an implicit LU
factorization in O(dn2) (after transformation to a Cauchy-like matrix). A more immediate conse-
quence though is that one can derive generator formulas for the result of algebraic operations with
Toeplitz-like matrices directly from their generators. The case of a product of two Toeplitz-like
matrices is an instructive example.

Example. Let A1, A2 ∈ Cn×n two Toeplitz-like matrices of displacement ranks d1, d2 and with
generators (G1, B1) and (G2, B2), respectively. Then a generator for the product A1A2 can be
obtained by using the preceding theorem on the embedding

M =

[
−In A2

A1 0

]
which is seen to have displacement rank at most d1 + d2 + 1, and a possible generator for M is

G =

[
e1 G2 0
0 0 G1

]
, B =

[
−2en 0 B1

0 B2 0

]
.

Hence the preceding theorem asserts that S = A1A2 has displacement rank at most d1 + d2 + 1 and
a generator for A1A2 is

GS =
[
A1e1 A1G2 G1

]
, BS =

[
−2A∗

2en B2 A∗
2B1

]
.

The preceding example is typical in the sense that the generator formulas provide a recipe for
implementing matrix operations solely on the basis of the generators of the operands and resultant.
Further important examples are integer powers, polynomials and rational functions.
Our toolbox TLComp implements algorithms for arithmetic and other computations with Toeplitz-
like matrices, typically based either on the FFT or by delegation to unstructured, dense computa-
tions on their generators. Toeplitz and Toeplitz-like matrices are never stored as full matrices, but
instead a generator representation is maintained throughout. Table 1 lists a few examples of the
supported operations and their computational complexity.
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operation O-complexity dominant operation
A1 +A2 n(d1 + d2)

2 generator (re-)compression
A1b d1n log n FFT
A1A2 d1d2n log n FFT

full(A1) d1n
2 None

mpower(T, s) sn log n FFT
polyvalm(p, T ) sn log n FFT
polyvalm(p,A1) d1sn log n FFT

T\b n2 GKO
A1\b d1n

2 GKO

Table 1: Selected operations in TLComp. Here T is a Toeplitz matrix, A1 and A2 are Toeplitz-like
matrices of displacement rank d1 and d2, respectively, b ∈ Cn and p is a polynomial of degree s.

In order to maintain the generator representation throughout, an underlying generator (G,B), say,
comprising d columns, will be compressed to the numerical rank of the displacement, or sharp rank
bounds (if available). In our toolbox this is achieved by thin QR factorizations of both G and B,
followed by an SVD of a smaller d-by-d matrix to determine the rank. The overall complexity of
this recompression procedure is only in O(d2n) and is typically dominated by other computational
costs.
Our workhorse for solving linear systems of equations with Toeplitz-like matrices is the GKO algo-
rithm [3] as implemented in the excellent MATLAB toolbox “drsolve” by Aricò and Rodriguez [1].
It may be interesting to add an option for using super-fast solvers in applicable cases (e.g., [5]),
but in our experience the GKO approach is highly competitive in practice up to very large matrix
dimensions despite having a worse complexity.
In order to give an idea on how TLComp can be used, we will show a few simple command prompts
that involve our toolbox. Toeplitz matrices are represented by a ToepMat class. When possible,
arithmetic with Toeplitz matrices yield Toeplitz matrices again:

% Generate data for two random Toeplitz matrices
[c1, r1] = random_toeplitz(1000, 1000);
[c2, r2] = random_toeplitz(1000, 1000);

% We provide a class |ToepMat|
TM1 = ToepMat(c1, r1);
TM2 = ToepMat(c2, r2);

% Addition, scalar multiplication yield a ToepMat object
disp(TM1 + TM2)
disp(TM1 - TM2)
disp(2i*pi * TM1)

1000x1000 ToepMat
1000x1000 ToepMat
1000x1000 ToepMat

If the result of an operation cannot be represented as a Toeplitz matrix, it will be type-promoted
to a Toeplitz-like matrix, represented by the TLMat class:
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disp(TM1 * TM2)
disp(TM1 \ TM2)

1000x1000 TLMat, displacement rank 4
1000x1000 TLMat, displacement rank 3

Evaluate Taylor polynomial of degree six for the exponential function:

p = 1./factorial(6:-1:0);
E = polyvalm(p, TM1); % No "full" arithmetic here!
disp(E); % Result is a TLMat

1000x1000 TLMat, displacement rank 12

EE = polyvalm(p, full(TM1)); % Compare with result from "full" computation
disp(norm(E - EE, 'fro') / norm(EE, 'fro'));

6.8215e-15

A preliminary version of this toolbox with some fewer features has been used to facilitate the
numerical experiments in [2]. This preliminary version is already available on GitHub at

https://github.com/rluce/tlcomp

and we hope that it will aid our community and beyond to embrace structured matrix computations
in research and applications.
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Building Scalable Tensor Regression Models: Linear Solvers and Beyond
Hengrui Luo, Anna Ma, Akira Horiguchi, Li Ma

Abstract

The regression problem y = f(X) + ϵ, where X ∈ Rn×d1×d2 , y ∈ R1 is a tensor input variable,
presents unique challenges at the intersection of numerical linear algebra and statistical model-
ing. This extended abstract synthesizes recent advancements in solving both linear and non-linear
variants of this problem, focusing on scalable methods that leverage tensor structures.
In the linear case, we consider the tensor regression model f(X) = B ◦ X, where ◦ denotes a
tensor product. In [1], we focus on a generalization of matrix multiplication to tensors. This
formulation leads to large-scale tensor linear systems that are computationally challenging to solve
using traditional methods. Our primary contribution in this domain is the development of frontal
slice approaches for iteratively solving these systems.
Our innovation in [1] lies in adapting classical iterative methods from numerical linear algebra
to the tensor domain. By focusing on frontal slices of the coefficient tensor B, we develop a
family of iterative algorithms that significantly reduce the computational burden compared to direct
solvers. Our frontal slice methods come in cyclic, block, and randomized variants, each offering
different trade-offs between convergence speed and computational efficiency. These approaches draw
inspiration from classical numerical linear algebra techniques such as Gauss-Seidel, block iterative
methods, and randomized algorithms.
Another aspect of our work is the rigorous convergence analysis provided for these methods. We
establish conditions for convergence and derive bounds on the convergence rate in terms of tensor
properties. This analysis not only validates the proposed methods but also offers insights into
algorithm behavior, guiding practitioners in method selection and parameter tuning.
The computational advantages of our approach are particularly striking for large-scale problems.
We achieve a computational complexity of O(d2 ·max(d1, n)

3) for n samples and tensor dimensions
d1 and d2, comparing favorably to the O(d22 ·max(d1, n)

3) complexity of naive iterative solver via
gradient descent, when d2 is large.
Extending beyond linear models, f(X) are assumed to be nonlinear. We address the challenge
of non-linear tensor regression through the development of tensor-input tree (TT) models in [2].
Our model innovation generalize decision trees to handle tensor inputs, offering a flexible, non-
parametric approach to modeling complex relationships in tensor data. The TT framework can
be viewed as approximating the non-linear function f(X) with a piecewise linear tensor function,
where each piece corresponds to a leaf in the decision tree.
The development of TT models required innovative solutions to several challenges at the inter-
face of numerical linear algebra and statistical learning. Our key contribution in [2] is the design
of splitting criteria that effectively capture the multi-dimensional structure of tensor inputs. We
propose criteria based on both variance reduction and low-rank approximation errors, leveraging
tensor algebraic concepts to inform the tree-building process. To address the computational chal-
lenges of finding optimal splits in high-dimensional tensor spaces, we introduce two randomized
numerical linear algebra techniques: leverage score sampling and branch-and-bound optimization.
The complexity for generating the tree structure (via exhaustive search) is O(n2 · d21 · d22 · log k),
where k is the number of nodes in the tree, in contrast to O(n3) in a tensor Gaussian process [3].
This approach aligns with theoretical results on tensor decompositions and proves highly effective
in practice, especially for datasets exhibiting intrinsic low-rank structure.
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The theoretical analysis provided for both our linear solvers and nonlinear TT models offers valuable
insights into their behavior and limitations. For the linear case, we provide detailed convergence
analysis, including results for both consistent and inconsistent systems. In the context of TT
models, we establish consistency guarantees for coefficient estimates and derive oracle bounds for
prediction errors.
Empirical evaluations on diverse datasets demonstrate the effectiveness of our approaches. In the
linear case, we show the efficiency of frontal slice methods in applications like image deblurring.
For non-linear regression, we compare TT models against state-of-the-art approaches like tensor
Gaussian Processes, highlighting scenarios where TT offers superior performance or significant
computational advantages.
From a numerical linear algebra perspective, our work opens several intriguing avenues for future
research. The frontal slice methods suggest possibilities for developing tensor analogues of classical
iterative methods. The efficient splitting criteria used in TT models could inspire new precondi-
tioning techniques for tensor computations. Furthermore, the integration of randomized algorithms
in both our linear solvers and regression models points to a broader trend of leveraging stochastic
methods to tackle high-dimensional problems.
In conclusion, our research demonstrates the power of combining insights from numerical linear
algebra with advanced statistical modeling techniques to address the challenges of tensor regression.
By developing scalable methods for both linear and non-linear tensor regression (including tensor-
on-tensor and tensor-on-scalar), we contribute to a comprehensive toolkit for tensor-based data
analysis, laying the groundwork for future advancements in high-dimensional data analysis and
scientific computing.
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Randomized Kaczmarz on doubly noisy systems and its applications

Anna Ma, El Houcine Bergou, Soumia Boucherouite, Aritra Dutta and Xin Li

Abstract

Large-scale linear systems, Ax = b, frequently arise in practice and demand effective iterative
solvers. Often, these systems are noisy due to operational errors or faulty data-collection processes.
In the past decade, the randomized Kaczmarz (RK) algorithm has been studied extensively as an
efficient iterative solver for such systems. However, the convergence of RK in the noisy system
regime is limited and typically only considers measurement noise in the right-hand side vector, b.
Unfortunately, in practice, that is not always the case; the coefficient matrix A can also be noisy.
In this talk, we present the analysis of the convergence of RK for doubly-noisy linear systems,
i.e., when the coefficient matrix, A, has additive or multiplicative noise, and b is also noisy. In
our analyses, we provide convergence bounds depending on the quantity R̃ = ∥Ã†∥2∥Ã∥2F , where
Ã represents a noisy version of A. This work opens the doors to applications, two of which we
highlight in this talk. The first is additive preconditioning in which additive noise to the matrix is
intentionally added to improve the initial convergence of RK. The second considers the extremely
large-scale setting in which even entire rows of the matrix A cannot be loaded or used in a single
iteration. In such a case, we use noise to model the sparsification of the rows of A to decrease
computational memory or communication demand. The work presented is is joint work with El
Houcine Bergou, Soumia Boucherouite, Aritra Dutta and Xin Li [1].
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Efficient tensor network contraction algorithms

Linjian Ma, Edgar Solomonik

Abstract

Tensors are multidimensional arrays that generalize the vector and matrix concepts. Formally-
speaking, an N -way or Nth-order tensor is an element of the tensor product of N vector spaces. A
scalar, vector, and matrix correspond to tensors of order zero, one, and two, respectively. One of
the key challenges in working with high-order tensors is called the “curse of dimensionality”, where
tensors with large dimensionality can have an extremely large number of components, making it
difficult to analyze and extract meaningful information from them. Tensor networks are powerful
techniques for addressing this challenge. A tensor network [14] employs a collection of small ten-
sors, where some or all of their dimensions are contracted according to some pattern, to implicitly
represent a high-dimensional tensor. Tensor networks have been originally used in computational
quantum physics [23, 22, 24, 21, 20, 19], where low-rank tensor networks can be used efficiently
and accurately to represent quantum states and operators based on the area law. Recently, ten-
sor networks are also widely used in simulating quantum computers [11, 25, 18, 17] and neural
networks [13].
Tensor network contraction explicitly evaluates the single tensor represented by a given tensor
network. When each tensor in the network is dense, tensor network contraction is typically achieved
through a sequence of pairwise tensor contractions. This sequence, known as the contraction path,
is determined by a topological sort of the underlying contraction tree. The contraction tree is a
rooted binary tree that depicts the complete contraction of the tensor network. In this tree, the
leaves correspond to the tensors in the network, and each internal vertex represents the tensor
contraction of its two children.
Tensor network contraction has found diverse applications in different fields of research. For in-
stance, in quantum computing, each quantum algorithm can be viewed as a tensor network con-
traction, making this method a useful tool for simulating quantum computers [11, 25, 18, 17]. In
statistical physics, tensor network contraction has been used to evaluate the classical partition
function of physical models defined on specific graphs [8]. Tensor network contraction has also
been used for counting satisfying assignments of constraint satisfaction problems (#CSPs) [7]. In
this approach, an arbitrary #CSP formula is transformed into a tensor network, where its full
contraction yields the number of satisfying assignments of that formula.
Contracting tensor networks with arbitrary structure is #P-hard in the general case [3, 16, 1],
even when the network represents a scalar. The reason for this is that during the contraction
of general tensor networks, intermediate tensors with high orders or large dimension sizes can
emerge, leading to a substantial computational cost for precise contraction. Nonetheless, in some
applications such as many-body physics, it has been observed that tensor networks built on top of
specific models can often be approximately contracted with satisfactory accuracy, without incurring
exponential costs [15]. A common approach is to represent or approximate large intermediate
tensors as (low-rank) tensor networks, which reduces the memory usage and computational overhead
for downstream contractions. Common tensor networks used for approximation include the matrix
product states (MPS) and the tree tensor networks (TTN) [20].
Efficient approximate contraction algorithms based on MPSs have been proposed for tensor network
contractions defined on regular structures such as the Projected Entangled Pair States (PEPS)
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[21, 22, 10, 9], which has a 2D lattice structure. However, these methods are not easily extendable
to other general tensor network structures.
Recent works have proposed approximation algorithms for contracting tensor networks with more
general graph structures. For example, [6] approximates each intermediate tensor produced during
the contraction path as a binary tree tensor network, while [17] approximates each intermediate
tensor as an MPS. In [2], each intermediate tensor is also approximated as an MPS, but the
system is designed for the specific unbalanced contraction paths and only targets the approximate
contraction of tensor networks defined on planar graphs. Another approach proposed in [5] is to
perform low-rank approximation on the remaining tensor network after contractions, rather than
on the intermediate tensors. The experimental results demonstrate that this framework is more
efficient and accurate than [17].
We introduce two approximate tensor network contraction algorithms. First of all, we present a
swap-based algorithm named Contracting Arbitrary Tensor Network with Global Ordering (CATN-
GO) that can efficiently approximate the contraction of arbitrary tensor networks. Our algorithm
builds on the approach outlined in [17], which approximates each intermediate tensor generated
during the contraction as an MPS with a bounded rank. When contracting two tensors, the
algorithm merges two MPSs, with swaps of adjacent dimensions in the MPS being the bottleneck
for complexity.
For a tensor network defined on G = (V,E), we prove that the minimum number of swaps required
during contraction is lower bounded by the least number of edge crossings in any vertex linear
ordering of the tensor network graph, denoted by minσ cr(G, σ). A vertex linear ordering σ :
V → {1, . . . , |V |} assigns each vertex a unique number, and two edges with adjacent vertex orders
(i, j), (k, l) cross if i < k < j < l. Hence, we reduce the problem of finding the minimum number of
swaps to the problem of finding a vertex linear ordering that minimizes the number of edge crossings.
In addition, for a fixed vertex ordering σV , the number of swaps used in CATN-GO equals the
lower bound, cr(G, σV ), implying optimality for this metric. Furthermore, CATN-GO includes a
dynamic programming algorithm to select the contraction tree under a given vertex ordering. This
algorithm aims to minimize the overall computational cost, under the assumption that all MPSs
have a uniform rank. The uniform rank assumption makes the problem equivalent to minimizing
the total length of the MPSs generated during the contractions and has a time complexity of
O(|V |3|E|). Experimental results demonstrate that when contracting tensor networks defined on
3D lattices using the Ising model, our algorithm is more efficient than the algorithm proposed in
[17] in terms of speed, and achieves a 5.9X speed-up while maintaining the same accuracy.
We propose another approximate tensor network contraction method named Partitioned Contract.
Like similar methods proposed in [6, 17, 2], our algorithm approximates each intermediate tensor
as a binary tree tensor network. Compared to previous works, the proposed algorithm has the
flexibility to incorporate a larger portion of the environment when performing low-rank approxi-
mations. Here, the environment refers to the remaining set of tensors in the network, and low-rank
approximations with larger environments can generally provide higher accuracy. In addition, our
proposed algorithm includes a cost-efficient density matrix algorithm [12, 4] for approximating a
tensor network with a general graph structure into a tree structure. The computational cost of
the density matrix algorithm is asymptotically upper-bounded by that of the standard algorithm
that uses canonicalization (the process of orthogonalizing all tensors except one in the tenosr net-
work). Experimental results indicate that the proposed algorithm outperforms both algorithms
proposed in [17] and [2] when considering tensor networks defined on lattices using the Ising model.
Specifically, our approach achieves a 9.2X speed-up while maintaining the same level of accuracy.
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Backward stability of s-step GMRES

Yuxin Ma, Erin Carson

Abstract

Communication, i.e., data movement, is a critical bottleneck for the performance of classical Krylov
subspace method solvers on modern computer architectures. Variants of these methods which avoid
communication have been introduced, which, while equivalent in exact arithmetic, can be unstable
in finite precision. In this work, we address the backward stability of s-step GMRES, also known
as communication-avoiding GMRES. We present a framework for simplifying the analysis of s-
step GMRES, which includes standard GMRES (s = 1) as a special case, by isolating the effects
of rounding errors in the QR factorization and the solution of the least squares problem. Using
this framework, we analyze s-step GMRES with popular block orthogonalization methods: block
modified Gram–Schmidt and reorthogonalized block classical Gram–Schmidt algorithms.
An example illustrates the resulting instability of s-step GMRES when paired with the classical
s-step Arnoldi process and shows the limitations of popular strategies for resolving this instability.
To address this issue, we propose a modified Arnoldi process that allows for much larger block size
s while maintaining satisfactory accuracy, as confirmed by our numerical experiments.
PS: I am a postdoc researcher in Charles University. My interests are about numerical analysis and
high performance computing, i.e., mixed precision algorithms, communication-avoiding algorithms,
and finite precision analysis.
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Sign Characteristic in the Inverse Problem
for Hermitian Matrix Polynomials

D. Steven Mackey, F. Tisseur

Abstract

For any matrix polynomial P (λ) =
∑d

j=0 λ
jAj , Aj ∈ Fm×n, there is a multiset1 S comprising the

key structural data of P relevant for applications. This structural data consists of the elementary
divisors (finite and infinite) of P , together with its left and right minimal indices. The basic inverse
problem for matrix polynomials, then, consists of two parts:

Given a multiset S of structural data and a choice of degree d,

(a) does there exist any matrix polynomial P of degree d (of any size m × n) whose
structural data multiset is exactly S?

(b) if such a matrix polynomial P exists, can one be explicitly constructed, especially
in such a way that the structural data in S is transparently visible in that P (e.g.,
in the spirit of the Kronecker canonical form), or at least can be exactly recovered
from P without any numerical computation, only combinatorial manipulations?

Analogous questions can be immediately posed for matrix polynomials restricted to various classes
of structured matrix polynomials important in applications, e.g., palindromic, alternating, or Her-
mitian matrix polynomials.
Much progress has been made on these questions in the last decade, although much remains to
be understood. Some of the earliest results on these questions were for general quadratic [3] and
quadratic palindromic matrix polynomials [4], where Kronecker-like quasi-canonical forms were
found. In the 2015 paper [5], De Terán, Dopico, and Van Dooren completely solved the existence
question (in part (a)) for general matrix polynomials of arbitrary degree over any infinite field
F, giving simple necessary and sufficient conditions for realizability of a structural data multiset.
However, the construction used to prove sufficiency in [5] produces a matrix polynomial realization
in which the given data S is usually not transparently visible anymore. Recent work in [8] has
substantially remedied this deficiency, giving a complete solution for part (b) of the inverse problem
for general matrix polynomials, but only over algebraically closed fields.
This talk, however, focuses more specifically on the inverse problem for Hermitian matrix polyno-
mials. This class of matrix polynomials has an additional element in its structural data multiset,
the sign characteristic, that is relevant for both theory and applications, playing an important role
in the bifurcations of dynamical systems, as well as the behavior of eigenvalues under structured
perturbations. First recognized and investigated in the seminal paper [7] as an important invariant
of Hermitian polynomials under unimodular congruence, the sign characteristic consists of a plus
or minus sign attached to each elementary divisor associated with a real or infinite eigenvalue.
In [7], the authors considered sign characteristic only for regular Hermitian polynomials with no
eigenvalues at ∞. But more recently, the concepts and results in [7] concerning sign characteristic
have been extended in [12] to include all Hermitian polynomials, both regular and singular, with
or without eigenvalues at ∞.

1A multiset is a set with repetitions allowed, i.e., a “set with multiplicities”. [9, p.454]

229



Now for general Hermitian matrix polynomials, there are several well-known (pairing) constraints
on elementary divisors and minimal indices; e.g., for any Hermitian polynomial H(λ), the multiset
of left minimal indices of H is identical to the multiset of the right minimal indices of H. But are
there any constraints on how signs can be attached to real and infinite elementary divisors? For
Hermitian pencils it is known that there are no constraints on signs; any real or infinite elementary
divisor may have any sign, in any combination with the signs of all of the pencil’s other elementary
divisors. This follows immediately from the canonical form for Hermitian pencils found in [10].
For higher degree Hermitian polynomials, though, there is one known constraint on signs. This is
the so-called signature constraint, first proved in [7] for regular Hermitian polynomials without any
infinite elementary divisors, and extended to all Hermitian polynomials in [12]. For even degree
Hermitian polynomials, the signature constraint says that the sum of the signs attached to all of
the odd degree real and infinite elementary divisors is zero. The constraint is somewhat more
complicated to state when the Hermitian polynomial H(λ) has odd degree — in this case the
sum of the signs for odd degree elementary divisors of real eigenvalues together with those of the
even degree elementary divisors of an infinite eigenvalue must equal the signature of the leading
coefficient of H (hence the name of the condition).
Is the signature constraint the only condition on the sign characteristic? In the quadratic case, this
has recently been shown to be true [11]. But for all degrees higher than 2, this is not so. Starting
with degree 3, there are additional conditions on the sign characteristic that are independent of the
signature constraint. Unfortunately, the techniques used in [11] to solve the quadratic Hermitian
inverse problem do not easily extend to higher degrees, even to degree 3; there is a combinatorial
explosion of cases that make this approach intractable. Thus it is reasonable to restrict the problem
to something more manageable, yet still of some significance. Motivated by the recent investigations
into the generic behavior in various structured classes of matrix polynomials [1, 2], it is sensible to
restrict the question to Hermitian matrix polynomials in which all eigenvalues (including ∞) are
simple. It is in this class that one can expect to find the structural data multisets that are generic
for all Hermitian polynomials. Going forward, then, we make the simple eigenvalue assumption.
When a Hermitian polynomial has all simple eigenvalues, the signs attached to these eigenvalues
can be naturally ordered to form a sign sequence. For an n× n Hermitian polynomial of degree d
with the maximum number (dn) of simple real eigenvalues, there are 2dn conceivable sign sequences,
most of which cannot be realized by any degree d Hermitian polynomial. Perhaps surprisingly, it
is the order of the signs in a sign sequence that turns out to be crucial for Hermitian realizability,
but in ways that are not immediately apparent. For example, consider a 3 × 3 Hermitian matrix
polynomial of degree 4, with 12 simple real eigenvalues. It is easy to see that the sign sequence
++++++−−−−−− satisfies the signature constraint for degree 4, but it can be shown that
this sign sequence cannot be realized by any 3× 3 Hermitian polynomial of degree 4.
Is it possible to determine exactly which sign sequences are realizable and which are not? And
what role, if any, the degree might play in the story? This talk answers these questions, introducing
several new constraints on signs beyond the signature constraint, as well as an underlying group
of symmetries acting on the collection of all sign sequences, that sheds additional light on this
issue. The result of this analysis is a characterization of the sign sequences that are realizable
by a Hermitian matrix polynomial with all simple eigenvalues, as well as a solution of the inverse
problem for this class of Hermitian polynomials.
This characterization also allows us to get a quantitative sense for just how few of the possible
sign sequences are actually realizable. Consider again the scenario above, i.e., n × n Hermitian
polynomials of degree d with the maximum number (dn) of simple real eigenvalues, in particular
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the special case of n = 2 with any even degree d ≥ 4. In this case the fraction of the 22d possible
sign sequences that satisfy the signature constraint is asymptotically O( 1√

πd
) as d → ∞. By

contrast, however, the characterization implies that the fraction of possible sign sequences that are
actually Hermitian realizable is asymptotically O( 1

2d
) as d → ∞. A reasonable conjecture is that

this asymptotic behavior will persist for other values of n and d. But this does at least show that
the number of realizable sign sequences can not only be exponentially smaller than the number
of all possible sign sequences, it can also even be exponentially smaller than the number of sign
sequences that satisfy the signature constraint. Hence we see that the signature constraint is by
itself very far from capturing the property of Hermitian realizability of sign sequences.
Finally, it is worth noting that the key tool for proving the necessity of these new constraints on the
sign characteristic is an old theorem of Rellich on analytic decompositions of analytic Hermitian
matrix-valued functions (see [12, Thm.2.1]). On the other hand, sufficiency of these new constraints
is proved using the new technique of product realizations of matrix polynomials [6].
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Solving Generalized Lyapunov Equations with guarantees: application to
the Reduction of Linear Switched Systems.

Mattia Manucci, Benjamin Unger

Abstract

We deal with the efficient and certified approximation of the generalized Lyapunov equation (GLEs)

AX +XAT +
M∑
j=1

(
NjXNT

j

)
+BBT = 0, (1)

where A,Nj ∈ Rn×n, A is Hurwitz, i.e., its spectrum is contained in the open left-half complex
plane, and B ∈ Rn×m with m typically much smaller than n. GLEs with these features naturally
arise in the context of model order reduction (MOR) of bilinear control systems [2, 5] and linear
parameter-varying systems as well as in the context of stochastic differential equations for stability
analysis [4]. For switched linear systems of the form

Σq

{
ẋ(t) = Aq(t)x(t) +Bq(t)u(t), x(t0) = 0,

y(t) = Cq(t)x(t),
(2)

the authors of [6] introduced a balancing-based MOR method that requires the solution of certain
GLEs. In (2), q : R → J := {1, . . . ,M} is the external switching signal, which we assume to be an
element of the set of allowed switching signals

S := {q : R → J | q is right continuous with locally finite number of jumps}. (3)

The symbols x(t) ∈ Rn, u(t) ∈ Rm, and y(t) ∈ Rp denote the state, the controlled input, and
the measured output, respectively. The system matrices Aj ∈ Rn×n, Bj ∈ Rn×m, and Cj ∈ Rp×n

correspond to the ordinary differential equation (ODE) active in mode j ∈ J . Typically one
refers to (2) as the full-order model (FOM). Sample applications of switched systems include robot
manipulators, traffic management, automatic gear shifting, and power systems; see for instance [3]
and the references therein.
If (2) has to be evaluated repeatedly, for instance, in a simulation context for different inputs
or switching signals, or if matrix equalities or inequalities in the context of synthesis have to be
solved, then a large dimension n of the state renders this a computationally expensive task. In such
scenarios, one can rely on MOR and replace (2) by the reduced-order model (ROM)

Σ̃q

{
˙̃x(t) = Ãq(t)x̃(t) + B̃q(t)u(t), x̃(t0) = 0,

ỹ(t) = C̃q(t)x̃(t),
(4)

with Ãj ∈ Rr×r, B̃j ∈ Rr×m, and C̃j ∈ Rp×r, and r ≪ n. In many cases, see for instance [1], the
reduced system matrices are obtained via Petrov–Galerkin projection, i.e., one constructs matrices
V ,W ∈ Rn×r and then defines

Ãj := W TAjV , B̃j := W TBj , C̃j := CjV . (5)

The goal of MOR is thus to derive in a computationally efficient and robust way the matrices W ,V
such that the error y− ỹ is small in some given norm. One way to do so, originally presented in [6],
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is to solve opportune defined GLEs to obtain the projection matrices W ,V and thus the reduced
system (5). Therefore, solving efficiently large-scale generalized Lyapunov equation becomes crucial
for MOR. More in detail the MOR algorithm from [6] proceeds in two steps. First, we have to define
the matrices A := A1 and Nj := Aj −A1 for j = 1, . . . ,M and solve the GLEs

AP + PAT +
M∑
j=1

(
NjPNT

j +BjB
T
j

)
= 0, (6a)

ATQ+QA+

M∑
j=1

(
NT

j QNj +CT
j Cj

)
= 0. (6b)

Note that the matrix equations in (6) are of the form (1) by defining B := [B1, . . . ,BM ] for (6a)
and B := [CT

1 , . . . ,C
T
M ], taking the transport on the other matrices for (6b). The symmetric and

positive semi-definite solutions P,Q ∈ Rn×n are referred to as the Gramians of (2). Second, let
P = SST and Q = RRT and compute the singular value decomposition (SVD) of the product of
the Gramians factors

STR = [U1,U2]

[
Σ1 0
0 Σ2

]
[V1,V2]

T, (7)

and the projection matrices V and W are obtained via

V = SU1Σ
−1/2
1 and W = RV1Σ

−1/2
1 . (8)

This procedure is denoted as square-root balanced truncation (see [1, Sec. 7.3]). The use of the
solutions of (6) as system Gramians is justified by [6, Thm. 3], where the authors show that the
image of P and Q encode the reachability set and observability set of the switched system (2).
Main contributions: To deal with the large-scale setting, we apply the stationary algorithm
from [7] in combination with a subspace projection framework [8] to solve GLEs. We emphasize
that this is a common strategy in the literature when dealing with GLEs. Our first contribution is
the derivation of efficiently computable error estimates such that for any prescribed user tolerance
tol an approximation X̃ of (1) with guaranteed bound ∥X−X̃∥2 ≤ tol can be computed. Second,
we show how the numerical error introduced in approximating (1) may deteriorate the quality and
the stability of the ROM (4). This motivates us to propose a novel strategy that, by relying on
the error certification provided by our algorithm, ensures stability and error certification of the
MOR system. Finally, the results are validated through a synthetic example and a switched system
arising from a parametric partial differential equation (PDE).
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Inverse Eigenvalue Difference Problems Arising in Quantum Sensing

Boaz Ilan, Roummel Marcia, Michael Scheibner, and Kyle Wright

Abstract

This research is motivated by the emerging field of quantum sensing, which facilitates high-
resolution sensing of gravitation, acoustic waves, and electromagnetic fields [1, 3, 4]. The discrete
energy levels of coupled quantum dots (QDs) can be represented as eigenvalues of a quantum
Hamiltonian matrix, whose entries are defined as polynomials of an applied electric field [2, 5].
Our aim is to recover the coefficients of these polynomials, which correspond to intrinsic physical
constants, such as spin-coupling strength. The eigenvalue differences can be obtained from experi-
mental measurements for varying electric field values. Standard inverse eigenvalue problems (IEP)
seek to recover a constant matrix from the eigenvalues. In contrast, here the matrix elements are
functions of a “tunable” parameter (the applied electric field) and only the differences between the
eigenvalues are known. We formulate this as an inverse eigenvalue difference problem (IEDP).

Problem formulation. The steady-state energy levels of coupled QDs correspond to eigenvalues
of quantum Hamiltonians. Specifically, the ground state of this system can be described by a 3× 3
real symmetric matrix [2] of the form

G(F ) =

g1(F ) y0 y1
y0 g2(F ) y2
y1 y2 g3(F )

 , (1)

where the diagonal elements depend quadratically on the applied electric field, F ∈ R, as

gi(F ) = αi + βiF + γiF
2, i = 1, 2, 3 , (2)

where the coefficients {αi, βi, γi} are real. We note that the assumption that the off-diagonal
elements are independent of F is a good approximation for weak electric fields and for weak tunnel
coupling between the QDs. We shall further assume that y1 = y0 and y2 = 0, which corresponds
to symmetries between QDs.
Since G(F ) is symmetric, its eigenvalues are real. We denote its eigenvalues by {ξ1(F ), ξ2(F ), ξ3(F )}.
The physical measurements can be used to determine the differences between the eigenvalues of G.
Thus, the measured data is provided over a set of n values of F ∈ R, denoted by {Fk}nk=1. The
eigenvalue differences are denoted by

D2,1(F ) ≡ ξ2(F )− ξ1(F ), (3)
D3,1(F ) ≡ ξ3(F )− ξ1(F ), (4)
D3,2(F ) ≡ ξ3(F )− ξ2(F ). (5)

Note that D3,2(F ) = D3,1(F )−D2,1(F ). Hence, we consider the measured dataset to be

M =
{
Fk, D2,1(Fk), D3,1(Fk)

}n

k=1
. (6)

Our objective is to recover the coefficients that define G(F ). We can prove that, without loss
of generality, one can set g1(F ) = 0. This has the effect of eliminating an arbitrary shift in the
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diagonal elements and in the eigenvalues of G(F ) that would satisfy the dataset M . We shall do
so henceforth and redefine G as

G(F ) =

 0 y0 y0
y0 g2(F ) 0
y0 0 g3(F )

 . (7)

We denote the vector of coefficients as p = [y0, α2, β2, γ2, α3, β3, γ3] ∈ R7. In this work, we seek to
solve the following:

Inverse Eigenvalue Difference Problem (IEDP)
Given the eigenvalue difference dataset M in (6), find coefficients p, such that G(F ) in (7)
generates M .

In particular, our work addresses two inter-related questions:

1. What optimization approach is efficient for solving this IEDP, especially in the presence of
noisy data?

2. What domain knowledge can we utilize to improve the efficacy of the proposed approach?
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On the quasiseparability of the solution of continuous-time Riccati
equations with quasiseparable coefficients

Stefano Massei, Luca Saluzzi

Abstract

Solving large-scale continuous-time algebraic Riccati equations (CARE) of the form

A⊤X +XA−XFX +Q = 0, (1)

is a significant challenge in various control theory applications. When the numerical range W(A) of
A is in the left part of the complex plane, and F,Q are low-rank matrices the stabilizing solution X
is numerically low-rank. The latter property can be shown by rewriting (1) as a Sylvester equation
with low-rank right-hand side, and by applying singular values inequalities for the solution of this
type of equations [1]. In this scenario, one can apply Krylov subspace projection methods or
ADI-type methods to efficiently get approximate solutions.
This work is concerned with the non standard large-scale case where the coefficients A,F,Q are full
rank quasiseparable matrices, i.e., all their offdiagonal blocks are low-rank. Within this setting,
we provide decay bounds for the singular values of the offdiagonal blocks of X, justifying the
approximability of X by a quasiseparable matrix. To derive these bounds we relate a generic
offdiagonal block with the solution of a Sylvester equation with low-rank right-hand side; note
that, this can not be trivially obtained by moving the term Q−XFX to the right-hand side of (1).
Our results establish a link between the rate of decay of the offdiagonal singular values and certain
rational approximation problems, known as Zolotarev problems, involving the set W(L−1AL),
where F = LL⊤ is a Cholesky factorization of F . More explicitly, for a generic offdiagonal submatrix
M of X, we get inequalities of the form

σht+r(M)

||X||2
≤ κ · Zh(W (L−1AL),−W (L−1AL)), h = 1, 2, 3, . . . ,

where the shift parameters t, r ≥ 0 depend only on the quasiseparable ranks of the coefficients
of the CARE, κ is a constant including the condition number of F , and Zh indicates the op-
timal value of the aforementioned Zolotarev problem. When W (L−1AL) ⊆ C−, the quantity
Zh(W (L−1AL),−W (L−1AL)) decays rapidly as h increases.
Quite interestingly, the rank of the offdiagonal submatrices of X are linked to the tensor train ranks
(TT ranks) of the tensor train representation of the value function

V (y) := yTXy

associated with the solution of the CARE [3]. As a byproduct of our analysis, we improve and
enlarge the scope of existing upper bounds for the numerical TT ranks of V (y) [2, Theorem 3.1].
From the algorithmic view point, we propose two fast Riccati solvers: the first one applies to CAREs
with quasiseparable coefficients, and the second one specific to the banded case. The former method
exploits the representation of A,F, and Q, in the hierarhcically semiseparable format (HSS) [7],
and is based on a divide-and-conquer scheme, similarly to other recent solvers for matrix equations
with hierarchically low-rank coefficients [4, 5]. The method for the banded coefficients case aims
at providing a sparse approximation of X, by means of an inexact Newton-Kleinman iteration
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(NK) combined with a thresholding mechanism that keeps under control the level of sparsity of
the iterates. Under reasonable assumptions, both algorithms have at most a linear-logarithmic
complexity; when the NK iterate remains sufficiently banded, the second procedure provides a
significant speed up thanks to the use of sparse arithmetic.
The content of this talk is based on [6].
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Shift-and-invert Arnoldi for singular eigenvalue problems

Karl Meerbergen, Zhijun Wang

Abstract

The solution of the regular n × n generalized eigenvalue problem Ax = λBx is pretty well un-
derstood. This is not so for singular pencils, i.e., pencils for which A − λB is singular for any
λ ∈ C∪ {∞}. We say that λ is an eigenvalue iff the rank of A− λB is below the normal rank, i.e.,
the maximum rank of A− σB for σ ∈ C ∪ {∞}.
The staircase method separates the regular and singular parts of the pencil using the Kronecnker
canonical form. The QZ method can also perform such a separation but may suffer from numerical
instabilities. Recently, a rank perturbation was proposed [1][2] which is related to a bordered
regular pencil. In this talk, we use a border of the form[

A− λB W
V T 0

]
where W and V are chosen so that both[

A− λB W
]

and
[
A− λB
V T

]
have rank n for all λ. This bordered eigenvalue problem has a spurious infinite eigenvalue, and
may have spurious finite eigenvalue too, but for every eigenvector a simple test can be performed
to check whether the eigenvalue is true or spurious.
The aim is to solve the bordered eigenvalue problem using the shift-and-invert Arnoldi method.
We employ a special inner product and implicit restarting to reduce the impact of the infinite
eigenvalue. To determine a suitable V and W we propose a rank revealing LU factorization that
should enable computations for large sparse problems. We illustrate the algorithm and the theory
for problems arising from multiparameter eigenvalue problems, rectangular pencils and singular
quadratic eigenvalue problems.
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Regularization and stabilization of port-Hamiltonian descriptor systems via
output feedback

Volker Mehrmann, Delin Chu

Abstract

The structure preserving stabilization of (possibly non-regular) linear port-Hamiltonian descriptor
(pHDAE) systems by output feedback is discussed. While for general descriptor systems the char-
acterization when there exist output feedbacks that lead to an asymptotically stable closed loop
system is a very hard and partially open problem, for systems in pHDAE representation this prob-
lem can be completely solved. Necessary and sufficient conditions are presented that guarantee that
there exist a proportional output feedback such that the resulting closed-loop port-Hamiltonian de-
scriptor system is (robustly) asymptotically stable. For this it is also necessary that the output
feedback also makes the problem regular and of index at most one. A complete characterization
when this is possible is presented as well.
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Exploiting mathematical structures in spectral imaging to accelerate
experiments and improve iterative reconstructions

Maike Meier, Hussam Al Daas, Boris Shustin, Lorenzo Lazzarino, and Paul Quinn

Abstract

Spectral imaging covers a range of techniques that aim to reconstruct the chemical state and
structural properties of materials. Samples are simultaneously imaged in space, using methods
such as microscopy, ptychography, or tomography, as well as resolved in the spectral dimension,
giving information about chemical composition. Long acquisition times, sample degradation, and
low signal-to-noise ratios plague spectral imaging; what is needed are ways to get more out of the
data with fewer experiments.
Although a spectral imaging dataset is necessarily a three-dimensional tensor, its underlying di-
mension is small. In real space, the sample consists of a small number of spectrally distinguishable
components present in each pixel in varying thicknesses. We develop computational routines to
exploit this low-dimensionality; both in the experimental design phase, as well as in the reconstruc-
tion phase. By leveraging established NLA techniques such as random leverage-score sampling [2],
CUR decompositions [5], iterative non-negative factorisation [3], and regularisation, we accelerate
spectral imaging experiments through subsampling and improve reconstructions.
For example, consider spectro-microscopy, which combines spectroscopy and microscopy. The un-
derlying structure of a (flattened) dataset is

D = Pois(µt), µ ∈ RnE×S
≥0 , t ∈ RS×nXnY

≥0 ,

where µ are absorption spectra in nE energies of S different components and t are thickness maps
of the corresponding components in the nXnY pixels. We firstly develop a data-driven scheme
to determine what entries of the dataset should be measured and what measurements can be
skipped, building on [7]. The scheme is based on leverage score sampling important wavelengths
and important pixels, determined on-the-fly. The result is a non-negative dataset with 80-95 %
missing entries. We show that if the measured entries are structured in columns and rows of the
flattened dataset, reconstructions are significantly more accurate than random missing entries.
Furthermore, we provide a novel algorithm to reconstruct a non-negative factorisation from a
dataset with missing entries, which is especially efficient for a CUR decomposition of the data.
This algorithm also allows regularisation, and leads to more physically-relevant reconstructions
than existing methods [4].
We present similar schemes for spectro-ptychography [1], in which the low-rank structure is not
readily present in the measured datasets. This leads to a combination of non-negative factorisation
schemes combined with nonlinear conjugate gradient algorithms [6].
The work demonstrates that numerical linear algebra results from the last two decades have a
wealth of applications beyond straightforward large-scale matrix manipualtions. In particular, the
ideas of modern NLA can be applied before any data has been obtained, to aid in experiment design
and accelerating acquisition times.
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On the Convergence of the CROP-Anderson Acceleration Method

Agnieszka Międlar, Ning Wan

Abstract
Consider the following problem: Given a function g : Cn → Cn find x ∈ Cn such that

x = g(x), or alternatively f(x) = 0, with f(x) := g(x)− x. (1)

Obviously, a simplest method of choice to solve this problem is the fixed-point iteration

x(k+1) = g(x(k)), for all k ∈ N. (2)

Unfortunately, its convergence is often extremely slow. The problem of slow (or no) convergence
of a sequence of iterates has been extensively studied by researchers since the early 20th century.
Aitken’s delta-squared process was introduced in 1926 [1] for nonlinear sequences, and since then,
people have been investigating various extrapolation and convergence acceleration methods with
Shanks transformation [2] providing one of the most important and fundamental ideas. In the
following, we will consider two mixing acceleration methods: the Anderson Acceleration [3, 4] (also
referred to as Pulay mixing [5, 6] in computational chemistry) and the Conjugate Residual algo-
rithm with OPtimal trial vectors (CROP) [7, 8]. Anderson Acceleration method has a long history
in mathematics literature, which goes back to Anderson’s 1965 seminal paper [3]. Over the years,
the method has been successfully applied to many challenging problems [9, 10, 11]. An indepen-
dent line of research on accelerating convergence of nonlinear solvers established by physicists and
chemists has led to developments of techniques such as Pulay mixing [5, 6], also known as the
Direct Inversion of the Iterative Subspace (DIIS) algorithm, which is instrumental in accelerat-
ing the Self-Consistent Field (SCF) iteration method in electronic structure calculations [12]. It
is well-known that Anderson Acceleration method has connections with the Generalized Minimal
Residual Method (GMRES) algorithm [13, Section 6.5] and can be categorized as a multisecant
method [14, 15, 16, 17]. The first convergence theory for Anderson Acceleration, under the as-
sumption of a contraction mapping, appears in [18]. The convergence of Anderson(1), a topic
of particular interest to many researchers, is discussed separately in [19, 20]. The acceleration
properties of Anderson Acceleration are theoretically justified in [21, 22]. For detailed and more
comprehensive presentation of history, theoretical and practical results on the acceleration methods
and their applications we refer readers to [23, 24] and references therein.

Given Anderson iterates x
(k)
A , k = 0, 1, . . . and corresponding residual (error) vectors, e.g., f (k)

A :=

g(x
(k)
A )− x

(k)
A , consider weighted averages of the prior iterates, i.e.,

x̄
(k)
A :=

m
(k)
A∑

i=0

α
(k)
A,ix

(k−m
(k)
A +i)

A and f̄
(k)
A :=

m
(k)
A∑

i=0

α
(k)
A,if

(k−m
(k)
A +i)

A , (3)

with weights α
(k)
A,0, . . . , α

(k)

A,m
(k)
A

∈ R satisfying
m

(k)
A∑

i=0

α
(k)
A,i = 1, a fixed depth (history or window size)

parameter m and a truncation parameter m
(k)
A := min{m, k}. Anderson Acceleration achieves a

faster convergence than a simple fixed-point iteration by using the past information to generate
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new iterates as linear combinations of previous m
(k)
A iterates [5, 6, 14], i.e.,

x
(k+1)
A = x̄

(k)
A + β(k)f̄

(k)
A

= (1− β(k))

m
(k)
A∑

i=0

α
(k)
A,ix

(k−m
(k)
A +i)

A + β(k)

m
(k)
A∑

i=0

α
(k)
A,ig(x

(k−m
(k)
A +i)),

(4)

with given relaxation (or damping) parameters β(k) ∈ R+ and mixing coefficients α
(k)
A,i ∈ R, i =

0, . . . ,m
(k)
A selected to minimize the linearized residual (error) of a new iterate within an affine

space Aff
{
f
(k−m

(k)
A )

A , . . . , f
(k)
A

}
, i.e., obtained as a solution of the least-squares problem

min
α0,...,α

m
(k)
A

∥∥∥∥m
(k)
A∑

i=0

αif
(k−m

(k)
A +i)

A

∥∥∥∥2
2

s. t.
m

(k)
A∑

i=0

αi = 1. (5)

Note that in the case of β(k) = 1 a general formulation (4) introduced in the original work of
Anderson [3, 4] reduces to the Pulay mixing [5, 6], i.e.,

x
(k+1)
A =

m
(k)
A∑

i=0

α
(k)
A,ig(x

(k−m
(k)
A +i)

A ). (6)

The CROP method, introduced in [7], is a generalization of the Conjugate Residual (CR) method [13,
Section 6.8], which is a well-known iterative algorithm for solving linear systems. Analogously,
we consider iterates x

(k)
C , a sequence of recorded search directions ∆x

(i)
C := x

(i+1)
C − x

(i)
C , i =

k −m
(k)
C , . . . , k − 1, and the residual (error) vectors f

(k)
C generated by the CROP algorithm. Then

the new search direction ∆x
(k)
C = x

(k+1)
C − x

(k)
C is chosen in the space spanned by the prior m

(k)
C

search directions ∆x
(i)
C , i = k−m

(k)
C , . . . , k− 1 and the most recent residual (error) vector f (k)

C , i.e.,

x
(k+1)
C = x

(k)
C +

k−1∑
i=k−m

(k)
C

ηi∆x
(i)
C + ηkf

(k)
C , with some η

k−m
(k)
C

, . . . , ηk ∈ R.

Let us assume we have carried k steps of the CROP algorithm, i.e., we have the subspace of optimal
vectors span{x(1)C , . . . , x

(k)
C } at hand. From the residual vector f (k)

C , we can introduce a preliminary
improvement of the current iterate x

(k)
C , i.e.,

x̃
(k+1)
C := x

(k)
C + f

(k)
C . (7)

Now, since (7) is equivalent to f
(k)
C = x̃

(k+1)
C − x

(k)
C , we can find the optimal vector x

(k+1)
C within

the affine subspace span{x(1)C , . . . , x
(k)
C , x̃

(k+1)
C }, i.e.,

x
(k+1)
C =

m
(k+1)
C −1∑
i=0

α
(k+1)
C,i x

(k+1−m
(k+1)
C +i)

C + α
(k+1)

C,m
(k+1)
C

x̃
(k+1)
C , with

m
(k+1)
C∑
i=0

α
(k+1)
C,i = 1. (8)

The estimated residual (error) f (k+1)
C corresponding to the iterate x

(k+1)
C is constructed as the linear

combination of the estimated residuals of each component in (8) with the same coefficients, i.e.,

f
(k+1)
C =

m
(k+1)
C −1∑
i=0

α
(k+1)
C,i f

(k+1−m
(k+1)
C +i)

C + α
(k+1)

C,m
(k+1)
C

f̃
(k+1)
C . (9)
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Note that in general, unlike for the Anderson Acceleration method, f (k+1)
C ̸= f(x

(k+1)
C . Minimizing

the norm of the residual (error) defined in (9) results in a constrained least-squares problem

min
α0,...,α

m
(k+1)
C

∥∥∥∥m
(k+1)
C −1∑
i=0

αif
(k+1−m

(k+1)
C +i)

C + α
m

(k+1)
C

f̃
(k+1)
C

∥∥∥∥2
2

, such that
m

(k+1)
C∑
i=0

α
(k+1)
C,i = 1. (10)

Anderson Acceleration method is a well-established method that allows to speed up or encourage
convergence of fixed-point iterations and it has been successfully used in a variety of applications.
In recent years, the Conjugate Residual with OPtimal trial vectors (CROP) algorithm was intro-
duced and shown to have a better performance than the classical Anderson Acceleration with less
storage needed. In this work we aim to delve into the intricate connections between the classical
Anderson Acceleration method and the CROP algorithm. Our objectives include a comprehensive
study of their convergence properties, explaining the underlying relationships, and substantiating
our findings through some numerical examples. Through this exploration, we contribute valuable
insights that can enhance the understanding and application of acceleration methods in practical
computations, as well as the developments of new and more efficient acceleration schemes. In par-
ticular, we will discuss the connection between the CROP algorithm and some other well-known
methods, analyze its equivalence with Anderson Acceleration method and investigate convergence
for linear and nonlinear problems. We will present a unified Anderson-type framework and show
the equivalence between Anderson Acceleration method and the CROP algorithm. Moreover, we
will compare the CROP algorithm with some Krylov subspace methods for linear problems and
with multisecant methods in the general case. We will illustrate the connection between the CROP
algorithm and Anderson Acceleration method and explain the CROP-Anderson variant. Further-
more, we will show situations in which CROP and CROP-Anderson algorithms work better than
Anderson Acceleration method. We will discuss the convergence results for CROP and CROP-
Anderson algorithms for linear and nonlinear problems, and extend CROP and CROP-Anderson
algorithms to rCROP and rCROP-Anderson, respectively, by incorporating real residuals to make
them work better for nonlinear problems.
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Interpolation-Based Algorithms to Compute the H∞ Norm
of a Parametric System

Peter Benner, Tim Mitchell

Abstract

Consider the following continuous-time linear time-invariant parametric system:

E(p)ẋ = A(p)x+B(p)u (1a)
y = C(p)x+D(p)u, (1b)

where matrices E(p), A(p) ∈ Cn×n, B(p) ∈ Cn×m, C(p) ∈ Cp×n, and D(p) ∈ Cp×m describe the
dynamics and vary continuously with respect to the real-valued scalar parameter p ∈ P ⊂ R,
while the vectors x ∈ Cn, u ∈ Cm, and y ∈ Cp respectively describe the state, input, and output.
The H∞ norm of (1) is an important quantity in many domains. In engineering applications, it
measures how robust the system remains in the presence of noise, while in model order reduction, it
is used to measure how well a reduced-order model mimics the dynamical behavior of a large-scale
system. For a fixed value of p ∈ P , globally convergent methods for computing the H∞ norm go
back to [BB90, BS90], but here we are interested in efficiently computing the worst (highest) value
of H∞ norm of (1) that occurs over the parameter domain P, which we denote h⋆, or said another
way, the parameter(s) p⋆ ∈ P where h⋆ is attained and (1) is the least robust to noise.
We begin with some preliminaries. We assume that the matrix pencil λE(p) − A(p) is regular
and rank 1 for all values of p ∈ P , all the matrices are differentiable with respect to p (except
for possibly on a subset of P of measure zero), and that the parameter domain consists of a finite
number of intervals. The associated transfer function for (1) is

G(s; p) = C(p) (sE(p)−A(p))−1B(p) +D(p), (2)

where s ∈ C, and for a fixed value of p, its H∞ norm is defined as

∥G(·; p)∥∞ = max
s∈C+

∥C(p) (sE(p)−A(p))−1B(p) +D(p)∥2 =: max
s∈C+

g(s; p), (3)

where C+ is the closed right half of the complex plane. If the system is known to be asymptotically
stable, then the H∞ norm coincides with the L∞ norm, i.e., the maximization of the norm of the
transfer function can be limited to the imaginary axis instead of all C+. For fixed p, let λ be such
that det(λE(p) − A(p)) = 0 and let x and y respectively be its right and left eigenvectors. Then
eigenvalue λ is controllable if B(p)∗y ̸= 0 and it is observable if C(p)x ̸= 0. Then ∥G(·; p)∥∞ < ∞
provided that all the eigenvalues of λE(p) − A(p) that are both controllable and observable are
finite and in the open left half plane. In sum, our quantities of interest are given by

h⋆ = max
p∈P

∥G(·; p)∥∞ and p⋆ = argmax
p∈P

∥G(·; p)∥∞. (4)

One direct way to estimate h⋆ would be to simply evaluate (3) using the standard level-set
method [BB90, BS90] over a grid on the parameter domain P, but doing so provides no guar-
antee that h⋆ will be estimated to even moderate accuracy. A more refined yet still rather direct
approach would be to globally approximate the value of ∥G(·; p)∥∞ as it varies with p over P,
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say, by using Chebfun [DHT14], and then simply extract h⋆ and p⋆ from the resulting inter-
polant1, but this is likely to be unnecessarily expensive. For each evaluation of ∥G(·; p)∥∞, of
which many will be needed, the standard level-set method generally needs several iterations of
computing the γ-level set points of g(iω), which involves computing all imaginary eigenvalues of
the matrix pencil Mγ(p)− λNγ(p), where

Mγ(p) :=

[
A(p)−B(p)R(p)−1D(p)∗C(p) −γB(p)R(p)−1B(p)∗

γC(p)S(p)−1C(p) −(A(p)−B(p)R(p)−1D(p)∗C(p))∗

]
, (5a)

Nγ(p) :=

[
E(p) 0
0 E(p)∗

]
, (5b)

R(p) := D(p)∗D(p)− γ2I, (5c)
S(p) := D(p)D(p)∗ − γ2I. (5d)

The cost can be significantly reduced by instead using the H∞-norm method of [BM18], as it
typically reduces the number of eigenvalue computations of Mγ(p) − λNγ(p) to just one or two
values of γ. However, if the system (1) is unstable for some values of p ∈ P , then h⋆ = ∞,
but many eigenvalue computations of Mγ(p) − λNγ(p) may be incurred to ascertain that fact in
the process interpolating ∥G(·; p)∥∞ over P. This suggests that in order to be efficient, a new
algorithm that first separately addresses the question of stability and then only proceeds with
further computation when h⋆ < ∞ is needed.
For any p ∈ P , define

Λ(p) := {λ ∈ C : det(λE(p)−A(p)) = 0, λ is both controllable and observable}, (6a)
α(p) := max{Reλ : λ ∈ Λ(p)}, (6b)

where we take Reλ = +∞ for any non-finite λ ∈ Λ(p). Then the system (1) is asymptotically
stable if

α⋆ := max
p∈P

α(p) < 0, (7)

and so we can determine if h⋆ < ∞ by approximating function α over P using Chebfun, as has been
done in [HMMS22] to check stability when constructing stable H2 ⊗ L2 reduced order models for
parametric systems via optimization. Although α may be discontinuous, either because P consists
of more than one interval or an eigenvalue becomes or ceases to be controllable or observable as p
varies, Chebfun can reliably approximate functions with jumps [PPT10].
Although we propose using global approximation of α to ascertain h⋆ < ∞, we do not suggest glob-
ally approximating ∥G(·; p)∥∞ to compute h⋆ when it is finite. Instead, we propose an optimization-
with-restarts method that directly computes local maximizers of the two-real variable optimization
problem

h⋆ = max
ω∈R,p∈P

g(iω; p), (8)

and then uses an interpolation-based globality certificate to either certify that the local maximizer is
in fact a global maximizer where h⋆ is attained or provides new starting points on the γ-level set of g
to restart the local optimization phase, where γ = g(iω̂, p̂) for a computed local maximizer (ω̂, p̂).
Interpolation-based globality certificates were first conceived in [Mit21] to develop faster and more
reliable algorithms for computing Kreiss constants and the distance to uncontrollability and have
since been extended to computing the quantity sep-lambda [Mit23].

1Chebfun can do this extraction phase exceptionally fast as it produces a piecewise Chebyshev polynomial.
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Even though g may have points where it is a nonsmooth, the subset of such points has measure
zero, so obtaining local maximizers of g can be done with relative ease and efficiency using gradient-
based methods such as BFGS [LO13] or gradient sampling [BCL+20], particularly since there are
only two optimization variables and often m, p ≪ n. Then, with a candidate local maximizer (ω̂, p̂)
of g in hand and γ = g(iω̂, p̂), we check whether it is a global maximizer by approximating the
one-variable function

cγ(p) := min{(Reλ)2 : det(Mγ(p)− λNγ(p)) = 0,Reλ ≥ 0}, (9)

which is continuous on each interval in P and where the squaring acts to smooth out non-Lipschitz
behavior when a double imaginary eigenvalues bifurcates into a pair of eigenvalues with imagi-
nary axis symmetry. Function cγ is analogous to the eigenvalue-based functions that are globally
approximated in the interpolation-based globality certificates used in [Mit21, Mit23], and in our
setting here, has the following key properties:

(i) cγ(p) ≥ 0 for all p ∈ P .

(ii) If γ > h⋆, then cγ(p) > 0 for all p ∈ P .

(iii) If γ < h⋆, then cγ(p) = 0 holds on subset of P with positive measure.

By approximating cγ globally on P, we can determine whether or not γ is above or below h⋆.
When it is below, we need only find zeros of cγ , which are relatively easy to find by Property (iii).
Meanwhile, if γ > h⋆, which will be true if (ω̂, p̂) is a global maximizer and we perturb the
value γ = g(iω̂, p̂) slightly upward by a tolerance, then globally approximating cγ determines that
it is strictly positive on P, thus certifying that (ω̂, p̂) is indeed a global maximizer and h⋆ has been
attained. A practical benefit of approximating cγ is cost; evaluating cγ(p) always only requires
a single eigenvalue computation with Mγ(p) − λNγ(p) and negligible amount of constant-time
additional work, while evaluating ∥G(·; p)∥∞ may require more than one eigenvalue computation
and also does other non-constant-time work on top of that.
In general, only a handful of restarts are needed by our method and the overall work is almost
entirely dominated by approximating the function cγ for the final value of γ ≈ h⋆, properties which
we have also observed in our prior work with interpolation-based globality certificates [Mit21,
Mit23]. In total, the algorithm requires O(kn3) work, where k is the total number of evaluations
of cγ over all values of γ. Although k may be large, it often is not strongly correlated with the
number of system states n, and it corresponds to a task that is embarrassingly parallel and so its
effect can be significantly diminished on multi-core machines. Consequently, our method tends to
act like a cubically scaling method that has a large constant term. We have also extended this
approach to compute the worst-case H∞ norm of parametric discrete-time systems. In contrast,
while it might be possible to extend 2D level-set tests [Gu00, GMO+06, GO06, Mit20] to finding
a global maximizer of g or its discrete-time analogue, at least in some cases, based on our past
experience with that technique, we believe the resulting methods would likely be both much slower
and less reliable due to rounding error.
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A Million-Dollar Matrix

Cleve Moler

Abstract

The Redheffer matrix has been included in the MATLAB Gallery for many years, but, until now,
I didn’t know much about it. The Riemann Hypothesis is subject of one of the Clay Mathematics
Institute Millenium Prizes that are worth one million dollars each.
If we could find an n-by-n Redheffer matrix

R = gallery(`redheff',n)

with a determinant that satisfies
det(R) > sqrt(n)

it would be worth a million dollars.
For over 100 years, mathematicians believed that such an n might exist. This is the story of
Redheffer matrices, the Mertens conjecture, five different ways to compute n, and the proof that a
prize-winning matrix does not exist.

https://blogs.mathworks.com/cleve/2024/10/22/mobius-mertens-and-redheffer

251

https://blogs.mathworks.com/cleve/2024/10/22/mobius-mertens-and-redheffer


MinAres: An Iterative Solver for Symmetric Linear Systems

Alexis Montoison, Dominique Orban, Michael Saunders

Abstract

1 MinAres

Suppose A ∈ Rn×n is a large symmetric matrix for which matrix-vector products Av can be
computed efficiently for any vector v ∈ Rn. We present a Krylov subspace method called MinAres
for computing a solution to the following problems:

Symmetric linear systems: Ax = b, (1)
Symmetric least-squares problems: min ∥Ax− b∥, (2)
Symmetric nullspace problems: Ar = 0, (3)
Symmetric eigenvalue problems: Ar = λr, (4)

Singular value problems for rectangular B:
[

B
BT

] [
u
v

]
= σ

[
u
v

]
. (5)

If A is nonsingular, problems (1)–(2) have a unique solution x⋆. When A is singular, if b is not in
the range of A then (1) has no solution; otherwise, (1)–(2) have an infinite number of solutions,
and we seek the unique x⋆ that solves the problem

min 1
2∥x∥

2 s.t. A2x = Ab. (6)

Let xk be an approximation to x⋆ with residual rk = b − Axk. If A were unsymmetric or rect-
angular, applicable solvers for (1)–(2) would be Lsqr [10] and Lsmr [3], which reduce ∥rk∥ and
∥ATrk∥ respectively within the kth Krylov subspace Kk(A

TA,AT b) generated by the Golub-Kahan
bidiagonalization on (A, b) [4].
For (1)–(5), our algorithm MinAres solves (6) by reducing ∥Ark∥ within the kth Krylov subspace
Kk(A, b) generated by the symmetric Lanczos process on (A, b) [6]. Thus when A is symmetric,
MinAres minimizes the same quantity ∥Ark∥ as Lsmr, but in different (more effective) subspaces,
and it requires only one matrix-vector product Av per iteration, whereas Lsmr would need two.
Qualitatively, certain residual norms decrease smoothly for these iterative methods, but other
norms are more erratic as they approach zero. It is ideal if stopping criteria involve the smooth
quantities. For Lsqr and Lsmr on general (possibly rectangular) systems, ∥rk∥ decreases smoothly
for both methods. We observe that while Lsqr is always ahead by construction, it is never by very
much. Thus on consistent systems Ax = b, Lsqr may terminate slightly sooner than Lsmr. On
inconsistent systems Ax ≈ b, the comparison is more striking. ∥ATrk∥ decreases erratically for
Lsqr but smoothly for Lsmr, and there is usually a significance difference between the two. Thus
Lsmr may terminate significantly sooner [3].
Similarly for Minres [9] and MinAres, ∥rk∥ decreases smoothly for both methods, and on consis-
tent symmetric systems Ax = b, Minres may have a small advantage. On inconsistent symmetric
systems Ax ≈ b, ∥Ark∥ decreases erratically for Minres and its variant Minres-qlp [2] but
smoothly for MinAres, and there is usually a significant difference between them. Thus MinAres
may terminate sooner.
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MinAres completes the family of Krylov methods based on the symmetric Lanczos process. As it
minimizes ∥Ark∥ (which always converges to zero), MinAres can be applied safely to any symmetric
system.
On consistent symmetric systems, MinAres is a relevant alternative to Minres and Minres-qlp
because it converges in a similar number of iterations if the stopping condition is based on ∥rk∥,
and much sooner if the stopping condition is based on ∥Ark∥. On singular inconsistent symmetric
systems, MinAres outperforms Minres-qlp and Lsmr, and should be the preferred method.
Furthermore, a lifting step [7] can be applied to move from the final iterate to the minimum-length
solution (pseudoinverse) at negligible cost.

2 CAr

We introduce CAr, a new conjugate direction method similar to Cg and Cr (the conjugate gradient
and conjugate residual methods of Hestenes and Stiefel [5, 11] for solving symmetric positive definite
(SPD) systems Ax = b). Each of these methods generates a sequence of approximate solutions xk
in the Krylov subspaces Kk(A, b) by minimizing a quadratic function f(x):

fCg(x) =
1
2x

TAx− bTx, fCr(x) =
1
2∥Ax− b∥2, fCAr(x) =

1
2∥A

2x−Ab∥2.

CAr is to MinAres as Cr is to Minres. For SPD A, CAr is mathematically equivalent to
MinAres, and both methods exhibit monotonic decrease in ∥Ark∥, ∥rk∥, ∥xk−x⋆∥, and ∥xk−x⋆∥A.
The name CAr reflects its property of generating successive A-residuals that are conjugate with
respect to A. Designed to minimize ∥Ark∥ in Kk(A, b), CAr complements the family of conjugate
direction methods Cg and Cr for SPD systems.

Algorithm 1 Cg
Require: A, b, ϵ > 0

k = 0, x0 = 0
r0 = b, p0 = r0
q0 = Ap0

ρ0 = rT0r0
while ∥rk∥ > ϵ do

αk = ρk/p
T
kqk

xk+1 = xk + αkpk
rk+1 = rk − αkqk

ρk+1 = rTk+1rk+1

βk = ρk+1/ρk
pk+1 = rk+1 + βkpk
qk+1 = Apk+1

k ← k + 1
end while

Algorithm 2 Cr
Require: A, b, ϵ > 0
k = 0, x0 = 0
r0 = b, p0 = r0
s0 = Ar0, q0 = s0

ρ0 = rT0s0
while ∥rk∥ > ϵ do

αk = ρk/∥qk∥2
xk+1 = xk + αkpk
rk+1 = rk − αkqk
sk+1 = Ark+1

ρk+1 = rTk+1sk+1

βk = ρk+1/ρk
pk+1 = rk+1 + βkpk
qk+1 = sk+1 + βkqk

k ← k + 1
end while

Algorithm 3 CAr
Require: A, b, ϵ > 0

k = 0, x0 = 0
r0 = b, p0 = r0
s0 = Ar0, q0 = s0
t0 = As0, u0 = t0
ρ0 = sT0t0
while ∥rk∥ > ϵ do

αk = ρk/∥uk∥2
xk+1 = xk + αkpk
rk+1 = rk − αkqk
sk+1 = sk − αkuk
tk+1 = Ask+1

ρk+1 = sTk+1tk+1

βk = ρk+1/ρk
pk+1 = rk+1 + βkpk
qk+1 = sk+1 + βkqk
uk+1 = tk+1 + βkuk
k ← k + 1

end while
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3 Krylov.jl

The algorithms MinAres and CAr have been implemented in Julia [1] as part of the package
Krylov.jl [8], which provides a suite of Krylov and block-Krylov methods. Leveraging Julia’s flexi-
bility and multiple dispatch capabilities, our implementations are compatible with all floating-point
systems supported by the language, including complex numbers. These methods are optimized for
both CPU and GPU architectures, ensuring high performance across a wide range of computational
platforms. Additionally, our implementations support preconditioners, enhancing convergence and
robustness across various problem classes.
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Quasitubal Tensor Framework: Applications to Multiway Functional Data
Analysis

Uria Mor, Haim Avron

Abstract

Multiway arrays, commonly referred to as higher-order tensors, are a natural data structure for
representing multi-dimensional data and modeling processes consisting of composite interactions
between factors. The tubal tensor framework [6, 1, 5] views a tensor as a ‘matrix of tubes’, where
tubes are elements of a vector space supplemented with a binary, bilinear tubal multiplication,
thus endowing the set of tubes with scalar-like properties that enable matrix mimetic tensor-tensor
multiplication. From this perspective, tensors represent t-(tube-) linear mappings between Hilbert
C*-modules over the algebra of tubes [3, 2], for example, a 3rd order tensor X ∈ Rm×p×n represents a
t-linear mapping from Rp×1×n to Rm×1×n, and the t-product of X with a tensor Y ∈ Rp×q×n is a tensor
X ∗Y ∈ Rm×q×n that represents the composition of the two mappings. The matrix mimetic nature
of the t-product enables an almost direct translation of many matrix computations to the tensor
setting in a way that preserve, to some extent, the theoretical properties of the original operations,
e.g., perhaps most notable, the t-SVD which is a straightforward extension of the matrix SVD,
and enjoys an Eckart-Young like optimality result for rank truncations of a tensor[2, 4, 5]. The
extensive, still-growing set of matrix algorithms and tools, and the ease of their extension to tensors
via the tubal framework, make it a powerful tool for dealing with multi-dimensional problems.
In many applications, tensor data is obtained by a finite set of observations of a multi-dimensional
process evolving over a domain such as time or space. These processes are often modeled as elements
within an infinite-dimensional Hilbert space.However, when tubes reside in an infinite-dimensional
Hilbert space, the associated tubal algebra lacks certain properties present in the finite-dimensional
case, such as a multiplicative identity and von Neumann regularity. This limitation hinders any
direct extension of the tubal tensor framework to infinite-dimensional spaces, and, in particular,
the tubal SVD is no longer viable.
In this work, we introduce the quasitubal tensor framework, an extension of the tubal tensor
framework to tubal algebras defined on infinite-dimensional separable Hilbert spaces. Notably, we
establish the existence of a quasitubal SVD and prove Eckart-Young optimality results for low-rank
truncations of quasitubal SVD. With a strong theoretical basis, the quasitubal framework offers
attractive approach for tackling multi-way problems in infinite-dimensional spaces.

Background. An order-N tensor X over a field F (either C or R) is an object in Fd1×⋯×dN . The
line of research on tubal tensor algebra [5, 1, 6, 4] views tensors ‘matrices of tubes’. For example,
a 3rd order tensor X ∈ Fm×p×n is considered as an m×p matrix over Fn whose j, k (tubal) entry is
xjk ∈ Fn. The t-product [6, 1, 5] of two tubes x,y ∈ Fn is defined as x ∗ y = ifft(x̂⊙ ŷ), where
x̂ = fft(x) is the Fourier transform of x, and ⊙ is the Hadamard product.
The mode-3 multiplication of X by a matrix A ∈ Fr×n is the tensor X ×3 A ∈ Fm×p×r whose j, k tube
fiber is given by Axjk ∈ Fr. In particular, let F be the n×n DFT matrix and define X̂ = X×3F. The
tensor-tensor t-product of X ∈ Fm×p×n,Y ∈ Fp×q×n is defined by X∗Y = (X̂△Ŷ)×3F−1 with Z = X△Y

a tensor such that Z∶,∶,j = X∶,∶,jY∶,∶,j . Note that the t-product of two tubal-tensors is in-fact the
multiplication of matrices over the tubal ring. More general version of the t-product is obtained
by replacing F with any invertible matrix M [2, 4] (so X̂ = X×3M), resulting in the ⋆M -product,
X⋆MY = (X̂△ Ŷ)×3M−1.
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The p×p identity tensor Ip ∈ Fp×p×n is such that X⋆MIp = X,Ip⋆MY = Y. The Hermitian adjoint
of X ∈ Fm×p×n is the tensor XH ∈ Fp×m×n with X̂H

j,k,h = x̂k,j,h. A slice A⃗ ∈ Fp×1×n is ⋆M unit nor-
malized if A⃗H⋆M A⃗ = 1, and we say that A⃗, B⃗ ∈ Fp×1×n are ⋆M -orthogonal if A⃗H⋆M B⃗ = 0. A ten-
sor U is said to be ⋆M -unitary if UH ∗U = U⋆MUH = I. The t-SVDM of X ∈ Fm×p×n is a de-
composition X = U⋆MS⋆MVH where U ∈ Fm×m×n,V ∈ Fp×p×n are ⋆M -unitary, and S ∈ Fm×p×n is f-
diagonal, i.e., S∶,∶,k are diagonal for all k. The t-rank of X under ⋆M [5, 2] is the number of
non-zero diagonal tubes in S, and the multi-rank of X under ⋆M [3, 4] is a vector ρ of integers
ρk = rank(X̂∶,∶,k). Given r ≤ min(m,p), the t-rank r truncation of X under ⋆M is the tensor
Xr = U∶,1∶r,∶⋆MS1∶r,1∶r,∶⋆MV∶,1∶r,∶

H = ∑r
j=1 U⃗j⋆MSj,j,∶⋆M V⃗

H

j with U⃗j = U∶,j,∶ being the jth ‘column’ slice
of U. For ρ = (ρ1, . . . , ρn) with ρk ≤ min(m,p), the multi-rank ρ truncation of X under ⋆M is
the tensor Xρ such that [X̂ρ]∶,∶,k = Û∶,1∶ρk,∶△ Ŝ1∶ρk,1∶ρk,∶△ V̂

H

∶,1∶ρk,∶. The central result of the tubal
framework is that the above truncations are optimal in the sense of Frobenius norm error, provided
that M is a nonzero multiple of a unitary matrix. Formally, let M be a nonzero multiple of a
unitary matrix and X ∈ Fm×p×n. If Y ∈ Fm×p×n is of t-rank r (respectively, multirank ρ) under ⋆M
then ∥X −Y∥F ≥ ∥X −Xr∥F [5, 2] (respectively, ∥X −Y∥F ≥ ∥X −Xρ∥F [4]).
In the above 3rd order example, each entry xjk ∈ Fn of X represents a function xjk∶Ω→ F, where
Ω = [n] = {1, . . . , n} and xj,k,t = xjk(t). A common assumption in practice, is that the domain Ω of
xjk is actually a compact subset of R and the values xj,k,h are point evaluations of xjk on a grid
t1 ≤ t2 ≤ ⋯ ≤ tn ∈ Ω such that xj,k,h = xjk(th). Furthermore, it is possible to consider the functions
xjk as elements of a Hilbert space (H, ⟨⋅, ⋅⟩H) in which vector addition and scalar multiplication are
defined pointwise. In this case, we have a ‘matrix of functions’ in H and we write X ∈Hm×p.

Matrices over Hilbert Spaces. Suppose that H is a separable Hilbert space over F, and let
{ϕj}j∈Z be an orthonormal basis in H. Then, the mapping x↦ Φx = ∑j⟨x,ϕj⟩Hej where ej is
the jth standard basis vector in the space ℓ2 of square summable sequences with the usual dot
product, is an isometry. Note that if a,b ∈ ℓ2 then the elementwise multiplication a ⊙ b is also
in ℓ2. A natural extension of the ⋆M product to H is given by x⋆Φy = Φ∗(Φx⊙Φy) where Φ∗

is the adjoint (and inverse) of Φ. Let X ∈Hm×p and define the mode-3 operation of Φ on X as
the tensor X̂ = X×3Φ ∈ ℓm×p2 with x̂jk = Φxjk. Correspondingly, the the tensor-tensor ⋆Φ -product of
X ∈Hm×p,Y ∈Hp×q is X⋆ΦY = (X̂△ Ŷ)×3Φ∗.

The Challenge of Defining Tubal SVD in Infinite Dimensional Hilbert Space . Let
x ∈H, then the operation Tx defined by Txy = x⋆Φy is a bounded linear operator on H. Further-
more, Tx is Hilbert-Schmidt operator since ∑j ∥Txϕj∥2H = ∑j ∥x̂⊙ ej∥2ℓ2 = ∑j ∣x̂j ∣2 = ∑j ∣⟨x,ϕj⟩H∣2 =
∥x∥2H. Thus, the a multiplicative identity in H is impossible since it would imply that the identity
operator is a Hilbert-Schmidt operator, in contradiction to the infinite-dimensionality of H. Direct
consequences of this are that 1) there are no unit normalized slices in Hp 2) there are no ⋆Φ -unitary
tensors in Hm×m. Most importantly, no decomposition of the form X = U⋆ΦS⋆ΦVH can be defined
in Hm×p such that U ∈Hm×m,V ∈Hp×p are isometries.

Quasitubal Framework. Consider the set Hp ∶=⊕p
j=1H of slices X⃗ = (x1, . . . ,xp) with ele-

mentwise addition and ⋆Φ -product by H elements, e.g., X⃗⋆Φa = a⋆Φ X⃗ = (a⋆Φx1, . . . ,a⋆Φxp) and
X⃗ + Y⃗ = (x1 + y1, . . . ,xp + yp) for X⃗, Y⃗ ∈Hp and a ∈H. An operator T ∶Hp → Hm is said to be
t-linear (or H-linear) if T (a⋆Φ X⃗) = a⋆ΦT X⃗ for all a ∈H, X⃗ ∈Hp. Let L(Hp,Hm) be the set of
t-linear operators from Hp to Hm. Note that such operators are necessarily bounded and linear
over F, hence L(Hp,Hm) ⊂ B(Hp,Hm).
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Our theory is based on the following fundamental observations

Lemma 0.1. An operator T is in L(H) if and only if there exists a bounded sequence τ̂ ∈ ℓ∞ such
that Ta = Φ∗(τ̂ ⊙ â) for all a ∈H. If in addition, T is Hilbert-Schmidt then τ̂ ∈ ℓ2 and there exists
τ ∈H such that Ta = τ⋆Φa for all a ∈H.
As a consequence, T ∈ L(Hp,Hm) if and only if there exists T̂ ∈ ℓm×p∞ such that T X⃗ = Φ∗(T̂ △ ̂⃗X)
for all X⃗ ∈Hp. If in addition, T is Hilbert-Schmidt then T̂ ∈ ℓm×p2 and there exists T ∈Hm×p such
that T X⃗ = T⋆Φ X⃗ for all X⃗ ∈Hp.

We call L(H) elements quasitubes due to their tubal representation in ℓ∞. Respectively, oper-
ators in L(Hp,Hm) are called quasitubal tensors as they retain a tubal tensor structure in the
coordinates of the transform domain. We use the same notation for L(H) and L(Hp,Hm) operators
as for elements in H,Hm×p, therefore, the ⋆Φ product of quasitubal tensors reads as composition of
t-linear operators. While it is not possible to identify the space L(Hp,Hm) with Hm×p (as in the
finite-dimensional case), the notation is still compatible, valid and useful.

Lemma 0.2. The set L(H) with the usual operator addition, scaling, composition, adjoint and
norm, is the smallest commutative, unital C*-algebra in which H is embedded as a *-ideal. And it
follows that L(H,Hp) ≅ L(H)p together with the L(H)-valued inner-product ⟪X⃗, Y⃗⟫ = ∑p

j=1x
∗
j⋆Φyj

is a Hilbert C*-module over L(H), in which Hp is embedded as a *-invariant submodule.

Given X⃗ ∈ L(H)p we have ∣X⃗∣2L(H)p = ⟪X⃗, X⃗⟫ which is a non-negative element in a C*-algebra,
hence has a unique square root ∣X⃗∣L(H)p , and the real valued norm ∥X⃗∥L(H)p = ∥∣X⃗∣L(H)p∥. The
induced “operator norm” of an m×p quasitubal tensors is then ∥X∥ = sup∣Y⃗∣L(H)p=1 ∥X⋆Φ Y⃗∥L(H)m .
Another consequence of the Hilbert C*-module structure over a unital C*-algebra, is the ability to
define ⋆Φ -orthogonality and ⋆Φ -unitarity for quasitubal tensors similarly to the finite-dimensional
case. With the above, the ground is set for construction of a quasitubal SVD:

Theorem 0.3. Let X be anm×p quasitubal tensor, then there exists a decomposition X = U⋆ΦS⋆ΦV∗
with U ∈ L(Hm),V ∈ L(Hp) being ⋆Φ -unitary, and S ∈ L(Hm,Hp) an f-diagonal tensor with diagonal
entries s1 ≥L(H) s2 ≥L(H) ⋯ ≥L(H) smin(m,p) ≥L(H) 0.

The t-rank and multirank of a quasitensor X under ⋆Φ , as well as t-rank and multi-rank truncations,
are defined similarly to the finite-dimensional case. And we have the main result:

Theorem 0.4. Given an m×p quasitubal tensor X, if Y ∈ L(Hp,Hm) is of t-rank r (respectively,
multirank ρ) under ⋆Φ then ∥X −Y∥ ≥ ∥X −Xr∥ (respectively, ∥X −Y∥ ≥ ∥X −Xρ∥).

Objects in Hm×p have the elementwise H norm: ∥X∥2H = ∑j,k ∥xjk∥2H, which is an equivalent to the
Frobenius norm in the finite-dimensional case. Consider X = U⋆ΦS⋆ΦV∗ ∈Hm×p, then S ∈Hm×p

and ∥X∥H = ∥S∥H. Importantly

Theorem 0.5. Given X ∈Hm×p, if Y ∈ L(Hp,Hm) is of t-rank r (respectively, multirank ρ) under
⋆Φ then ∥X −Y∥H ≥ ∥X −Xr∥H (respectively, ∥X −Y∥H ≥ ∥X −Xρ∥H). In particular Xr,Xρ ∈Hm×p.

Possible Applications. Due to the strong theoretical foundation of the quasitubal SVD, a
promising line of research is the development of multivariate functional PCA, in a similar spirit to
our previous work on the finite-dimensional settings [7]. Furthermore, the matrix mimetic nature of
the platform, combined with the optimality results for low-rank truncations suggest that direct ex-
tensions of randomized algorithms for low-rank matrix approximations to the quasitubal setting are
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possible and should offer theoretical guarantees. This opens the door to computational speedups
in modeling and simulations of multi-input multi-output dynamical systems where the quality of
the approximation is about as crucial as the computational cost. We provide numerical examples
for the application of the quasitubal framework to multivariate functional data analysis and signal
processing, and demonstrate the potential of the framework for developing efficient tensor-based
algorithms for such settings.
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Krylov Methods and Polynomials

Ron Morgan

Abstract

It is well-known that all Krylov methods have polynomials underlying them. Here these polynomials
are used in new ways to develop iterative methods. There are several applications including systems
of linear equations with multiple right-hand sides.

1 Polynomial Preconditioning

Polynomial preconditioning goes way back, see for instance [6, 11, 10, 2, 12], but has never be-
come standard. In [5, 8], polynomial preconditioning is made a more practical method with these
improvements:

1. The polynomial is easy to determine. It is generated by GMRES instead of from eigenvalue
estimates as some approaches have done.

2. The implementation is efficient due to using roots of the GMRES residual polynomial.
3. The method is more stable than some other approaches. This is from the implementation

with roots instead of coefficients. Also, additional stability control comes from adding extra
copies of outstanding roots.

With polynomial preconditioning, Ax = b becomes

Ap(A)y = b, x = p(A)y. (1)

Polynomial preconditioning works because it transforms the spectrum of A into a better spectrum.
Another reason why it is effective is that there is more power per iteration and much less orthogo-
nalization. Also, there is greater opportunity for parallelism. However, polynomial preconditioning
may not needed for fairly easy systems.
Example Polynomial preconditioning is used for a matrix from a biharmonic differential equation.
A degree 200 polynomial is applied, then a degree 50 polynomial is used along with an incomplete
factorization preconditioner. Table 1 first shows that polynomial preconditioning can be very
effective for the difficult original system of equations. The time is reduced from hours to under a
minute. The problem is easier when standard incomplete factorization preconditioning is applied.
Then the effect of the polynomial preconditioning is not as dramatic, but it is still helpful. The
time goes from over 3 minutes to below 9 seconds. See [8] for more results.

Table 1: Polynomial preconditioning applied to a biharmonic matrix of size n = 40,000 from the
differential equation −uxxxx − uyyyy + uxxx = f on the unit square. IF stands for incomplete
factorization with no fill-in after shifting the matrix by 0.5 ∗ I.

Method GMRES(50) PP(200)-GMRES(50) IF-GMRES(50) PP(50)-IF-GMRES(50)
Time 14.6 hours 55 seconds 3.5 minutes 8.5 seconds
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2 Polynomial Approximation of A−1

It is surprising that even for a large matrix, it is often possible to find a polynomial p so that p(A)
is a good approximation to A−1 [4]. We use the p polynomial from Equation (1) that is generated
by GMRES. This is implemented using the roots of the GMRES residual polynomial.
It can be proved for the symmetric case that the accuracy of the approximating polynomial follows
the residual norm curve. Stability control with added roots is even more important here than for
polynomial preconditioning, because a high degree polynomial is needed.
Example: For a convection-diffusion matrix, Table 2 shows that the relative accuracy of the poly-
nomial approximation to the inverse follows the GMRES residual norm. See [4] for more.

Table 2: A polynomial approximation is found to the inverse of a matrix of size n = 2500 from the
convection-diffusion equation −uxx − uyy + 2ux = f on the unit square. The starting vector is a
random vector normed to one. Relative accuracy of the polynomial is compared to the GMRES
residual norm.

Degree GMRES residual norm ∥A−1−p(A)∥
∥A−1∥

50 8 ∗ 10−3 2 ∗ 10−1

100 4 ∗ 10−5 6 ∗ 10−4

150 1 ∗ 10−8 3 ∗ 10−7

200 8 ∗ 10−12 3 ∗ 10−10

Applications of polynomial approximation to A−1 include:
1. Systems with multiple right-hand sides [4]. The polynomial approximation that is generated

with one right-hand side can be applied to other right-hand sides to solve the systems.
2. Multilevel Monte Carlo for the trace of the inverse in quantum chromodynamics [7]. Polyno-

mials form the basis for this approach, but deflation of eigenvalues is also crucial.
3. Functions of matrices (in progress). A polynomial approximation to the function of a matrix

can be found by interpolating the function at the harmonic Ritz values (the roots of the
GMRES polynomial).

3 Twin CG for multiple right-hand side systems. Also Twin CR,
BiCGStab, BiCG, GMRES and QMR.

The first application in the previous section used the same polynomial for multiple right-hand sides.
Here we again have the same polynomial, but applied in a simpler way. We use the same iteration
coefficients for all right-hand sides. When this approach is used for the conjugate gradient method
(CG), we call this “Twin CG for multiple right-hand sides.”
As an example, consider two systems, Ax(1) = b(1) and Ax(2) = b(2). One step in the CG iteration
for the first system is x(1) = x(1) + α(1) ∗ p(1). Our approach is to also do x(2) = x(2) + α(1) ∗ p(2)
with the same α(1) as for the first system. Similarly, the other CG steps have the same constants
for both right-hand sides.
The residual polynomial helps explain why this is effective. For the second right-hand side, the
residual polynomial is the same as for the first. So if r(1) = π(1)(A)b(1), then also r(2) = π(1)(A)b(2).
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The polynomial π(1) needs to be small at the eigenvalues of A in order for the first system to
converge, and this makes the second system converge also. The first right-hand side, b(1), does need
to not be deficient in some eigencomponents. For the deficient case, creating a first system with a
random right-hand side is recommended.
With this twin approach for CG, the multiple right-hand systems generally converge together.
However, there can be momentary instability due to steep slope of the polynomial at an outstanding
eigenvalue. This tends to be quickly automatically corrected.
Remarkable things about Twin CG:

1. The code can be very simple. All x vectors for all right-hand sides can be grouped together
into one matrix, and similarly for r and p vectors. Then most operations can be done with
matrices instead of vectors.

2. This method is extremely parallelizable. All dot products are eliminated except for the first
right-hand side (one may need to monitor residual norms for other right-hand sides occasion-
ally after the first system converges). The matrix-vector products can be done together for
all right-hand sides. The DAXPY’s can also be performed together, so they become matrix
operations.

3. Stability control happens automatically due to roundoff error. So roundoff error is essential
to the success of the method. This is because the Lanczos algorithm that is the basis for
CG develops extra copies of outstanding eigenvalues [9]. This mimics the addition of roots
given in [5, 8] for stability control with polynomial preconditioning. With this Twin CG
approach, it is surprising that the extra copy appears almost as soon as stability control is
needed. However, for cases with several outstanding eigenvalues, extra copies will not all
appear simultaneously, so we have a way of augmenting with some manual stability control.

4. Seed methods [3, 1] for deflating eigenvalues can be added. Seeding is done during solution of
the first system, then the Twin CG method is applied to the second and subsequent systems.
In addition, we are working on a new seed approach for the case where roundoff error interferes
with the accuracy of the seeding [1].

Finally, a few comments about nonsymmetric systems:
1. Similar to CG for symmetric systems, a Twin BiCG method can be given for the nonsymmetric

case. BiCG has automatic stability control similar to CG.
2. Twin BiCG uses only half of the matrix-vector products for the second and subsequent right-

hand sides as for the first.
3. BiCGStab does not have the automatic stability control.
4. The twin approach for multiple right-hand sides can even be used with restarted GMRES.

Dot products are eliminated except for the first right-hand side, but the rest of the orthogo-
nalization cost is needed for each right-hand side system.
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Block cross-interactive residual smoothing for Lanczos-type solvers
for linear systems with multiple right-hand sides

Kensuke Aihara, Akira Imakura, Keiichi Morikuni

Abstract

Block Lanczos-type solvers, such as the block BiCGSTAB method [3], for large sparse linear systems

AX = B, A ∈ Rn×n, B ∈ Rn×s, s ≪ n

often exhibit large oscillations in the residual norms. In finite precision arithmetic, the large oscil-
lations lead to a large residual gap (the difference GRk

between the recursively updated residual Rk

and the explicitly computed residual B − AXk) and a loss of attainable accuracy of the approxi-
mations, as observed in

∥GRk
∥ − ∥Rk∥ ≤ ∥B −AXk∥ ≤ ∥GRk

∥+ ∥Rk∥, GRk
:= (B −AXk)−Rk.

This problem is addressed by using cross-interactive residual smoothing (CIRS). Just as the stan-
dard Lanczos-type solvers for a single linear system have been extended to their global and block
versions for solving systems with multiple right-hand sides, similar extensions of CIRS are naturally
considered. While we have developed the global CIRS scheme (Gl-CIRS) in our previous study [1],
we propose a block version (Bl-CIRS) in this study. Then, we demonstrate the effectiveness of
Bl-CIRS from various perspectives, such as theoretical insights into the convergence behaviors of
the residual and approximation norms, numerical experiments on model problems, and a detailed
rounding error analysis for the residual gap. In particular, we show for the case of Bl-CIRS that
orthonormalizing the columns of direction matrices plays an important role in reducing the residual
gap. The presented analysis also complements our previous study above that includes an evaluation
for the residual gap of the block Lanczos-type solvers.

Advances in residual smoothing Block Lanczos-type solvers typically update the kth approx-
imation Xk and residual Rk by using the recursion formulas

Xk+1 = Xk + Pkα
□
k , Rk+1 = Rk − (APk)α

□
k , k = 0, 1, . . . ,

respectively, where Pk ∈ Rn×s is a direction matrix and α□
k ∈ Rs×s is determined under a certain

condition. Residual smoothing was introduced by Schönauer [7] to Lanczos-type solvers for a
single linear system to get a non-increasing sequence of residual norms [8]. A block version of
the simple residual smoothing (Bl-SRS) was presented by Jbilou [5]. Let Xk and Rk be the kth
primary approximation and residual, respectively. Then, new sequences of approximations Yk and
the corresponding smoothed residuals Sk(:= B −AYk) are generated by the recursion formulas

Yk+1 = Yk + (Xk+1 − Yk)η
□
k+1, Sk+1 = Sk + (Rk+1 − Sk)η

□
k+1, k = 0, 1, . . . ,

respectively, where Y0 = X0, S0 = R0, and η□k ∈ Rs×s is a parameter matrix. With a local
minimization of the smoothed residual norm in choosing η□k , a monotonically decreasing sequence
of ∥Sk∥ is obtained.
Studies on the relationship between residual smoothing and the residual gap have an interesting his-
tory. For a single right-hand side case, Gutknecht and Rozložník [4] clarified that the conventional
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Table 1: Difference in the recursion formulas for updating smoothed residuals.
Type SRS scheme CIRS scheme

Standard
Ax = b

[7, 8]
sk = sk−1 + ηk(rk − sk−1),
rk, sk−1 ∈ Rn, ηk ∈ R

[2, 6]
sk = sk−1 − ηkAvk,

vk, sk−1 ∈ Rn, ηk ∈ R

Global
AX = B

[9]
Sk = Sk−1 + ηk(Rk − Sk−1),
Rk, Sk−1 ∈ Rn×s, ηk ∈ R

[1]
Sk = Sk−1 − ηkAVk,

Vk, Sk−1 ∈ Rn×s, ηk ∈ R

Block
AX = B

[5]
Sk = Sk−1 + (Rk − Sk−1)η

□
k ,

Rk, Sk−1 ∈ Rn×s, η□k ∈ Rs×s

Present study
Sk = Sk−1 − (AQ̃k)η̃

□
k ,

Q̃k, Sk−1 ∈ Rn×s, η̃□k ∈ Rs×s

smoothing schemes (including the Zhou–Walker implementation [10]) do not help to improve the
attainable accuracy. To be more specific, rounding errors accumulated in the primary sequences
propagate to the smoothed sequences, and the smoothed true residual norms stagnate at the same
order of magnitude as the primary ones. In order to remedy this phenomenon, Komeyama et al. [2, 6]
modified the Zhou–Walker implementation so that the primary and smoothed sequences influence
one another. This modification is referred to as cross-interactive residual smoothing (CIRS) and is
indeed effective in reducing the residual gap and increasing attainable accuracy. As SRS has been
extended to global and block versions [9, 5], CIRS is also extended. In this perspective, our previous
study [1] presented a global version of CIRS (Gl-CIRS) for the global- and block-type solvers, and
therefore, we propose a block version of CIRS (Bl-CIRS) in this study. Table 1 summarizes the
recursion formulas for the aforementioned residual smoothing schemes. This table shows that this
study fills a gap in the literature of the CIRS schemes.

Block cross-interactive residual smoothing This study proposes updating approximations
and the corresponding residuals by the recursion formulas

smoothed Yk+1 = Yk + Vk+1η
□
k+1, Sk+1 = Sk − (AVk+1)η

□
k+1,

primary Xk+1 = Yk+1 + Vk+1(Is − η□k+1), Rk+1 = Sk+1 − (AVk+1)(Is − η□k+1),

respectively, for k = 0, 1, . . . with Y0 = X0 and S0 = R0 so that the primary and smoothed sequences
influence one another, where Vk+1 = Vk(Is−η□k )+ P̃k is an auxiliary matrix for η□0 = O ∈ Rs×s and
V0 = O ∈ Rn×s. Here, P̃k ∈ Rn×s is a direction matrix in the recursion formula Xk+1 = Xk + P̃k.
Again with a local minimization of the smoothed residual norm in choosing η□k , a monotonically
decreasing sequence of ∥Sk∥ is obtained. Note that the essential difference of Bl-CIRS from Gl-
CIRS [1, Algorithm 3.1] is that the smoothing parameter η□k of Bl-CIRS is an s-by-s matrix instead
of a scalar.
For numerical stability, Bl-CIRS needs to orthonormalize the columns of the auxiliary matrix Vk

for each iteration. Let Vk = Q̃kξ̃k be the QR decomposition of Vk, where Q̃k ∈ Rn×s and ξ̃k ∈ Rs×s

are the Q- and R-factors, respectively. With the auxiliary matrix η̃□k := ξ̃kη
□
k , the above formulas

are equivalently rewritten as

smoothed Yk+1 = Yk + Q̃k+1η̃
□
k+1, Sk+1 = Sk − (AQ̃k+1)η̃

□
k+1,

primary Xk+1 = Yk+1 + Q̃k+1(ξ̃k+1 − η̃□k+1), Rk+1 = Sk+1 − (AQ̃k+1)(ξ̃k+1 − η̃□k+1)
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together with Vk+1 = Q̃k(ξ̃k − η̃□k ) + P̃k for k = 0, 1, . . . .
Our main results via a rounding error analysis shows that Bl-CIRS with the orthonormalization
strategy suppresses the residual gap.

Theorem 1. In finite precision arithmetic, let Xk ∈ Fn×s and Rk ∈ Fn×s be the kth approximation
and residual generated by the recursion formulas

Xk = Xk−1 + Q̂k−1α
□
k−1, Rk = Rk−1 − (AQ̂k−1)α

□
k−1, k = 0, 1, . . . , (1)

respectively, where F ⊂ R is a set of floating point numbers and Q̂k−1 is a Q-factor of the di-
rection matrix Pk−1 obtained from the QR decomposition with Givens rotations or Householder
transformations. Then, with X0 = O, the residual gap GRk

satisfies the bound

∥GRk
∥ <

(
8
√
sγm+3s + γ1

)
k∥A∥ max

0<i≤k
∥Xi∥+ kγ1 max

0<i≤k
∥Ri∥,

where γk := ku/(1− ku) with a unit roundoff u and m is the maximum number of nonzero entries
per row of A.

In the case of Bl-CIRS, replacing Xk and Rk by Yk and Sk, respectively, in (1), this theorem holds
for the residual gap GSk

= (B−AYk)−Sk. Therefore, even when using an inexact orthonormaliza-
tion for the columns of iteration matrices, Bl-CIRS in which the residual and approximation norms
converge smoothly is indeed useful to reduce the residual gap. This theoretical result is consis-
tent with our numerical results. Numerical experiments demonstrate that Bl-CIRS is effective for
suppressing the residual gap and improving the attainable accuracy of the approximations.
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Inverse Problems, Kronecker Products and Mixed Precision Computations

James Nagy

Abstract

The gaming industry, machine learning (ML), and artificial intelligence (AI) are areas that require
substantial computational resources and/or require very fast computations, but do not always
require high accuracy in certain computational problems. This has motivated GPU vendors, such
as NVIDIA, Google and AMD to manufacture hardware that can perform computations using low
precision 16-bit floating-point formats [4]. Two examples are bfloat16 and FP16. In comparison,
IEEE single precision uses a 32-bit floating-point format, and double precision (e.g., the default in
MATLAB) uses a 64-bit floating-point format. The use of 16-bit format can result in a 4× speedup
compared to double precision, and certain hardware accelerators (called Tensor Cores) can further
accelerate performance for operations such as matrix-vector multiplications [4].
The potential for much faster computations has fueled a growing interest in the last decade to use
powerful GPU servers for scientific applications, and in particular to use mixed precision algorithms
for problems that require high accuracy; that is, when possible, use low precision for speed, but mix
in some high precision computations to improve accuracy. Recent previous work for solving general,
well-conditioned linear systems, including iterative refinement [1, 2, 7], Cholesky factorization and
least squares problems [1, 5], QR factorization [8], and GMRES [6].
Relatively little work has been done to exploit mixed precision computations for inverse problems,
where the aim is to compute approximations of x from measured data, b, where

b = Ax+ e . (1)

A is assumed to be a large, severely ill-conditioned matrix, and e represents unknown noise and
other data measurement errors. In some applications A is known to high accuracy, while in other
applications it may be that only an approximation of A is given, or that A ≡ A(y) is given in
parametric form. Even in the case when A is known to high accuracy, due to the ill-posedness of
the problem, and the presence of noise in the measured data, computing accurate approximations
of x is a nontrivial task; special considerations, such as regularization approaches, need to be
considered for these problems [3]. In this presentation we show how Kronecker product structure
can be exploited and used in mixed precision algorithms for inverse problems.
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A fast algorithm for low-rank approximation with error control

Yuji Nakatsukasa

Abstract

Computing a low-rank approximation to a large m× n matrix A is a ubiquitous task in Numerical
Linear Algebra (NLA), and possibly the single topic that contributed the most to making ran-
domized NLA algorithms popular, trusted, and widely used. Typically [1, 5], the first step is to
compute a random sketch of the form AS (or ŜA, or both [12]), where the size of the sketch is
at least the target rank, which is often unknown. Extensive theory is now available [5, 8, 11] that
gives strong guarantees for the quality of the resulting approximation that hold with extremely
high probability.
In this work we develop an algorithm for low-rank approximation that (i) requires only an O(1)
sketch size, (ii) comes with high-probability error control to achieve a user-defined error tolerance,
without requiring the knowledge of the rank, (iii) avoids computing orthogonal projections, and (iv)
is based on the CUR decomposition [6] and its stable implementation [10], so inherits properties of
A such as sparsity and nonnegativity, if present. These are achieved by bringing together techniques
in randomized NLA algorithms, including CUR, subset selection methods [2, 9] based on a sketch-
and-pivot strategy [3, 4], and error estimation via trace estimation [7].
The algorithm finds a near-optimal (up to a modest polynomial in r) rank-r approximation in
O(N + (m + n)r2) operations, where N is the cost of a matrix-vector multiplication with A.
Advantages over the MATLAB routine svdsketch [13] include faster runtime and the ability to set
the error tolerance to be smaller than

√
u, where u is the unit roundoff.

This talk is based on joint projects with the following collaborators: Per-Gunnar Martinsson and
Nathaniel Pritchard; Anjali Narendran; and Taejun Park.
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Optimal Matrix-Mimetic Tensor Algebras

Elizabeth Newman, Katherine Keegan

Abstract

With the explosion of big data, the need for explainable data analysis tools, efficient representations,
and structure-exploiting operations has exploded as well. Many data and operators are naturally
multiway, and as a result, multilinear or tensor methods have revolutionized the interpretability
of feature extraction, the compressibility of large-scale data, and the computational efficiency of
multiway operations. Despite numerous successes, many tensor frameworks suffer from a so-called
“curse of multidimensionality;” that is, that fundamental linear algebra properties break down in
higher dimensions, particularly the notion of optimality. Recent advances in matrix-mimetic tensor
frameworks have made it possible to preserve linear algebraic properties for multilinear analysis
and, as a result, obtain optimal representations of multiway data.
Matrix mimeticity arises from interpreting tensors as operators that can be multiplied, factorized,
and analyzed analogously to matrices. Underlying the tensor operation is an algebraic framework
parameterized by an invertible linear transformation. Specifically, consider a third-order tensor
A ∈ Rn1×n2×n3 ; i.e., a multiway arrays with rows, columns, and depth indices. We can view A as
an n1 × n2 matrix where each entry is a 1× 1× n3 tube. We multiply tubes a,b ∈ R1×1×n3 using
the ⋆M-product [5] (the prefix is pronounced “star-M”) via

a ⋆M b = vec−1 (RM[a] vec(b)) where RM[a] = M−1 diag(M vec(a))M, (1)

vec : R1×1×n3 → Rn
3 is a bijective map that vectorizes tubes and diag : Rn3 → Rn3×n3 forms a

diagonal matrix from the entries of a vector. We say the action a on b under the ⋆M-product
is equivalent to left multiplication by the structured matrix RM[a]. A given invertible matrix M
thereby induces a matrix subalgebra that equips the vector space of tubes with a bilinear operation
given by RM[·]; the term tensor algebra refers to this operation.
We define tensor-tensor products analogously to matrix-matrix products by replacing scalar with
tubal multiplication given by (1). Using Matlab indexing notation, the tubal entrywise definition
of the tensor-tensor product of A ∈ Rn1×m×n3 and B ∈ Rm×n2×n3 is

(A ⋆M B)i1,i2,: =
m∑
k=1

Ai1,k,: ⋆M Bk,i2,: (2)

for i1 = 1, . . . , n1 and i2 = 1, . . . , n2. Under the algebraically-consistent ⋆M-product, we obtain
matrix-mimetic generalizations of ⋆M-rank, -orthogonality, -transposition, more [6]. Notably, we
can define a tensor singular value decomposition that satisfies an Eckart-Young-like theorem, re-
sulting in optimal, low-rank approximations of multiway data [7].
The choice of linear mapping M and associated tensor algebra is crucial to approximation quality.
Traditionally, M is chosen heuristically to leverage expected correlations in the data. However, in
many cases, these correlations are unknown and common heuristic mappings lead to suboptimal
performance. This presentation, based on the work in [8], introduces ⋆M-optimization, an algorithm
to learn optimal linear transformations and corresponding optimal tensor representations (e.g.,
low-⋆M-rank) simultaneously. The new framework explicitly captures the coupling between the
transformation and representation by solving the bilevel optimization problem

min
M∈On3

Φ(M,X (M)) s.t. X (M) ∈ arg min
X∈X

Φ(M,X ). (3)
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Here, X is the desired representation belonging to feasible set X , and X (M) is an optimal rep-
resentation for a given transformation, M. Our goal is to learn an invertible M, which we guar-
antee by optimizing over the orthogonal group of n3 × n3 matrices, On3 . The objective function
Φ : On3 ×X → R measures the quality of the representation. We solve (3) for M using Riemannian
optimization over the orthogonal group [2, 1, 3].
A key innovation of ⋆M-optimization is the use of variable projection to form X (M), which elim-
inates the variable X via partial optimization [4]. We heavily leverage the optimality of ⋆M-
representations to guarantee the existence of an optimal X (M); other comparable tensor approaches
typically only guarantee quasi-optimality.
In the talk, we will highlight the generality of the ⋆M-optimization framework by considering
two prototype problems for fitting tensor data and for finding compressed representations. We
will present new theoretical results regarding the uniqueness and invariances of the ⋆M-operator
and convergence guarantees of ⋆M-optimization. We will demonstrate the efficacy of learning the
transformation and provide interpretable insight into ⋆M-optimization behavior through several
numerical examples, including image compression and reduced order modeling.
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Recent Results on Improving Performance of Sparse Cholesky Factorization
by Reordering Columns within Supernodes

M. Ozan Karsavuran, Esmond G. Ng, Barry W. Peyton

Abstract

Let A be an n by n sparse symmetric positive definite matrix, and let A = LLT be the Cholesky
factorization of A, where L is a lower triangular matrix. It is well known that L suffers fill during
such a factorization; that is, L will have nonzero entries in locations occupied by zeros in A. As
a practical matter, it is important to limit the number of such fill entries in L. Consequently,
software for solving a sparse symmetric positive definite linear system Ax = b via sparse Cholesky
factorization requires the following four steps.
First, compute a fill-reducing ordering of A using either the nested dissection [5, 11] or the minimum
degree [1, 6, 12, 15] ordering heuristic (the ordering step). Second, compute the needed information
concerning and data structures for the sparse Cholesky factor matrix (the symbolic factorization
step). Third, compute the sparse Cholesky factor within the data structures computed during the
symbolic factorization step (the numerical factorization step). Fourth, solve the linear system
by performing in succession a sparse forward solve and a sparse backward solve using the sparse
Cholesky factor and its transpose, respectively (the solve step).
The authors of this work, along with J. L. Peyton, presented a thorough look [10] at some serial
algorithms for the third step in the solution process (the numerical factorization step). Our goal
was to improve the performance of serial sparse Cholesky factorization algorithms on multicore
processors when only the multithreaded BLAS are used to parallelize the computation. Essentially,
our first paper [10] explored what can be done for serial sparse Cholesky factorization using the
techniques and methodology used in LAPACK.
Our primary contribution in [10] is the factorization method that we called right-looking blocked
(RLB). Like all of the other factorization methods studied in [10], RLB relies on supernodes to obtain
efficiency, where supernodes are, roughly speaking, sets of consecutive columns in the factor matrix
sharing the same zero-nonzero structure. RLB, however, is unique among the factorization methods
studied in [10] in that it requires no floating-point working storage or assembly operations; that is,
the computation is performed in place within the data structures computed for the factor matrix
during the symbolic factorization step. RLB is also unique among the factorization methods studied
in [10] in that it is entirely dependent for efficiency on the existence of few and large dense blocks
joining together pairs of supernodes in the factor matrix. Furthermore, the number of and size of
these dense blocks are crucially dependent on how the columns of the factor matrix are ordered
within supernodes. As a result, RLB is perfectly suited for studying the quality of algorithms for
reordering columns within supernodes. It is precisely a study of this sort that will occupy our
attention in this work. It should be noted that reordering the columns (and the corresponding
rows) within each supernode does not change the number of nonzeros in the Cholesky factor.
Pichon, Faverge, Ramet, and Roman [14] were the first to take seriously the problem of reordering
columns within supernodes, in that they were the first to treat it in a highly technical manner.
They ingeniously formulated the underlying optimization problem as a traveling salesman problem,
for which there exist powerful and effective heuristics. We will refer to their approach as TSP. The
problem with their approach was not ordering quality; it was the cost, in time, of computing the
needed TSP distances [8, 14]. In 2021, Jacquelin, Ng, and Peyton [9] devised a much faster way to
compute the needed distances, which greatly reduces the runtimes for the TSP method.
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In 2017, Jacquelin, Ng, and Peyton [8] proposed a simpler heuristic for reordering columns within
supernodes based on partition refinement [13]. In their paper, they report faster runtimes for their
method than TSP, while obtaining similar ordering quality. We will refer to their method as PR.
In this work, we perform a careful comparison of TSP and PR; we compare them, primarily, by
measuring the impact of TSP and PR on RLB factorization times using Intel’s MKL multithreaded
BLAS on 48 cores of our test machine. This approach is justifiable since, as alluded to above, the
performance of RLB depends on the quality of the TSP or PR reorderings.
The comparisons are conducted using a set of large matrices from the SuiteSparse collection [3].
In our experiments, certain small supernodes are merged together to create a coarser supernode
partition. This idea was first introduced by Ashcraft and Grimes [2], and was demonstrated to
reduce the factorization time at the expense of a relatively small increase in the size of the data
structures. Merging supernodes has become a standard practice in software for sparse symmetric
factorization, such as MA57 [4] and MA87 [7].
In this presentation, we will describe two techniques for improving the quality of the TSP reorder-
ings; we will show that the best results for TSP are obtained when the two techniques are combined.
We will also introduce a new way to reorganize the PR reordering algorithm to make it much more
time and storage efficient. In addition, we will introduce a single technique for modestly improving
the quality of the PR reorderings. We will further show that the enhanced PR and enhanced TSP
produce orderings of virtually equal quality. However, the former requires significantly less storage
to implement and runs much faster than the latter.
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Riemannian optimization for matrix nearness problems

Vanni Noferini, Froilán Dopico, Miryam Gnazzo, Lauri Nyman, Federico Poloni

Abstract

Matrix nearness problems are central to numerical linear algebra and matrix theory. As highlighted
in [6], these problems have wide-ranging applications. The proposed talk, outlined below, is based
on several recent papers of mine, written with different coauthors [3, 4, 7].

Overview of matrix nearness problems

Let us start with a general description, inspired in part by Nick Higham’s PhD thesis [5].
A matrix nearness problem involves finding a matrix B that is closest to a given matrix A, such
that B satisfies a specific property P which A does not. Formally, if Q represents the set of matrices
that possess property P, the goal is to solve the following optimization problem:

min ∥A−X∥ subject to X ∈ Q. (1)

The distance to be minimized in (1) is typically the Euclidean one, i.e., the distance induced by the
Frobenius norm ∥X∥2F = tr(X∗X), though other options can also be considered. Matrix nearness
problems can be generalized to matrix pencils or matrix polynomials. For example, given a matrix
polynomial A(z) =

∑d
i=0Aiz

i, the objective becomes finding a polynomial B(z) =
∑d

i=0Biz
i that

minimizes the squared distance
∑d

i=0 ∥Ai−Bi∥2 while ensuring that B(z) has the desired property
P, which A(z) lacks.
Some matrix nearness problems have well-understood, efficient solutions. For example, by the
Eckart–Young–Mirsky theorem, the nearest singular matrix to a full-rank matrix A ∈ GL(n,C)
can be found via singular value decomposition (SVD). The solution is B =

∑n−1
i=0 σiuiv

∗
i , with the

distance given by the smallest singular value σn.
However, many matrix nearness problems are more difficult, and have been either shown or conjec-
tured to be NP-hard. The feasible set Q is often non-convex, making it challenging to find anything
beyond a local minimum. Moreover, optimization algorithms that attempt the task are frequently
quite slow and inefficient, making it almost impossible in practice to find even a local minimizer
when the input size grows beyond very small matrices.

A new approach

In this talk, I will propose a new method to solve matrix nearness problems. There are three key
features of the new approach:

1. It can handle a broad class of matrix nearness problems, including many described in the
literature;

2. In extensive numerical experiments, the new method consistently outperforms existing algo-
rithms, especially in challenging cases;
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3. The problem is reformulated as an optimization task over Riemannian manifolds, offering a
novel approach to previously intractable problems.

Our method is based on a key insight: many matrix nearness problems become more tractable
when supplemented with additional information about the minimizer. This is akin to the concept
of an “oracle” in theoretical computer science: an abstract machine that can solve specific problem
instances in one step.
Let us denote the supplementary information about the optimizer by θ. The problem can then
be stiffened by restricting the feasible set to matrices that share this information. Specifically, if
we decompose the set Q as Q =

∪
θ Qθ, where Qθ represents matrices with property P and the

additional attribute θ, we can solve the restricted problem:

f(θ) = min ∥A−X∥ subject to X ∈ Qθ.

The original problem can then by equivalently reformulated by optimizing over θ:

min
θ

f(θ).

This often reduces the problem to an optimization task over a Riemannian manifold. For example,
if θ is an eigenvector, the optimization is over the unit sphere. If θ represents a set of d independent
eigenvectors, the optimization is over the Grassmann manifold of d-dimensional subspaces.
Of course, the idea to use Riemannian optimization to solve nearness problems is not new. Many
works have applied manifold optimization to specific matrix nearness problems, but typically in a
much more direct manner than the approach that I will present in this talk. To give but a couple
of the many examples, Vandereycken [8] addressed low-rank matrix completion via optimization
on fixed-rank manifolds, and Borsdorf [1] used augmented Lagrangian techniques for a chemistry-
related problem over the Stiefel manifold. Oracle-based strategies have also previously appeared,
such as the method by Byers [2] for finding the distance to Hurwitz instability.
However, our recent work has further advanced these ideas, and its distinctive feature is to use at
the same time both oracles and Riemannian optimization, as well as other classical optimization
tools such as regularization. It is, to my knowledge, the first time that this strategy has been
attempted in a systematic way to tackle a wide range of matrix nearness problems.

A two-level optimization framework

More in detail, our method introduces a two-level optimization framework:

• Inner Problem: Minimize the distance over Qθ. The inner subproblem is chosen so
that it has a closed-form solution, or at least so that its solution can be computed cheaply.

• Outer Problem: Minimize f(θ) over the manifold of all possible θ. Riemannian
optimization is then used to efficiently solve the outer problem.

We refer to this strategy as the Riemann-Oracle approach.
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In the talk, I plan to describe how and why the Riemann-Oracle method can be applied to several
matrix nearness problems of practical importance, including applications in numerical linear alge-
bra, control theory, and computer algebra. Our experiments show that this approach consistently
outperforms many specialized algorithms in both speed and accuracy.
I will explore in the talk both the theoretical details and the practical implementation aspects of
this method. Furthermore, I will provide numerical experiments demonstrating concrete success
stories. Examples include:

1. Finding the nearest matrix whose eigenvalues are all in a given set Ω (nearest stable matrix)
[7]. Here the information θ is a unitary matrix that brings the solution into Schur form;

2. Finding the nearest singular pencil to a given one [3], including variants of the problem such
as the nearest pencil with a prescribed minimal index. Here the information θ is a pair of
unitary matrices that bring the solution into generalized Schur form;

3. Finding the nearest singular matrix with an additional linear constraint (e.g. sparsity pattern,
Toeplitz structure, etc.) [4]. Here the information θ is an eigenvector;

4. Finding the nearest matrix of prescribed rank r and an additional linear constraint [4]. Here
the information θ is a set of n− r eigenvectors;

5. Finding the nearest unstable matrix, i.e., requiring at least one eigenvalue to lie outside the
set Ω [4]. Here the information θ is an eigenvector;

6. Finding the nearest matrix polynomial of prescribed rank [4]. Here the information θ is a
null polynomial vector;

7. Finding the approximate GCD of two scalar polynomials [4]. Here the information θ is a
vector contatining the coefficients of two polynomials related to the problem.
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Recent Advances in Mixed-Precision (Hybrid) Iterative Methods

Eda Oktay, Erin Carson

Abstract

Mixed-precision hardware has recently become commercially available, and more than 25% of the
supercomputers in the TOP500 list now have mixed-precision capabilities. Using lower preci-
sion in algorithms can be beneficial in terms of reducing both computation and communication
costs. According to the recently developed mixed-precision benchmark, HPL-MxP, multiple super-
computers today already exceed exascale (1018 floating-point operations per second) performance
through the use of mixed-precision computations. Many current efforts are focused on developing
mixed-precision numerical linear algebra algorithms, which will lead to speedups in real applica-
tions. These new algorithms are increasingly being implemented in libraries, such as the MAGMA
library.
Motivated by this, the aim of this talk is to discuss recent advances in developing and analyzing
mixed-precision variants of iterative methods. Iterative methods for solving linear systems and
least squares problems are useful in practice when the coefficient matrix is large and sparse or not
explicitly stored and/or when accuracy less than machine precision is sufficient. An iterative method
starts with an initial guess and then iteratively improves the solution to the desired accuracy. One
can use stationary methods, Krylov subspace methods, or some hybrid approach, depending on the
problem. We focus on hybrid methods, where we use a Krylov subspace method as an inner solver
of a variant of Newton’s approach (stationary method), such as RQI and iterative refinement.
Iterative methods can be used to improve the accuracy of solutions to least squares (LS) problems
minx∥b−Ax∥2, where A ∈ Rm×n. Using the QR factorization A = [Q1 Q2][R 0]T , the solution
to the LS problem is given by x = U−1QT

1 b and the residual by r = ∥b− Ax∥2 = ∥QT
2 b∥2. The LS

problem can also be solved via the normal equations, ATAx = AT b, which are equivalent to the
augmented system [1] [

Im×m A
AT 0

]
︸ ︷︷ ︸

Ã

[
r
x

]
︸︷︷︸
x̃

=

[
b
0

]
︸︷︷︸

b̃

or Ãx̃ = b̃.

If m > n, then the system is called overdetermined, and if m < n, it is underdetermined. Weighted
LS (WLS) is used when there are discrepant rows in A. In this case, weights can be assigned to these
rows to minimize discrepancy. In classical least squares, there is an assumption that perturbations
are confined to the vector b. This is not necessarily realistic in practice. If A and b may both be
perturbed (Â, b̂, respectively) so that b̂ is in column space of Â, this problem is called total LS
(TLS).
Krylov subspace methods work by selecting approximate solutions from a Krylov subspace. The
search space is formed via nested Krylov subspaces, and the solution is obtained from a sequence
of projections onto the search space. Although these solvers can be fast and/or stable, for large
problems, they may not be memory efficient and slow down performance. To speed up and exploit
parallelism, techniques such as mixed-precision can be used.
Error analysis is important for determining how rounding errors propagate in computations and
identifying potential sources of amplification. For a function f : Rn → Rn, the backward error in
the approximation y to f(x) is the smallest ∆x such that y = f(x+∆x), i.e., [10]

η(y) = min{ϵ : y = f(x+∆x), ∥∆x∥ ≤ ϵ∥x∥}.
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Backward error analysis [9] aims to derive a bound on the backward error. If the backward error
is small, then we say the algorithm is backward stable. The forward error measures the difference
between the computed and the exact solution. As defined in [10], the relative forward error of
y ≈ f(x) can bounded in terms of the relative backward error η(y) by

∥y − f(x)∥
∥f∥

≤ cond(f, x)η(y) +O(η(y))2,

where
cond(f, x) = limϵ→0 sup

∥∆x∥≤ϵ∥x∥

∥f(x+∆x)− f(x)∥
ϵ∥f(x)∥

is the condition number, which measures the sensitivity of the solution to small perturbations in
the input data.

Mixed-precision Rayleigh quotient iteration for total least squares problems

We first focus on the use of Rayleigh quotient iteration (RQI) to solve the TLS problem, which is
the approach advocated in [2] for large-scale problems, and introduce a mixed-precision variant of
the RQI-PCGTLS algorithm (RQI-PCGTLS-MP) [8]. This approach solves the eigenvalue problem[

ATA AT b
bTA bT b

] [
x
−1

]
= λ

[
x
−1

]
to find x = xTLS , where λ = σ2

n+1, and σ2
n+1 is the smallest singular value of [A, b]. Our approach

potentially decreases the computational cost of RQI-PCGTLS by using up to three different pre-
cisions in the algorithm. Moreover, to enable the use of lower precision for more ill-conditioned
systems, we use the R-factor from the Householder QR factorization of A instead of the Cholesky
factorization of ATA within RQI-PCGTLS-MP. We discuss the convergence and accuracy of our
algorithm and derive two theoretical constraints on the precision that can be used for the construc-
tion of the preconditioner within the inner solver. To evaluate to what extent the computational
cost can be reduced by using the mixed-precision variant with Householder QR factorization, we
construct a performance model. Our numerical experiments and performance model show that
one can get up to 4× speedup while keeping the working precision accuracy when fp16 is used in
computing QR factors.

GMRES-based iterative refinement and its variants

Another variant of Newton’s method is the iterative refinement (IR) algorithm. As RQI, IR al-
gorithms require a linear solver in each outer iteration. The standard IR (we refer to as SIR)
algorithm in [9] first computes the initial approximation using Gaussian elimination with partial
pivoting and uses approximate LU factors of A to solve for the correction term which then refines
the current solution. To increase the range of problems that can be solved with IR, a Krylov
subspace method, such as preconditioned GMRES, can be used to solve the linear systems as in
RQI-PCGTLS; this three-precision approach is called GMRES-IR [3]. GMRES-IR uses precisions
with unit round-off uf for LU factorization, ur for residual computation, and u for storing data and
solution. For stability analysis of methods such as IR variants, we can derive forward and error
bounds under a constraint on the conditioning of the coefficient matrix, κ(A). For a non-singular
square matrix, the condition number is defined as κp(A) = ∥A∥p∥A−1∥p with the associated norm
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p. As long as κ∞(A) ≤ u−1/2u−1
f and ur = u2, GMRES-IR provides accurate solutions with the

forward and (normwise) backward errors

∥x̂− x∥∞
∥x∥∞

≈ O(u) and ∥b−Ax̂∥∞
∥A∥∞∥x∥∞ + ∥b∥∞

≈ O(u),

respectively, while SIR is guaranteed to have this forward error only if κ∞(A) ≤ u−1
f and ur = u2.

GMRES-IR can be much more expensive than SIR, depending on the number of iterations per-
formed. One way to speed up the convergence of the GMRES solver is using recycling. In an effort
to reduce the overall computational cost of the GMRES solves within GMRES-IR, we introduce
a recycled GMRES-based iterative refinement algorithm called RGMRES-IR [6]. The algorithm
starts with computing the LU factors of A and computing the initial approximate solution in the
same manner as GMRES-IR. Instead of preconditioned GMRES, however, the algorithm uses pre-
conditioned GCRO-DR to solve the correction equation. In the RGMRES-IR algorithm, as in
GMRES-IR, we use three precisions. Numerical experiments show that RGMRES-IR decreases the
total GMRES iterations performed, especially when the matrix is badly conditioned. Even when
GMRES-IR cannot converge, we observe that our variant can still converge.
Overdetermined standard least squares problems can be solved by using mixed-precision within
the iterative refinement approach. It has been shown that mixed-precision GMRES-IR can also be
used, in an approach termed GMRES-LSIR [4]. GMRES-LSIR solves the augmented system using
GMRES preconditioned by a preconditioner M computed using the QR factors of A:

M =

[
αI Q1U

UTQT
1 0

]
,

where A = Q1U is the thin QR factorization of A. As long as κ∞(A) ≤ u−1/2u−1
f , and assuming

ur = u2, GMRES-LSIR provides O(u) backward and forward error. Furthermore, using the left
preconditioner M , the conditioning of the preconditioned augmented matrix can be bounded by

κ∞(M−1Ã) ≲ (1 + 2m
√
nγ̃fmnκ∞(A))2, where γ̃fmn =

cmn

1−mnuf
,

and c is a small constant. In practice, we often encounter types of least squares problems beyond
standard least squares, including the WLS problem minx ∥D1/2(b−Ax)∥2, where D1/2 is a diagonal
matrix of weights, which is possibly ill-conditioned. WLS problems can be solved via the normal
equations or the corresponding augmented system,

ATDAx = ATDb and
[
αD−1 A
AT 0

] [
α−1y
x

]
=

[
b
0

]
,

respectively, where y = D(b− Ax), α is the scaling factor for stability. We present the FGMRES-
WLSIR algorithm, a variant of GMRES-LSIR for solving WLS problems using flexible GMRES
(FGMRES), and discuss and analyze two different preconditioners [5]; a left preconditioner and a
block diagonal split preconditioner,

Ml =

[
αD−1 QR̂

R̂TQT 0

]
, and Mb =

[
αD−1 0

0 Ĉ

]
,

respectively, where Ĉ ≈ α−1ATDA is a symmetric positive definite approximation to the Schur
complement.
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Multistage mixed-precision iterative refinement

In some cases, SIR can fail depending on the conditioning of the matrix and the precisions used.
However, using GMRES-IR can be more expensive since one GMRES-IR iteration is more ex-
pensive than one SIR iteration. To benefit from both approaches and their variants, we propose
a multistage IR approach (MSIR) to reduce the computation cost while improving applicability
[7]. Our approach automatically switches between solvers and precisions if slow convergence (of
the refinement scheme itself or of the inner GMRES solves) is detected using stopping criteria.
With MSIR we attempt to use “stronger” solvers before resorting to increasing the precision of the
factorization, and when executing a GMRES-based refinement algorithm, we modify the stopping
criteria to also restrict the number of GMRES iterations per refinement step. Our experiments
show that since the algorithmic variants often outperform what is dictated by the theoretical con-
dition number constraints there can be an advantage to first trying other solvers before resorting
to increasing the precision and refactorizing.
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Mixed Precision Iterative Refinement for Linear Inverse Problems

Lucas Onisk and James G. Nagy

Abstract

We are interested in linear discrete inverse problems which involve the reconstruction of objects or
signals from noisy observed data. The available linear system is given by

Ax+ e = b, (1)

where A ∈ Rm×n, m ≥ n is a matrix whose singular values decay without significant gap and cluster
at the origin (i.e., the matrix is ill-conditioned). Discrete inverse problems can arise through the
discretization of Fredholm integral equations of the first kind; see [5, 3], but can also arise in massive
data streaming problems such as the training of the random feature model in machine learning [8]
or limited angle imaging problems including, for example, those from medical imaging [2]. To derive
a meaningful solution from the available problem, regularization is needed.
In Tikhonov regularization, the least-squares problem associated with (1) is replaced by the penal-
ized least-squares problem

min
x∈Rn

{
∥Ax− b∥22 + α2 ∥Lx∥22

}
(2)

where α > 0 is a regularization parameter that balances the sensitivity of the solution vector to
the error in b, as well as the closeness to the desired solution of the unavailable error-free problem.
When the regularization matrix L ∈ Rs×n is chosen so that the null spaces of A and L trivially
intersect then the solution of (2) may be written in closed form.
Iterative refinement (IR) has long been utilized as an iterative strategy to improve the accuracy of
numerical solutions to linear systems of equations. Recent works by Higham and collaborators have
considered the use of IR in conjunction with mixed precision computing in light of recent advance-
ments in hardware capabilities; see [6, 1]. Our interests of studying IR applied to the Tikhonov
problem were motivated by the work [7] which considered the solution of symmetric positive defi-
nite linear systems and least-squares problems in mixed precision which showed regularization to
be a key requirement when computing low precision factorizations.
The kth iterate of IR applied to the Tikhonov problem in standard form, (ATA+ α2I)x(k) = AT b,
where L = I may be written recursively as

x(k) = x(k−1) +
(
ATA+ α2I

)−1
AT r(k−1) − α2

(
ATA+ α2I

)−1
x(k−1) (3)

where r(k−1) = b − Ax(k−1) denotes the (k − 1)th residual. Riley in [9] and Golub in [4] note that
the IR procedure in (3) is equivalent to iterated Tikhonov regularization in exact arithmetic whose
kth iterate is given by

x(k) = x(k−1) +
(
ATA+ α2I

)−1
AT r(k−1)

which may be interpreted as a preconditioned Landweber method, or, from a mathematical opti-
mization point of view - a preconditioned gradient descent method with fixed step size.
To better understand the application of mixed precision IR applied to the Tikhonov problem we
derive a methodology to formulate the iterates as filtered solutions by writing them as a recursive
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relationship between the iterates of preconditioned Landweber with a Tikhonov-type preconditioner
and previous iterates. A filtered solution is of the form

xfilt =
∑
j

ϕj

uTj b

σj
vj

where vectors uj and vj correspond to left and right singular vectors of A, respectively. The σj
correspond to the singular values of A. An intelligent selection of the filter factors ϕj can remove
deleterious components of the approximate solution to the least-squares problem stemming from
(1). By considering a filtered solution, we are able to study the effect that each level of precision
utilized in IR has on (i) the quality of the approximate solution and (ii) the number of iterations the
algorithm requires to terminate according to some termination criterion. We demonstrate in our
numerical results that mixed precision IR on the Tikhonov problem gives comparable or superior
accuracy against results computed in double precision as well as another benchmark which supports
its use in modern applications that natively support mixed precision floating-point arithmetic.
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Absorbing boundary conditions form Padé approximants (sometimes):
continued fractions are the key

Michal Outrata, Lukáš Jakabčin, Martin J. Gander

Abstract

The solution process of problems on unbounded domains usually require a domain truncation and
therefore artificial boundary conditions, leading to techniques such as perfectly matched layers
(PML) or absorbing boundary conditions (ABC), see [1, 2] for references. To be concrete, taking
Ω ⊂ R2 as an infinite strip (sometimes called a waveguide), then the original problem (or its
discretization)

Lu = f in Ω,

Bu = g on ∂Ω,
(or L∞u = f∞)

is truncated to

Lv = f in Ωtrunc

Btruncv = g on ∂Ωtrunc,
(or Lv = f)

where Ω̂ is the region in which we want to approximately compute u, ΩABC is a the bounded
region with which we replace the (originally unbounded) Ω\Ω̂ and Ωtrunc = Ω̂ ∪ ΩABC is bounded.
We have Btrunc = B wherever ∂Ωtrunc coincide with ∂Ω and usually introduce a simple boundary
condition along the remainder of ∂Ωtrunc, e.g., Dirichlet. Naturally, this is also reflected at the
discrete level where the infinite matrix L∞ is replaced by a finite matrix L, which is identical with
L∞ for the unknowns of the interior of Ωtrunc and those where ∂Ωtrunc coincide with ∂Ω. Domain
truncation is also important in domain decomposition methods where a given computational do-
main is decomposed into many smaller subdomains, and then subdomain solutions are computed
independently in parallel. The solutions on the smaller subdomains can naturally be interpreted
as solutions on truncated domains, and thus it is of interest to use ABC or PML techniques at the
interfaces between the subdomains. The classical Schwarz method uses Dirichlet transmission con-
ditions between subdomains and an overlap to achieve convergence [2]. The overlap coupled with
the Dirichlet boundary condition can be thus interpreted as a specific ABC once the unknowns of
the overlap are folded onto the interface – an idea that inspired number of iterative solvers, see [1]
and the references therein.
An interesting question of a discrete optimized ABC/PML for problems with finite difference grids
has been discussed in [3] for L being the Laplacian and then extended to the Helmholtz equation
in [4] – in both of these, the authors answer the question:

Having ΩABC fixed, what is the best mesh for finite difference discretization
(possibly staggered) so that v|

Ω̂
≈ u|

Ω̂
?

Here, we are interested in the complementary question:

If the discretization method is fixed, what is the effect of prolonging the trunca-
tion domain ΩABC on v|

Ω̂
≈ u|

Ω̂
?
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We also start with L being the Laplacian and, after discertization, start with the known corre-
spondence of the discrete ABC and the Schur complement, see [1, Remark 14 and below]. We use
its eigendecomposition, which is closely linked with its Fourier analysis (sometimes also called the
frequency domain analysis), and show that in the spectral domain the ABC is naturally represented
as the i-th convergent of a particular continued fraction, namely

ABC(z) ∼ 2 + z − 1

2 + z − 1

2+z−
...

2+z− 1
2+z

,

where the fraction has “i levels” and z corresponds to the Fourier frequency. After relating i to the
prolongation of ΩABC, as posed in our question, we also show that the infinite continued fraction
(i.e., without stopping after i levels) gives a natural representation of the optimal ABC for the
infinite problem Lu = f , hence obtaining the first part of the answer:

Prolonging ΩABC corresponds, in the spectral domain, to approximation of the
optimal ABC in the sense of truncation of its continued fraction expansion.

Thanks to the deep results connecting continued fractions and approximation theory, namely Padé
approximation (see [6]), we expand on this by concluding

In the spectral domain, the ABC approximates the optimal one in the sense of
Padé approximation about the right endpoint of the spectrum of L. Prolonging
(shrinking) ΩABC corresponds to increasing (decreasing) the order of the Padé
approximant.

This suggest that for i not too large the approximation quality is rather poor around the left
endpoint of the spectrum of L, showing us some room for improvement. One such improvement
corresponds to considering different boundary conditions where we can, i.e., along what we above
called “the remainder of ∂Ωtrunc”, e.g., Robin boundary condition. Using the free parameters well,
e.g., the Robin parameter, we can decrease the approximation error. Another, different, to improve
on the above ABC is to change the Padé expansion point, hence introducing a new ABC/PML
technique. Notice that in such case, we still obtain a different PML to these in [3, 4] as we do
not change the discretization. Both of these improvements can be optimized so as to decrease
the approximation error v|Ω̂ ≈ u|Ω̂. We demonstrate all of our results also numerically and then
comment on possible generalizations. Some of these results have been published in [5].
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Error estimate and stopping criteria for least-squares problems solved by
CG-like algorithms CGLS and LSQR

Jan Papež, Petr Tichý

Abstract

In [2], we presented an adaptive estimate for the energy norm of the error in the conjugate gradient
(CG) method. Using the notation from [2, Alg. 1], A-norm of the error between the exact solution
of Ax = b and the CG approximation xℓ given in the ℓth step is estimated as

∥x− xℓ∥2A ≈ ∆CG
ℓ:k :=

k∑
j=ℓ

αj∥rj∥2, (1)

where ∥v∥2A ≡ vTAv denotes the squared A-norm. Integrating the estimate into the existing CG
code is straightforward and simple; see [4, Alg. 1]. At the current kth CG iteration, we get an
estimate with the delay d = k − ℓ for previous approximation xℓ. The delay d is set adaptively by
[4, Alg. 2]. From the construction, ∆CG

ℓ:k yields a lower bound

∥x− xℓ∥2A ≥ ∆CG
ℓ:k .

In [4] and in the prospective talk at Householder Symposium XXII we consider algorithms for
solving least-squares problems with a general, possibly rectangular matrix

min
x∈Rm

∥b−Ax∥, b ∈ Rn, A ∈ Rn×m, n ≥ m,

that are mathematically based on applying CG to a system with a positive (semi-)definite ma-
trix ATA. We discuss CGLS based on Hestenes–Stiefel-like implementation as well as LSQR based
on Golub–Kahan bidiagonalization, and both unpreconditioned and preconditioned variants. We
show that the adaptive estimate used in CG can be extended for these algorithms to estimate the
monotonically decreasing quantity

∥x− xℓ∥2ATA = ∥rℓ∥2 − ∥r∥2, (2)

where x = A†b is the minimal norm solution, xℓ is the approximation in the ℓth step of CGLS or
LSQR, rℓ = b − Axℓ, and r = b − b|R(A) with b|R(A) being the orthogonal projection of b onto the
range of A.
For example, the estimate

∥x− xℓ∥2ATA ≈ ∆LSQR
ℓ:k :=

k∑
j=k

ϕ2
j+1,

for estimating the quantity of interest (2) in LSQR algorithm is given, analogously to ∆CG
ℓ:k , as a

sum of scalar terms, which are available in the algorithm; here we use the notation from [4, Alg. 4].
Moreover, ∆LSQR

ℓ:k provides a lower bound on ∥x− xℓ∥2ATA
.

We emphasize the applicability of the estimates (bounds) for the computations in finite-precision
arithmetic. Their derivation is only based on local orthogonality, which is typically well preserved
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during computations; see [5]. We demonstrate that the estimates remain computationally inexpen-
sive to evaluate and are numerically reliable in finite-precision arithmetic under mild assumptions.
These qualities make the estimates highly suitable for stopping the iterations.
One can consider the stopping criterion requiring that

∥rℓ∥2 − ∥r∥2

∥r∥2
≤ ε (3)

for a prescribed tolerance ε. It is clear from (2), that after ∥rℓ∥ ≈ ∥r∥, further iterations bring no
significant decrease of the residual norm ∥rℓ∥. Using (2), the criterion (3) is equivalent to

∥x− xℓ∥2ATA ≤ ε

1− ε
∥rℓ∥2,

where the estimate for ∥x− xℓ∥2ATA
can be used.

Another stopping criterion based on a backward error can also be considered when applying our
estimates. This criterion aims to identify the iteration at which the computed approximation can
be interpreted as the least-squares solution to a perturbed system

min
x

∥(b+ f)− (A+ E)x∥,

with
min
f,E,ζ

{ζ such that ∥E∥ ≤ ζ∥A∥, ∥f∥ ≤ ζ∥b∥} ≤ ε.

This backward error for stopping LSQR iterations has been studied, e.g., in [3, 1], and can be
approximated using the asymptotically tight bound

∥x− xℓ∥2ATA

∥A∥∥xℓ∥+ ∥b∥
;

see [1].
Finally, we present a range of numerical experiments to confirm the robustness and very satisfactory
behaviour of the estimates for CGLS, LSQR, and also their preconditioned variants. We hope that
these estimate will prove to be useful in practical computations. They allow us to approximate,
with the prescribed relative accuracy, the quantity of interest at a negligible cost.
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AdaCUR: Efficient Low-rank Approximation of Parameter-dependent
matrices A(t) via CUR decomposition

Taejun Park, Yuji Nakatsukasa

Abstract

Let A(t) ∈ Rm×n be a parameter-dependent matrix and suppose we want to compute its low-rank
approximation at a finite number of parameter values t1, t2, ..., tq. This problem arises in several
applications including the compression of a series of images, dynamical systems, and Gaussian pro-
cess regression, where low-rank approximations are needed for the sequence A(t1), A(t2), ..., A(tq).
While existing methods such as dynamical low-rank approximation [6] and random embedding
techniques [7] offer solutions, they typically incur a complexity of O(riTA(ti)) for each parameter ti,
with ri as the target rank and TA(ti) as the cost of a matrix-vector product with A(t). We propose
an alternative approach using the CUR decomposition, which can accelerate low-rank approxima-
tion to an average complexity of O(TA(ti)) while addressing key challenges, such as rank-adaptivity
and error control, often missing in other methods.
The CUR decomposition [3, 5, 8, 11] approximates a matrix A using subsets of its rows and columns:

A ≈ CU †R,

where C and R are subsets of A’s columns and rows, and U is their intersection. This decomposition,
in contrast to methods like the truncated SVD, preserves properties such as sparsity and aids in
data interpretation by identifying significant columns and rows. For A(t), recomputing row and
column indices for each ti is inefficient, as indices derived for one parameter value may still provide
useful information for nearby parameters. Building on this insight, we introduce an algorithm,
AdaCUR [12], which maximizes the reuse of row and column indices across parameter values.
AdaCUR computes low-rank approximations of parameter-dependent matrices via CUR decompo-
sition:

A(t) ≈ C(t)U(t)†R(t),

where C(t) and R(t) are subsets of the columns and rows of A(t), and U(t) is their intersection.
Starting from an initial CUR decomposition, AdaCUR reuses row and column indices until the
error exceeds a specified threshold, at which point the indices are recomputed. To achieve this
efficiently and reliably, we rely on a variety of tools from randomized numerical linear algebra [9].
Specifically, we use pivoting on a random sketch [1, 2] to obtain a reliable set of row and column
indices, randomized rank estimation [10] to adapt to rank changes across parameter values, and
randomized norm estimation [4] to approximate the relative error, ensuring effective error control.
The resulting algorithm is efficient, rank-adaptive, and incorporates error control.
Additionally, we present FastAdaCUR, a variation that prioritizes speed over precision. Fas-
tAdaCUR achieves linear complexity in m and n after an initial index computation phase. Al-
though highly efficient and rank-adaptive, it lacks rigorous error control, as it emphasizes speed
over accuracy by only examining a subset of rows and columns of the matrix.
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Efficient Dynamic Image Reconstruction with Motion Estimation

Mirjeta Pasha, Toluwani Okuanola, Misha Kilmer, and Melina Freitag

Abstract

Large-scale dynamic inverse problems are typically ill-posed and suffer from complexity of the
model constraints and large dimensionality of the parameters. A common approach to overcome
ill-posedness is through regularization that aims to add constraints on the desired parameters in
both space and temporal dimensions. In this work, we propose an efficient method that incorpo-
rates a model for the temporal dimension by estimating the motion of the objects alongside solving
the regularized problem. In particular, we consider the optical flow model as part of the regular-
ization that simultaneously estimates the motion and provides an approximation for the desired
image sequence. To overcome high computational cost when processing massive scale problems,
we combine our approach with a generalized Krylov subspace method that efficiently solves the
problem on relatively small subspaces. Further, we explore subspace restarting and recycling to
overcome limited memory constraints and preconditioning to accelerate convergence. The effective-
ness of the prescribed approaches is illustrated through numerical experiments arising in dynamic
computerized tomography and image deblurring applications.
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Fast Iterative Solvers for Optimization of Nonlocal PDEs

John W. Pearson

Abstract

In this talk, we consider fast and effective numerical methods for optimization problems where
partial differential equations (PDEs) act as constraints, so-called PDE-constrained optimization.
Such problems have numerous applications across science and engineering, for instance in fluid flow
control problems, chemical and biological processes, mathematical finance, and medical imaging,
to name a few. To give an example of a problem structure, consider the following formulation:

min
y,u

1

2
∥y − ŷ∥2Q1(Ω) +

β

2
∥u∥2Q2(Ω) s.t. Dy = u in Ω,

where y and u denote one or more state variables (PDE variables) and optimal control variables
respectively, ŷ is a desired state, β > 0 is a regularization parameter, and D represents a differential
operator equipped with boundary conditions. The problem is posed on a (generally space–time) do-
main Ω, with Q1 and Q2 two (given) norms. It is possible to impose additional algebraic constraints
on the states and/or controls.
The vast majority of work on the optimal control of PDEs has involved local PDEs, where the
behaviour of the PDE at a point in Ω can be described by problem features within a small neigh-
bourhood of that point. In this talk we consider the emerging field of nonlocal PDE-constrained
optimization, including problems with fractional derivatives, integro-differential equations, or (in-
tegral) kernel functions. On the numerical linear algebra level, this leads to dense linear systems,
as opposed to the sparse matrices obtained from many discretizations of local PDEs. However, by
exploiting the structures of the relevant matrices, we are nonetheless able to construct viable and
robust schemes for problems of dimensions that would otherwise be out of reach.
Specifically, we derive preconditioned iterative methods to tackle huge-scale linear(ized) systems
that result from nonlocal PDE-constrained optimization, and carefully utilize structures that arise
in such systems to enhance the efficiency of solvers. For example,

• We build a spectral-in-time Newton–Krylov method for solving multiscale particle dynamics
problems, closely related to mean-field games and mean-field control, to high accuracy [1]
(see also [2]). At each Newton iteration for the nonlinear problem, we may apply column
operations to the Jacobian matrix to ensure invertibility of the leading block, then construct
structured, Kronecker product-based preconditioners for the resulting Schur complement.
This leads to rapid GMRES convergence for large and dense systems.

• We devise a new technology for nonlocal image denoising problems [3], applying an unnormal-
ized extended Gaussian ANOVA kernel within a bilevel optimization routine. Matrix–vector
multiplications may be applied via a (matrix-free) Nonequispaced Fast Fourier Transform,
and the Conjugate Gradient method accelerated using a novel change of basis approach cou-
pled with a diagonal preconditioning strategy. As a result, rapid and effective denoising for
very large problems may be achieved with modest storage requirements on a computer.

• We tackle optimization problems constrained by certain space–time fractional differential
equations with additional state and/or control constraints [4]. This is accomplished by ex-
ploiting the multilevel Toeplitz structure of many of the matrix sub-blocks, deriving multilevel
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circulant preconditioners based on this, and designing a recursive linear algebra which leads
to very low storage requirements and operation costs.

This talk will outline some of the progress made in the above areas. In each case, as opposed to
exploiting the property of sparsity as one would do for local problems, we utilize structure which
the problem provides us with (Kronecker-product approximation, Gaussian kernel which allows a
fast discrete transform, or multilevel Toeplitz) in a bespoke way. We will also provide an outlook
of the subject area, discussing new applications of nonlocal PDEs and optimization problems, and
outlining how the above methods could be adapted to resolve these challenges.
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Global and local growth behavior of GEPP and GECP

John Peca-Medlin

Abstract

Gaussian elimination (GE) remains the most used approach to solve dense linear systems in modern
applications. For instance, GE with partial pivoting (GEPP) is the default solver in MATLAB
when using the backslash operator with a general input matrix. Additionally, GE is a staple of
introductory linear algebra courses (although, based on anecdotal evidence, it may not be a favorite
among all students).
GE iteratively uses elimination updates below the diagonal on an initial input matrix A ∈ Rn×n to
transform A into an upper triangular linear system, which eventually builds the matrix factorization
A = LU , where L is a unit lower triangular matrix and U is upper triangular. General nonsingular
A will not have a LU factorization if any leading minors are singular, i.e., if det(Aij)

k
i,j=1 = 0

for some k ≤ n − 1. Moreover, numerical stability of GE when using floating-point arithmetic is
sensitive to any elimination steps that involve division by numbers close to 0. Hence, combining GE
with certain pivoting schemes is preferable even if not necessary. A pivoting strategy results instead
in the factorization PAQ = LU where P and Q are permutation matrices (see [10, 13] for studies of
random permutations generated using GEPP). I will focus on the two particular pivoting strategies
GEPP and GE with complete pivoting (GECP), as well as the standard GE with no alternative
pivoting strategy (GENP). I am interested in studying how GEPP and GECP behave on the same
linear systems as well as studying large growth (see below) on particular subclasses of matrices,
including orthogonal matrices. Moreover, as a means to better address the question of why large
growth is rarely encountered, I further study matrices with a large difference in growth between
using GEPP and GECP, and I explore how the smaller growth strategy dominates behavior in a
small neighborhood of the initial matrix. This is a summary overview for my recently published
results in [11].
Understanding the behavior of GE under floating-point arithmetic has been an ongoing focus of
numerical analysis for over 60 years. Early work by Wilkinson in [17], which led to the start of
modern error analysis, considered studying the relative errors of computed solutions x̂ to Ax = b
through the bound

∥x− x̂∥∞
∥x∥∞

≤ 4n2ϵmachineκ∞(A)ρ(A), where ρ(A) =
maxi,j,k |A

(k)
ij |

maxi,j |Aij |

is the growth factor, κ∞(A) = ∥A∥∞∥A−1∥∞ is the ∞-condition number, and A(k) is the interme-
diate form of A after k − 1 GE steps, with A(1) = A and A(n) = U . The growth factor returns the
relative largest entry ever encountered running through the entire GE process. Using GECP, ρ(A)
takes the simpler form ρ(A) = maxk |Ukk|/|U11| while in general the largest entry is not necessarily
captured by U . In well-conditioned systems, error analysis of GE can then be reduced to analysis
of the growth factor.
Understanding worst-case bounds on ρ (i.e., the growth problem) using different pivoting strategies
has been a continued area of research since Wilkinson’s initial analysis in the early 1960s. Wilkinson
resolved the worst-case behavior of GEPP, showing the bound ρGEPP(A) ≤ 2n−1 for A ∈ Rn×n is
sharp [17, 18]. For GECP, however, Wilkinson in the same work only provided an upper bound of

ρGECP(A) ≤ (n · 2 · 31/2 · · ·n1/(n−1))1/2 ≤ 2 · n0.25 lnn+0.5,
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which is believed to be very pessimistic. For a long time a conjecture (of apocryphal origins;
cf. [5]) ventured the bound ρGECP ≤ n (for real matrices). This conjecture survived for almost
three decades, until Gould [6] found a “counterexample” for n = 13 by producing a matrix using
floating-point arithmetic with GECP growth of 13.0205 in 1991. Edelman [4] confirmed a true
counterexample in exact arithmetic one year later. No substantial progress on the GECP growth
problem was made for another 30 years later until 2023. Edelman and Urschel [5] establish a linear
lower bound on ρGECP at least 1.0045n for n > 10, by upgrading Edelman’s computational tech-
nique to upgrade Gould’s floating-point “counterexample” into an exact arithmetic counterexample
(by updating one entry by 10−7) into a theorem establishing floating-point and exact arithmetic
growth factors cannot be too far from one another (cf. Theorem 4.2). Moreover, later that same
year, Edelman and Urschel along with now Bisain [3] provide the first substantial improvement to
Wilkinson’s upper bound for ρGECP, where (using a modified Hadamard inequality) they provide
a bound of nc logn+0.91 using c ≈ 0.20781, which beats Wilkinson’s original exponential log n coef-
ficient of 0.25. The huge gulf between these lower and upper bounds leaves much on the table for
future improvements.
More recent analysis of matrix algorithm efficiency and accuracy has shifted away from worst-case
analysis to more modern approaches, such as smoothed analysis (cf. [15] and references therein),
which studies behavior under random perturbations. A full smoothed analysis using Gaussian
(additive) perturbations has been successfully implemented in the case of GENP growth factors by
Sankar, Spielman, and Teng [14], but has remained out of reach for both the GEPP and GECP
growth problem. The closest such result for GEPP was the recent average-case analysis work of
Huang and Tikhomirov [8], which established high probability polynomial growth bounds using
input matrices with independent and identically distributed (iid) standard normal entries, but
their proof strategy cannot be upgraded to a smoothed analysis approach (i.e., they only establish
bounds on Gaussian perturbations of the zero matrix). No such (non-empirical) result for GECP has
come close to smoothed analysis nor a full average-case analysis (other than with very particular
structured random matrices in [9]). So worst-case analysis remains relevant for these pivoting
strategies.
Our focus will be on studying the growth behavior of using both GEPP and GECP on the same
linear system, and on how each strategy can inform growth behavior about the other. In particular,
I am interested in local growth behavior around a system with large differences in growth behavior
between both strategies. For instance, I am interested in the question of whether small pertur-
bations on an initial system with a large discrepancy in growth behavior between both strategies
concentrates toward the smaller growth for both strategies? For example, if A has large GEPP
growth and small GECP growth, and if G is an iid Gaussian matrix, I am interested in how often
ρGEPP(A + εG) ≈ ρGECP(A) for sufficiently small ε. To move toward addressing this question, I
will establish bounds on how far apart differences in growth between both strategies can be when
used on the same input matrix.
I will further focus on large growth for particularly structured matrices, including orthogonal ma-
trices. This will include a refinement to the largest possible GEPP growth on orthogonal matrices,
while also establishing a rich set of matrices for further study with large growth difference be-
havior. Growth for structured systems has proven fruitful in recent studies. For instance, growth
using GENP, GEPP and GE with rook pivoting (GERP) for matrices formed using the Kronecker
products of rotation matrices (i.e.,

⊗n SO(2)) is now completely understood [12], with even a full
picture understood using GECP on a further subclass of these Kronecker product matrices [9].
Although GE should not be a first choice for solving orthogonal linear systems (viz., Qx = b has
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the solution x = QTb when Q is orthogonal), there are situations when applying GE to orthogonal
matrices makes sense. For example, Barlow needed to understand the effect of GEPP on orthogonal
matrices to carry out error analysis of bidiagonal reduction [1]; this led to Barlow and Zha’s analysis
in [2] using GEPP on orthogonal matrices, which they showed maximized a different L2-growth
factor. Additionally, while original studies of random growth factors tended to focus on ensembles
with iid entries (cf. [16]), many authors noted and explored the potential that orthogonal matrices
can produce large growth [7, 16]. Hence, orthogonal matrices remain a rich source of study for
potential large growth factors.
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Using a Blocked Adaptive Randomized Range Finder to Reduce Memory
Requirements in Deep Learning Based on the Householder QR

Decomposition

Carolin Penke

Abstract

Deep neural networks, such as GPT-like transformer architectures, are increasingly prevalent and
consume significant portions of global computing infrastructure, predominantly using GPUs. These
models demand vast datasets and are constrained by available compute capabilities during both the
pre-training stage on supercomputers and the fine-tuning stage on smaller workstations. Enhancing
training efficiency is therefore highly impactful. This work introduces techniques to leverage low-
rank structures for reducing memory requirements and outlines a method to efficiently acquire the
necessary subspaces by using a randomized range finder. We propose a GPU-accelerated algorithm,
based on the Householder QR decomposition that is also applicable beyond deep learning contexts.
In the following, we briefly give background about the randomized rangefinder[3, 5, 8] and about
low-rank methods in deep learning [4, 9]. Here, the randomized rangefinder can be used as a tool
to efficently compute necessary subspace bases. We present a GPU-accelerated variant, based on a
Householder QR decomposition instead of the common Gram-Schmidt-based approach.
Given a matrix A ∈ Rm×n and a rank r ∈ N, the most simple version of the randomized range
finder [3] finds an orthogonal subspace basis Q ∈ Rm×r such that range(Q) ≈ range(A) as

1. Ω ← randn(n,r) (fill Ω with random values)
2. Y ← AΩ (matrix multiply)
3. Q ← orth(Y ) (e.g. QR decomposition of Y ).

The notion range(Q) ≈ range(A) holds in a probabilistic sense. With B := QTA, the method yields
a decomposition

A = QB. (1)

The minimal rank r to reach a certain error tolerance ϵ > 0, such that

∥A−QQTA∥ ≤ ϵ, (2)

can not be known in advance. Instead, an adaptive randomized rangefinder can be employed to
iteratively construct a subspace basis until the desired accuracy is reached.
In the training of a deep neural network, each layer is represented by matrices, including weights,
gradients, and optimizer states. The weights are updated using gradients computed by back prop-
agation, typically along with optimizer states, e.g. in the popular Adam optimizer. These states
encode moving averages of the gradient’s first and second moments, incorporating past iteration
data to guide updates more effectively. However, storing optimizer states requires considerable
memory. Frameworks like LoRA [4] and GaLore [9] reduce memory demands by exploiting the
low-rank structure of gradients.
The popular LoRA framework utilizes a low-rank network architecture to efficiently accumulate
weight updates derived from gradients and optimizer states. The GaLore framework follows an-
other approach and dynamically computes a dominant subspace basis of low rank for the gradient
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matrix during training. The optimizer states are represented within this subspace to reduce stor-
age requirements. Rather than relying on a computationally intensive singular value decomposition
(SVD), the use of a randomized range finder offers a more practical and efficient alternative.
In GaLore, as in LoRA, the rank r is treated as a hyperparameter, typically chosen based on
intuition or experience (e.g., r = 128). An alternative approach is to use the approximation quality
ϵ as a more interpretable hyperparameter, alongside an adaptive variant of the randomized range
finder.
With this adaptive method, the dimensionality of subspaces across consecutive training steps can
vary. This enunciates the problem, that adding optimizer states, represented in different subspaces,
is not very meaningful and can lead to deteriorated performance, even when the rank is fixed. A
linear transformation can be applied to ensure subspace consistency. A low-rank optimizer state
Mt ∈ Rm×rt , should at step t+ 1 be substituted by Qt+1QtMt.
With the goal of exploiting the memory hierarchy in modern hardware, a blocked variant of the
Adaptive Randomized Range Finder is presented in [5]. In each iteration, a random matrix Ω ∈
Rn×b is generated to sample the columns of A via a matrix multiplication AΩ. The result is
orthogonalized with respect to previously generated basis vectors using a Gram-Schmidt procedure.
Here, a non-probabilistic stopping criterion is devised by keeping track of the residual A − QB.
The array A is updated to reflect this and approaches zero. A downside of this criterion is the
higher memory requirements as three arrays (Q, B, A) need to be maintained. This is relevant in
the context of gradient approximation in deep learning, because, here, available GPU memory is a
significant bottleneck.
Another stopping criterion is devised in [8], which does not necessitate maintaining the residual
matrix, but is derived from the newly computed panels of B instead. Furthermore, the authors
devise an algorithm that avoids passing over A during the loop and move the generation of random
matrices outside the loop. In [2], the randomized range finder is applied as a crucial step in
compressing matrices to Hierarchically Semi-Separable structure. A new probabilistic stopping
allows for a relative error bound.
The other works [3, 5, 8, 2] present algorithms based on the adaptive, blocked, Gram-Schmidt-
orthogonalization of AΩ, where Ω =

[
Ω0 . . . Ωk

]
contains the random panels constructed in the

context of the iteration. In this work, we want to explore the alternative approach of computing
the Householder-QR decomposition of AΩ adaptively, i.e. generating sampled panels AΩ on the fly,
and only computing as many Householder vectors as necessary to approximate the subspace to a
given tolerance.
Our motivation to use Householder over Gram-Schmidt is foremost a practical one. The subspace
computations introduce a significant computational load into the training process, that otherwise
utilizes GPUs very efficiently. The gradients already reside inside GPU memory, so it makes sense
to use a GPU-accelerated algorithm. GPU-accelerated implementations of the blocked Householder
QR decomposition (LAPACK routine *geqrt3) are available [1, 7] and can be adapted to perform
the algorithm outlined in the following.
We divide A into blocks, store Householder vectors in V , and successively compute block rows of
B, which can be stored in the memory location of A. Each storage-efficient factorization [6] of a
block yields an upper triangular matrix block, all of which are stored in T .
As a notation for referring to blocks, block rows and block columns we use
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A =

A0,0 · · · A0,k
... . . . ...

Aj,0 · · · Aj,k

 , V =

V0,0 · · · V0,k
... . . . ...

Vj,0 · · · Vj,k

 , B =

 | B0 |

...

| Bk |

 , T =
[
T0 · · · Tk,

]
.

The orthogonal subspace basis in (1) is represented as Q =
∏k

i=0(I − ViTiV
T
i ). We use colon

notation to refer to a submatrix of M as Mi:l,p:q, or to part of a block-column as Mi:j,p.
Algorithm 1 successively creates the block columns of V and block rows of B. A can be overwritten
by B due to the error criterion from [8], which only relies on the Frobenius norm of the current
panel of B. For simpler notation we assume the matrix dimensions to be divisible by b.

Algorithm 1 Householder Block Adaptive Randomized Range Finder
Require: A matrix A ∈ Rm×n, a tolerance ϵ, and a block size b.

1: E ← ∥A∥F
2: B ← A
3: i← 0
4: while E > ϵ do
5: Fill Ω ∈ Rn×b with values from a standard Gaussian distribution.
6: (Vi:j,i, Ti)← qr(Bi:j,0:kΩ) ▷ Storage-efficient QR decomposition, geqrt
7: Bi:k ← (I − ViTiV

T
i )Bi:k

8: E ← E − ∥Bi∥F
9: i← i+ 1

10: end while
11: V ← V:,0:i−1

12: B ← B0:i−1,:

13: r ← (i− 1) · b
Ensure: Rank r, Householder vectors V ∈ Rm×r, B ∈ Rr×n, T0, . . . , Ti−1 ∈ Rb×b such that
∥A−QB∥Fro ≤ ϵ, where Q =

∏i−1
l=0(I − VlTlV

T
l ).

When the sampled panel Bi:j,0:kΩ is updated independently of the matrix update in the previous
iteration (line 7 in Algorithm 1), this update together with the panel factorization on the CPU,
can be overlapped with the matrix update of B. This introduces extra computations but shortens
the critical path, when the block size is chosen in a way to completely hide the panel update and
factorization.
Apart from allowing a GPU-accelerated implementation, the presented Householder QR approach
has the advantage of improved stability over the Gram-Schmidt approach, not needing a reorthog-
onalization step. As we are dealing with rapidly decaying singular matrices in the gradient matrix,
stability becomes a relevant practical consideration.
Methods from randomized numerical linear algebra have promise to become a viable tool in the
context of resource-efficient low-rank deep learning.
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A hybrid method for computing a few singular triplets
of very large sparse matrices

James Baglama, Jeniffer Picucci, Vasilije Perović

Abstract

Ability to efficiently compute a (partial) Singular Value Decomposition (SVD) of a matrix is es-
sential in a wide range of problems, including data mining, genomics, machine learning, PCA,
and signal processing. In such applications matrices tend to be very large and sparse and one is
typically interested in computing only a few of the largest singular triplets. Over the last several
decades this problem has led to a considerable amount of research and software development, see
e.g., [4, 6, 7, 9, 10, 11, 15] and the references therein.

In this talk, for a large and sparse A ∈ Rℓ×n, we present a new hybrid restarted Lanczos bidiago-
nalization method for the computation of a small number, k, of its extreme singular triplets, i.e.,
we compute {σj , uj , vj}kj=1 such that

Avj = σjuj , ATuj = σjvj , j = 1, 2, . . . , k .

At the core of our proposed algorithm [3], as in many of the above listed ones, is the Golub-Kahan-
Lanczos (GKL) bidiagonalization procedure which at step m results in the m-GKL factorization

APm = QmBm , (1)

ATQm = PmBT
m + feTm =

[
Pm pm+1

] [ BT
m

βmeTm

]
, (2)

where Pm = [p1, . . . , pm] ∈ Rn×m and Qm = [q1, . . . , qm] ∈ Rℓ×m have orthonormal columns, the
residual vector f ∈ Rn satisfies P T

mf = 0, βm = ∥f∥, and pm+1 = f/βm, and Bm is an m×m upper
bidiagonal matrix.

Approximations of the singular triplets of A can then be obtained from the singular triplets of Bm,
and in the case when the norm of the residual vector f is small, the singular values of Bm are
close to the singular values of A. But for modest values of m these approximations are typically
poor (assuming limited memory makes increasing m not an option) and thus leaving one with an
option to modify, explicitly or implicitly, the starting vector p1 and restart the GKL process. In [4]
the authors exploited the mathematical equivalence for symmetric eigenvalue computations of the
implicitly restarted Arnoldi (Lanczos) method of Sorensen [13] and the thick–restarting scheme of
Wu and Simon [14], and applied it to a restarted GKL procedure. The resulting thick–restarted
GKL routine, irlba, turns out to be a simple and computationally fast method for computing a
few of the extreme singular triplets that is less sensitive to propagated round-off errors.

However, the irlba routine [4] often struggles when the dimension, m, of the Krylov subspaces is
memory limited and kept relatively small in relationship to the number of desired singular triplets
k. Very recently, in the context of symmetric eigenvalue computation, we were able to overcame this
memory restriction by creating a hybrid restarted Lanczos method that combines thick–restarting
with Ritz vectors with a new technique, iteratively refined Ritz vectors [1]. We recall that in [8]
Jia proposed to use refined Ritz vectors in place of Ritz vectors as eigenvector approximations of a
square matrix M [8]. More specifically, for a given approximate eigenvalue µj of M , Jia’s method
looks to minimize ∥Mzj−µjzj∥ for a unit vector zj from a given subspace W. Moreover, in [8] it was

304



shown that on the subspace W an approximate eigenpair using the refined Ritz vector produced
a “smaller” residual norm than an eigenpair approximation with the Ritz pair. More recently,
in [1] we were able to extend this idea to iterative refined Ritz values/vectors for the symmetric
eigenvalue problem that produces an even smaller residual norm than refined Ritz – this resulted in
a better converging method that outperformed using Ritz or refined Ritz vectors. But this comes
at the price as working with iteratively refined Ritz vectors is more challenging, in comparison
to just Ritz vectors, due to the fact that the scheme of thick–restarting of Wu and Simon is not
available [1]. However, not all is lost and in [1] we introduce an alternate scheme in which, based
on the relationships first proposed by Sorensen [13] and later outlined in detail by Morgan [12],
the iteratively refined Ritz vectors are linearly combined and then used to restart the process. We
choose the constants in a way that the linear combination of the iteratively refined Ritz vectors
resembles a restart, in a somewhat asymptotic sense, of thick–restarting, see [1] for details.

In our most recent work [3], we applied the earlier results from [1] by making a natural connection
between the symmetric eigenvalue problem and the SVD of A ∈ Rℓ×n and considered both the
normal matrix ATA ∈ Rn×n and the augmented matrix C =

[
0 A
AT 0

]
∈ R(ℓ+n)×(ℓ+n). Multiplying

(1) from the left by AT produces the Lanczos tridiagonal decomposition of ATA, namely

ATAPm = PmBT
mBm + αmfmeTm =

[
Pm pm+1

] [
BT

mBm

αmβmeTm

]
. (3)

Similarly, in the case of matrix C, after performing 2m steps of the standard Lanczos algorithm
with the starting vector [0 ; p1] ∈ Rℓ+n we have a 2m × 2m tridiagonal projection matrix, which
when followed by an odd-even permutation gives the following Lanczos factorization [10]

[
0 A
AT 0

] [
Qm 0
0 Pm

]
=

[
Qm 0 0

0 Pm pm+1

] 0 Bm

BT
m 0

βmeTm 0

 . (4)

With the two Lanczos factorization relationships (3) and (4), the theoretical results and properties
related to the hybrid iterative refined Ritz (eigenvalue) scheme in [1] are carried over resulting into
two hybrid routines capable of computing few extreme singular triplets A based on either ATA or
C =

[
0 A
AT 0

]
. While this extension seems straightforward its implementation on (4), as well as the

new development of iterative refined Ritz working on the normal system, is nontrivial.

Through numerical examples, we have observed in [1, 3] that when memory was limited and only
iterative refined Ritz vectors were used to restart the method there was potential for either slow
or no convergence. In order to overcome this challenge, we developed a hybrid method that, based
on extensive numerical tests and existing heuristics, switches between thick–restarted with Ritz
vectors and under certain criteria it restarts with a linear combination of iterative refined Ritz
vectors. We note that a careful balance is needed here, since on the one side the iterative refined
Ritz vectors can give a better approximation but with possible stagnation, while on the other side
thick–restarted is a more efficient restarting scheme, but with not as good of approximations.

In the rest of the talk we discuss multiple criteria we used to determine when to make a switch
and provide some justification along with several useful heuristics. We also describe a simple yet
powerful variant of our proposed hybrid algorithm (≈ 100 lines of MATLAB code) where the Krylov
basis size is m = 2 and which requires a nontrivial purging of converged vectors. This simplified
code, with potential for extensions [2], does not require calls to any LAPACK routines, thus making
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it portable and at the same time very competitive on a number of large matrices. For instance, in
[3] we computed the largest singular triplet of a 214 million × 214 million matrix (1.2GB) from the
kmerV1r dataset on a laptop in just 31 minutes, whereas the irlba method [4] took 75 minutes, and
MATLAB’s internal svds function required 4 hours. We conclude with several additional examples
that illustrate the proposed hybrid scheme is competitive with other publicly available code when
there are limited memory requirements.
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Randomized Nyström approximation of non-negative self-adjoint operators

David Persson, Nicolas Boullé, Daniel Kressner

Abstract

A ubiquitous task in numerical linear algebra is to compute a low-rank approximation to a matrix
A. Randomized techniques [8, 9, 10, 12] are becoming increasingly popular for computing cheap,
yet accurate, low-rank approximations to matrices. Most notably, the randomized singular value
decomposition (SVD) [9] has evolved into one of the primary choices, due to its simplicity, perfor-
mance, and reliability. In its most basic form, the randomized SVD performs the approximation
QQ∗A ≈ A, where Q is an orthonormal basis for the range of AΩ, with Ω being a tall and skinny
random sketch matrix. In many applications of low-rank approximation, such as k-means cluster-
ing [13], PCA [14], and Gaussian process regression [7], it is known that A is symmetric positive
semi-definite. In this case, one usually prefers the so-called randomized Nyström approximation [8]

Â := AΩ(Ω∗AΩ)†Ω∗A ≈ A, (1)

where Ω is, again, a random sketch matrix. This approximation has received significant attention in
the literature [8, 11, 12] and, like the randomized SVD, it enjoys strong theoretical guarantees. With
the same number of matrix-vector products, the randomized Nyström approximation is typically
significantly more accurate than the randomized SVD when the matrix has rapidly decaying singular
values. Additionally, the Nyström method requires only a single pass over the matrix, compared
to two passes for the randomized SVD, enabling all matrix-vector products to be performed in
parallel.
Recently, Boullé and Townsend [4, 5] generalized the randomized SVD from matrices to Hilbert-
Schmidt operators. Subsequent works [3, 6] employed this infinite-dimensional generalization of
the randomized SVD to learn Green’s functions associated with an elliptic or parabolic partial
differential equations (PDE) from a few solutions of the PDE. This approach uses hierarchical low-
rank techniques and exploits the fact that Green’s functions are smooth away from the diagonal
and therefore admit accurate off-diagonal low-rank approximations [1, 2]. Other applications, like
Gaussian process regression and Support Vector Machines, involve integral operators that feature
positive and globally smooth kernels. In turn, the operator is not only self-adjoint and positive but it
also allows for directly applying low-rank approximation, without the need to resort to hierarchical
techniques. Given existing results on matrices, it would be sensible to use an infinite-dimensional
extension of the randomized Nyström approximation in such situations.
In this work, we present and analyze an infinite-dimensional extension of the randomized Nyström
approximation for computing low-rank approximations to self-adjoint, positive, trace class opera-
tors. A significant advantage of the proposed framework is that once a low-rank approximation of
the operator is computed, one can use this approximation to compute a low-rank approximation
to any discretization of the operator.
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A Randomized Numerical Method for Joint Eigenvalues of Commuting
Matrices

Haoze He, Daniel Kressner, Bor Plestenjak

Abstract

Let A = {A1, . . . , Ad} be a commuting family of n× n complex matrices, i.e., AjAk = AkAj for all
1 ≤ j, k ≤ d. Then there exists a unitary matrix U such that all matrices U∗A1U, . . . , U

∗AdU are
upper triangular and the n d-tuples containing the diagonal elements of U∗A1U, . . . , U

∗AdU are
called the joint eigenvalues of A. For every joint eigenvalue λ = (λ1, . . . , λd) of A there exists a
nonzero common eigenvector x, such that Aix = λix for i = 1, . . . , d.
The task of numerical computation of joint eigenvalues for a commuting family arises, e.g., in solvers
for multiparameter eigenvalue problems and systems of multivariate polynomials. We propose and
analyze a simple approach, summarized in Algorithm 1, that computes eigenvalues as one-sided or
two-sided Rayleigh quotients from eigenvectors of a random linear combination

A(µ) = µ1A1 + µ2A2 + · · ·+ µdAd, (1)

where µ = [µ1 · · · µd]
T is a random vector from the uniform distribution on the unit sphere in Cd.

We show that Algorithm 1, in particular the use of two-sided Rayleigh quotients, accurately com-
putes well-conditioned semisimple joint eigenvalues with high probability. It still works satisfacto-
rily in the presence of defective eigenvalues. Experiments show that the method can be efficiently
used in solvers for multiparameter eigenvalue problems and roots of systems of multivariate poly-
nomials.

Algorithm 1 Randomized Joint Eigenvalue Approximation
Input: A nearly commuting family A = {A1, . . . , Ad}, opt ∈ {RQ1,RQ2}.
Output: Approximations of joint eigenvalues of A.

1: Draw µ ∈ Cd from the uniform distribution on the unit sphere.
2: Compute A(µ) = µ1A1 + · · ·+ µdAd.
3: Compute invertible matrices X,Y such that the columns of X have norm 1, Y ∗X = I,

and Y ∗A(µ)X is diagonal.
4: if opt = RQ1 then
5: return λ

(i)
RQ1 = (x∗iA1xi, . . . , x

∗
iAdxi), i = 1, . . . , n.

6: else if opt = RQ2 then
7: return λ

(i)
RQ2 = (y∗iA1xi, . . . , y

∗
iAdxi), i = 1, . . . , n.

8: end if

The idea of using a random linear combination like (1) is not new. For example, in [1, 4] the unitary
matrix U from the Schur decomposition A(µ) = U∗RU is used to transform all matrices from A to
block upper triangular form. Using the Schur decomposition, however, requires clustering to group
multiple eigenvalues together, and this is a numerically subtle task. On the other hand, Algorithm
1 does not require clustering and in practice often leads to equally good or even better results for,
e.g., multiparameter eigenvalue problems [5] and multivariate root finding problems.
For a significantly simpler situation of commuting Hermitian matrices, where a unitary matrix
exists that jointly diagonalizes all matrices, randomized methods based on (1) have recently been
analyzed in [2], establishing favorable robustness and stability properties.
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An important source of joint eigenvalue problems are eigenvector-based methods for solving systems
of multivariate polynomial equations. If we are looking for roots of a set of polynomials

pi(x1, . . . , xd) = 0, i = 1, . . . ,m, (2)
such that the solution consists of finitely many points, then a common feature of these methods is
that they construct so called multiplication matrices Mx1 , . . . ,Mxd

that commute and their joint
eigenvalues are the roots (x1, . . . , xd) of (2). Many techniques that use symbolic and/or numerical
computation, including Gröbner basis, various resultants, and Macaulay matrices, are used to
construct the multiplication matrices, see, e.g., [6].
Another source are multiparameter eigenvalue problems. A d-parameter version has the form

Ai0xi = λ1Ai1xi + · · ·+ λdAidxi, i = 1, . . . , d, (3)
where Aij is an ni × ni complex matrix and xi ̸= 0 for i = 1, . . . , d. When (3) is satisfied,
a d-tuple λ = (λ1, . . . , λd) ∈ Cd is called an eigenvalue and x1 ⊗ · · · ⊗ xd is a corresponding
eigenvector. Generically, a multiparameter eigenvalue problem (3) has N = n1 · · ·nd eigenvalues.
The problem (3) is related to a system of d generalized eigenvalue problems

∆iz = λi∆0z, i = 1, . . . , d,

with z = x1 ⊗ · · · ⊗ xd and the N ×N matrices (that are called operator determinants)

∆0 =

∣∣∣∣∣∣∣
A11 · · · A1d

...
...

Ad1 · · · Add

∣∣∣∣∣∣∣
⊗

, ∆i =

∣∣∣∣∣∣∣
A11 · · · A1,i−1 A10 A1,i+1 · · · A1d

...
...

...
...

...
Ad1 · · · Ad,i−1 Ad0 Ad,i+1 · · · Add

∣∣∣∣∣∣∣
⊗

, i = 1, . . . , d.

If ∆0 is invertible, then the matrices Γi := ∆−1
0 ∆i for i = 1, . . . , d commute. If N is not too large,

then a standard approach to solve (3) is to explicitly compute the matrices Γ1, . . . ,Γd and then
solve the joint eigenvalue problem.
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Matrix equations from the ⋆-algebra with quantum chemistry applications

Stefano Pozza, Christian Bonhomme, Lorenzo Lazzarino, Niel Van Buggenhout

Abstract

Consider the matrix-valued function Ã(t) ∈ CN×N analytic over the bounded interval I = [a, b], the
vector v ∈ CN , and let ũ(t) ∈ CN×N be the solution of the non-autonomous ordinary differential
equation

∂

∂t
ũ(t) = Ã(t)ũ(t), ũ(a) = v, t ∈ I = [a, b]. (1)

When Ã(t) commutes with itself at different times, i.e., Ã(t1)Ã(t2) = Ã(t2)Ã(t1), the solution is
given through the matrix exponential as ũ(t) = exp(

∫ t
a Ã(τ)dτ)v, t ∈ [a, b]. However, in the general

case, there is no explicit formula for Ũ(t) in terms of usual matrix functions. In quantum chemistry,
spin dynamics are often modeled by Eq. (1) where the time-dependent matrix takes the form

Ã(t) = A1f1(t) + . . . Akfk(t),

with A1, . . . , Ak (constant) large and sparse matrices, f1(t), . . . , fk(t) scalar analytic functions, and
k a small integer; see, e.g., [11]
In [16,17], we introduced a new spectral approach for this kind of ODEs, that gives the solution in
terms of the coefficients of the expansion ũ(t) =

∑∞
j=0 ujpj(t), t ∈ [−1, 1], with p0(t), p1(t), p2(t), . . .

the orthonormal Legendre polynomials, and uj ∈ CN . For a large enough integer m, it is possible to
approximate the coefficients u0, . . . , um of the truncated expansion ũ(t) ≈

∑m−1
j=0 ujpj(t) by solving

the matrix equation
X − F1XAT

1 − · · · − FkXAT
k = ϕvT , (2)

for a certain vector ϕ, where the m×m matrices F1, . . . , Fk represents the functions f1(t), . . . , fk(t)
in the so-called ⋆-algebra [18]. We named the described strategy ⋆-approach. The matrix equation
(2) enjoys many properties: (i) the matrices F1, . . . , Fk are banded; (ii) in the applications of
interest, the matrices A1, . . . , Ak have a Kronecker structure; (iii) the equation has a rank 1 right-
hand side. We can solve the matrix equation by iterative methods exploiting properties (i) and (ii)
to reduce the cost of matrix-vector multiplication. Moreover, the rank 1 right-hand side suggests
that the solution X might be numerically low-rank. Indeed, this is the case in all the applications
we treated (e.g., [16]). Hence, property (iii) allows for the use of low-rank approximation.
This novel numerical approach has proved highly competitive in the solution of ODEs related to
a specific model, the generalized Rosen-Zener model. In [2], with Christian Bonhomme (Sorbonne
University) and Niel Van Buggenhout (Universidad Carlos III), we introduced a new algorithm,
named ⋆-method, that exploits properties (i)–(iii). Its computational cost scales linearly with the
model size (Fig 2, [2]) and is also highly competitive for increasing interval sizes (Fig 4, [2]). These
first results might open the way to more general efficient methods for spin simulations. However,
the spectral properties and structure of other, more complex, quantum problems can make the
solution of Eq. (2) challenging. For instance, we are working on the solution of an ODE system
that considers dipolar interactions in a Nuclear Magnetic Resonance application [12]. In this case,
the strategies used in [2] are not efficient enough. This is why we are currently testing randomized
approaches (joint work with Lorenzo Lazzarino, University of Oxford) and tensor methods, with
promising results.
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A closer look into the ⋆-approach

The difficulties emerging in the numerical solution of Eq. (1) are linked with the lack of a general
analytic expression of ũ(t). Analytic approaches are typically based on Floquet formalism [10,19],
Magnus series [1, 13], or hybrids of these with ad-hoc approximate/numerical methods [3, 14, 20].
These analytic approaches rarely provide exact solutions in a finite number of steps, might suffer
from convergence issues [1], and be intractable [4]. There is a perception in the physics community
that no exact solutions are achievable [7]. This also influences the development of numerical solvers
since the most advanced numerical methods are typically built on analytical approaches [1, 9, 10].
As noted by M. Grifoni and P. Hänggi in [8]: “Solving the time-dependent Schrödinger equation
necessitates the development of novel analytic and computational schemes [...] in a nonperturbative
manner” – a remark still relevant today. The ⋆-approach follows this suggestion as it is based on a
new nonperturbative expression for ũ(t), obtained through the so-called ⋆-product.
Let us define the set A(I) of the bivariate distributions for which there exists a finite k so that

f(t, s) = f̃−1(t, s)Θ(t− s) + f̃0(t, s)δ(t− s) + · · ·+ f̃k(t, s)δ
(k)(t− s),

where Θ(t − s) is the Heaviside function (Θ(t − s) = 1 for t ≥ s, and 0 otherwise), and δ(t −
s), δ′(t− s), δ(2)(t− s), . . . are the Dirac delta and its derivatives. The ⋆-product of f, g ∈ A(I) is
the non-commutative product defined as

(f ⋆ g)(t, s) :=

∫
I
f(t, τ)g(τ, s) dτ ∈ A(I);

see [18]. The ⋆-product straightforwardly extends to a scalar-matrix ⋆-product and to a matrix-
matrix (matrix-vector) ⋆-product for matrices with compatible sizes composed of elements from
A(I). We denote with AN×M (I) the space of the N ×M matrices with elements from A(I). Note
that I⋆ = Iδ(t − s) is the identity matrix in AN×N (I). As shown in [5], the solution ũ(t) of the
Eq. (1) can then be expressed as

ũ(t) = u(t, a), u(t, s) = Θ(t− s) ⋆ x(t, s), (3)(
I⋆ − Ã(t)Θ(t− s)

)
⋆ x(t, s) = ṽδ(t− s), t ∈ [a, b], (4)

with x(t, s) ∈ AN (I). Therefore, solving a system of non-autonomous linear ODEs is equivalent
to solving a linear system in the ⋆-algebra. Note that, for m = ∞, the matrix equation (2) is the
matrix algebra counterpart of the ⋆-linear system (4); see [15,16,17]. As a consequence, numerical
methods for the solution of Eq. (2) can be interpreted as algorithms in the ⋆-algebra. Vice versa,
it is possible to devise new techniques (such as preconditioners) and numerical methods (e.g., the
⋆-Lanczos algorithm [6]) in the ⋆-algebra and then map them in the usual algebra of matrices [15]
where they can be implemented.
In conclusion, the ⋆-approach has proved extremely fast in certain quantum applications [2]. Its
success is based, on the one hand, on advanced linear algebra techniques and, on the other, on
applying ⋆-algebra results in numerical linear algebra.
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Optimizing Rayleigh quotient with symmetric constraints and its
application to eigenvalue backward errors of polynomial and rational

eigenvalue problems

Anshul Prajapati, Punit Sharma

Abstract

Let H ∈ Cn,n be Hermitian and S0, S1, . . . , Sk ∈ Cn,n be symmetric matrices. We consider the
problem of maximizing the Rayleigh quotient of H with respect to certain constraints involving
symmetric matrices S0, S1, . . . , Sk. More precisely, we compute

mhs0s1...sk(H,S0, S1, . . . , Sk) := sup

{
v∗Hv

v∗v
: v ∈ Cn \ {0}, vTSiv = 0

for i = 0, . . . , k

}
, (P)

where T and ∗ denote respectively the transpose and the conjugate transpose of a matrix or a vector.

Such problems occur in stability analysis of uncertain systems and in the eigenvalue perturba-
tion theory of matrices and matrix polynomials [3, 4]. A particular case of problem (P) with only
one symmetric constraint (i.e., when k = 0) is used to characterize the µ-value of the matrix under
skew-symmetric perturbations [4]. An explicit computable formula was obtained for mhs0(H,S0)
in [4, Theorem 6.3] and given by

mhs0(H,S0) = inf
t∈[0,∞)

λ2

([
H tS0

tS0 H

])
,

where λ2(A) stands for the second largest eigenvalue of a Hermitian matrix A. However, the solu-
tion to the problem (P) with more than one symmetric constraint was not known.

We derive an explicit computable formula for (P) in terms of minimizing the second largest eigen-
value of a parameter-depending Hermitian matrix under a simplicity assumption. The results are
then applied to derive computable formulas for the structured eigenvalue backward errors of rational
matrix functions (RMFs) of the following form

G(z) = A0 + zA1 + · · · zdAd +
s1(z)

q1(z)
E1 + · · ·+ sk(z)

qk(z)
Ek

where the coefficients Ap, p = 0, 1, . . . , d and Ej , j = 1, 2, . . . , k are n×n matrices, and sj(z), qj(z),
for j = 1, 2, . . . , k are scalar polynomials.

Eigenvalue backward errors of matrix polynomials, both for unstructured and structure-preserving
perturbations, have been studied in the literature; see [9] for unstructured, [1] for Hermitian and
related structures, and [2] for palindromic and related structures. However, the literature on RMFs
is relatively limited, and the structured eigenvalue backward errors have not been explored before.

To explore this, we first aim to reformulate the problem of computing structured eigenvalue back-
ward errors for RMFs with symmetric, skew-symmetric, T-even, T-odd, and T-palindromic struc-
tures into the optimization problem (P). We then apply the results obtained for this optimization
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problem to derive computable formulas for the structured eigenvalue backward errors of RMFs. As
a specific case of RMFs, formulas for the structured eigenvalue backward errors of matrix polyno-
mials with the aforementioned structures can also be derived. Numerical experiments suggest that
our results [5] provide a more accurate estimation of the supremum in (P) compared to the one
in [7]. Some of these results are published in Linear Algebra and its Applications [5], while others
in BIT Numerical Mathematics [6].
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The Fundamental Subspaces of Ensemble Kalman Inversion

Elizabeth Qian, Christopher Beattie

Abstract

Ensemble Kalman Inversion (EKI) methods are a family of iterative methods for solving weighted
least-squares problems of the form

min
v∈Rd

(y −H(v))⊤Σ−1(y −H(v)) = min
v∈Rd

∥y −H(v)∥2
Σ−1 , (1)

where Σ ∈ Rn×n is symmetric positive definite, and H : Rd → Rn. Such problems arise in many
settings, including in inverse problems in which v ∈ Rd represents an unknown parameter or state
of a system of interest which must be inferred from observed data y ∈ Rn. Inverse problems arise
in many disciplines across science, engineering, and medicine, including earth, atmospheric, and
ocean modeling, medical imaging, robotics and autonomy, and more. In large-scale scientific and
engineering applications, solving (1) using standard gradient-based optimization methods can be
prohibitively expensive due to the high cost of evaluating derivatives or adjoints of the forward
operator H. In contrast, EKI methods can be implemented in an adjoint-/derivative-free way.
This makes EKI an attractive alternative to gradient-based methods for solving (1) in large-scale
inverse problems.
We introduce a basic version of EKI from [4] in Algorithm 1, noting that other EKI methods can
be viewed as variations on this theme. In Algorithm 1, we use E and cov to denote the empirical
(sample) mean and covariance operators, respectively: given J ∈ N samples {a(j)}Jj=1 and {b(j)}Jj=1,
we define E[a(1:J)] = 1

J

∑J
j=1 a

(j), and

cov[a(1:J),b(1:J)] =
1

J − 1

J∑
j=1

(a(j) − E[a(1:J)])(b(j) − E[b(1:J)])⊤,

and cov[a(1:J)] = cov[a(1:J),a(1:J)]. Algorithm 1 prescribes the evolution of an ensemble of J

particles, {v(1)
i , . . . ,v

(J)
i }, initialized at i = 0 in some way, e.g., by drawing from a suitable prior

distribution, and subsequently updated for i = 1, 2, 3, etc. We emphasize that Algorithm 1 does not
require the evaluation of adjoints or derivatives of H. Those familiar with ensemble Kalman filtering
methods will recognize familiar elements in Algorithm 1. Indeed, one way to obtain Algorithm 1 is
to apply the ensemble Kalman filter to a system whose dynamics are given by the identity map in
the “forecast” step of the filter. The connection to the ensemble Kalman filter also motivates the
perturbation of the observations by random noise in Step 7; these perturbations ensure unbiased
estimates of the filtering statistics in the linear Gaussian setting.
There is a very rich literature developing both EKI methods and accompanying theory (see [3]
for an extensive survey). Variants of the basic method include the incorporation of a Tikhonov
regularization term into the least-squares objective function, the enforcement of constraints in
the optimization, or hierarchical, multilevel, and parallel versions of the algorithm. Beyond the
successful use of EKI for solving diverse inverse problems in the physical sciences, e.g., in geophysical
and biological contexts, EKI has also been used as an optimizer for training machine learning
models. In particular, the use of EKI for training neural networks has motivated the development of
EKI variants based on ideas used for gradient-based training of neural networks, including dropout,
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Algorithm 1 Basic Ensemble Kalman Inversion (EKI)
0: Input: forward operator H : Rd → Rn, initial ensemble {v(1)

0 , . . . ,v
(J)
0 } ⊂ Rd, observations

y ∈ Rn, observation error covariance Σ ∈ Rn×n

1: for i = 0, 1, 2, . . . , do
2: Compute observation-space ensemble: h

(j)
i = H

(
v
(j)
i

)
, j = 1, 2, . . . , J .

3: Compute empirical covariances: cov[v(1:J)
i ,h

(1:J)
i ] and cov[h(1:J)

i ]

4: Compute Kalman gain: Ki = cov[v(1:J)
i ,h

(1:J)
i ] ·

(
cov[h(1:J)

i ] +Σ
)−1

5: Sample ε
(j)
i i.i.d. from N (0,Σ) for j = 1, 2, . . . , J .

6: Perturb observations: set y
(j)
i = y + ε

(j)
i for j = 1, 2, . . . , J .

7: Compute particle update: v
(j)
i+1 = v

(j)
i +Ki(y

(j)
i −Hv

(j)
i ) for j = 1, 2, . . . , J .

8: if converged then
9: return current ensemble mean, E[v(1:J)

i+1 ]

This is Stochastic EKI. For Deterministic EKI, skip 5-6 and assign y
(j)
i = y in 7.

data subsampling (also called ‘(mini-)batching’), adaptive step sizes, and convergence acceleration
with Nesterov momentum.
Theoretical analyses of EKI convergence behavior have mostly considered linear observation oper-
ators H ∈ Rn×d, for which the standard norm-minimizing solution of (1) is given by

v∗ = (H⊤Σ−1H)†H⊤Σ−1y ≡ H+y, (2)

where “†” denotes the usual Moore-Penrose pseudoinverse and we have introduced the weighted
pseudoinverse, H+ = (H⊤Σ−1H)†H⊤Σ−1. Previous analyses of linear EKI have largely considered
mean-field limits (equivalent to an infinitely large ensemble) [3] or continuous-time limits of the
EKI iteration, in which the deterministic iteration becomes a system of coupled ordinary differential
equations (ODEs) [2, 6] and the stochastic iteration becomes a system of coupled stochastic dif-
ferential equations (SDEs) [1]. These continuous-time analyses have shown that the EKI ensemble
covariance collapses at a rate inversely proportional to time [6, 1, 2], meaning that the residual of
the EKI iteration (with respect to the final solution) converges at a 1/

√
i rate. These analyses have

also characterized EKI solutions either by assuming H is one-to-one or by assuming the ensemble
covariance is full rank. In particular, the works [6] show that if H is one-to-one, then EKI converges
to the pre-image of the data restricted to the span of the ensemble [6, 1]. On the other hand, the
work [2] shows that if the ensemble covariance is full rank (and H may be low-rank), then EKI
converges to the (non-standard) minimizer of (1) closest to the initial ensemble mean in the norm
induced by the initial ensemble covariance. The characterization of EKI solutions in the general
case where both H and the ensemble covariance may be low-rank, and the relationship between EKI
solutions and the standard minimum-norm least-squares solution (2), are open questions addressed
in this work.
In this work, we provide a new analysis of EKI for linear observation operators H ∈ Rn×d which
directly considers the discrete iteration for a finite ensemble, relying principally on linear algebra as
an analysis tool. Our analysis yields new results relating EKI solutions to the standard minimum-
norm least-squares solution (2), together with a new and natural interpretation of EKI convergence
behavior in terms of ‘fundamental subspaces of EKI’, analogous to the four fundamental subspaces
characterizing Strang’s ‘fundamental theorem of linear algebra’ [7], which we now review.
Strang’s four ‘fundamental subspaces of linear algebra’ arise from dividing observation space Rn
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and state space Rd into two subspaces each, one subspace associated with ‘observable’ directions
and a complementary subspace associated with ‘unobservable’ directions [7]. That is, in observation
space Rn, the two fundamental subspaces are:

1. Ran(H) (denoting the range of H), and
2. Ker(H⊤Σ−1) (denoting the null space of H⊤Σ−1), the Σ−1-orthogonal complement to Ran(H).

In state space Rd, the two fundamental subspaces are:
1. Ran(H⊤), and
2. Ker(H), the orthogonal complement to Ran(H⊤) with respect to the Euclidean norm.

The standard minimum-norm solution (2) to the linear least-squares problem (1) can be understood
in terms of these fundamental subspaces as follows (see [5, Figure 1]): in observation space Rn, the
closest that Hv can come to y ∈ Rn with respect to the Σ−1-norm is the Σ−1-orthogonal projection
of y onto the observable space Ran(H), which then has a zero component in the (unobservable)
subspace Ker(H⊤Σ−1). In state space Rd, directions in Ker(H) are unobservable because they are
mapped by H to zero and thus do not influence the minimand of (1). If Ker(H) is non-trivial,
multiple minimizers of (1) exist. The unique norm-minimizing solution (2) lies in the observable
space Ran(H⊤) and has a zero component in the unobservable space Ker(H).
Our analysis reveals that EKI solutions to the weighted least squares problem admit a similar in-
terpretation in terms of fundamental subspaces of EKI. However, the EKI fundamental subspaces
arise first from dividing the state and observation spaces into directions that are ‘populated’ by
particles, lying in the range of ensemble covariance Γi (it is well-known [1, 2, 4, 6] that Ran(Γi)
is invariant for all i), and ‘unpopulated’ directions lying in a complementary subspace. The pop-
ulated subspace can then be further divided into two subspaces associated with observable and
unobservable directions. There are therefore three subspaces in each of the observation and state
spaces. In observation space Rn, the three fundamental subspaces of EKI are associated with three
complementary oblique projection operators, P ,Q,N ∈ Rn×n. These projections are defined via a
spectral analysis of the iteration map which governs the evolution of the data misfit, Hv

(j)
i − y, so

that the range of each projector is an invariant subspace under the misfit iteration map. The three
fundamental subspaces of observation space Rn are then

1. Ran(P) ≡ Ran(HΓi), associated with observable populated directions,
2. Ran(Q) ≡ HKer(ΓiH

⊤Σ−1H), associated with observable but unpopulated directions, and
3. Ran(N ) ≡ Ker(H⊤Σ−1), associated with unobservable directions.

In state space Rd, the three fundamental subspaces of EKI are also associated with three comple-
mentary oblique projection operators, P,Q,N ∈ Rn×n. These projections are defined via a spectral
analysis of the iteration map which governs the evolution of the least squares residual, v(j)

i − v∗.
The range of each projector is again an invariant subspace under the residual iteration map. The
three fundamental subspaces of state space Rd are then

1. Ran(P) ⊂ Ran(Γi), associated with observable populated directions (but generally not simply
the intersection of Ran(Γi) with Ran(H⊤)),

2. Ran(Q) ⊂ Ran(H⊤), associated with observable unpopulated directions, and
3. Ran(N), associated with unobservable directions.

The fundamental subspaces of EKI are depicted in [5, Figure 2], and an interactive three-dimensional
visualization is available at https://elizqian.github.io/eki-fundamental-subspaces/.
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We show that EKI misfits [residuals] converge to zero at a 1/
√
i rate in the fundamental subspace

associated with observable and populated directions, Ran(P) [Ran(P)], and remain constant in the
fundamental subspaces associated with observable unpopulated directions, Ran(Q) [Ran(Q)]. The
misfits [residuals] also remain constant in the unobservable directions, Ran(N ) [Ran(N)]. Numerical
experiments illustrating these results may be found in [5, Figure 3]. Our results verify for the
discrete iteration and finite ensemble case the 1/

√
i convergence rate previously shown in continuous

time or infinite ensemble limits, and provide the first results describing the relationship between
EKI solutions and the standard minimum-norm least squares solution (2).
Our analysis sheds light on several directions of interest for future work connecting EKI with
classical iterative methods. Because we have shown that the convergence behavior of deterministic
EKI can be characterized in terms of an evolving spectral problem that has invariant subspaces
that are independent of iteration index, this allows for straightforward EKI acceleration strategies
analogous to overrelaxation schemes in classical stationary iterative methods. Other potential
directions of interest could exploit the well-known connection between the extended Kalman filter
and Gauss-Newton methods to establish further connections between EKI and classical methods.
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On efficiency and adaptivity of sketch-and-project approach
in randomized linear solvers

Elizaveta Rebrova
Based on the joint works with Michal Derezinski, Deanna Needell, Daniel LeJeune, Jackie Lok.

Abstract

The sketch-and-project is a unifying framework for many known randomized iterative methods
for solving linear systems, such as randomized Kaczmarz and coordinate descent algorithms, their
block variants, as well as the extensions to non-linear optimization problems. Given a linear system
Ax = b, the general scheme iterates to find its solution in the following way: for t = 0, 1, . . . a
random sketching matrix S = S(t) is sampled from a distribution of (random) matrices and the
update rule is given by

xt+1 = arg min
x∈Rn

∥xt − x∥2B such that SAx = Sb. (1)

This optimization problem can be solved directly and is equivalent to an iterative step

xt+1 = xt −B−1A⊤S⊤(SAB−1A⊤S⊤)†S(Axt − b).

The performance of these methods is often measured via the expected convergence rate:

E ∥xt − x∗∥2B ≤ (1− ρ)t · ∥x0 − x∗∥2B ∀x0, t

where ρ ≥ λmin(E[(SÃ)†SÃ]) and Ã = AB−1/2. Some of well-known special cases, such as Ran-
domized Kaczmarz method (when the sketching matrix S samples individual rows of A and B = I),
have been mainly used as simple linear solvers that can demonstrate computational efficiency in
the cases of vastly overdetermined linear systems, essentially, when the equations arrive in the
streaming way. However, this perspective is far from complete. In the talk, I will discuss several
recent results demonstrating other conceptual advantages of the sketch-and-project based linear
solvers.

1. Fast linear solvers for the systems with low-rank structure.

It is expected that the sketching matrices S ∈ Rk×m with larger sketch size k improve per-iteration
convergence of the solver but clearly they become more computationally expensive within every
step. In [DR24], we have quantified the advantage of increasing the sketch size and connected it to
the tail condition number of the system, that is, singular values of A excluding the top k of them.
Based on this improved convergence rate analysis, one can build a practical linear solver with
several very natural enhancements of the generic computation scheme, that is, (a) particular not
too small sketch size and very sparse sketching, or block sampling on the system preconditioned
by the Randomized Hadamard Transform (b) inexact solve in place of the pseudoinverse inversion,
and (c) adding the momentum. Such solver can compute x̃ such that ∥Ax̃ − b∥ ≤ ϵ∥b∥ in time:

Õ

(
σℓ
σn

· n2 log 1/ϵ

)
, where ℓ = C

√
n for some C > 0, where σ1 ≥ σ2 ≥ ... ≥ σn > 0 are singular

values of the matrix A. This directly improves the standard time complexity for linear solvers, such
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as Õ(κ · n2), due to its independence from the full condition number (and the top of the spectrum
in particular) on the linear systems with relatively flat tails of the spectrum. Such linear systems
appear in a variety of standard applications such as spiked covariance models and kernel machines,
or when the linear system is explicitly regularized, such as ridge regression.
Another consequence of these results, obtained in [DLNR24], is that the sketch-and-project ap-
proach can be also viewed as implicit preconditioning by the iterative sparse sketching (or sampling)
procedure.

2. Subspace constrained iterative methods for linear solvers with prior informa-
tion

The adaptive nature of the sketch-and-project iteration can be also used to guide the iterations
when additional information is available about the system. In [LR24], we propose a version of
the randomized Kaczmarz algorithm for solving systems of linear equations where the iterates are
confined to the solution space of a selected subsystem. We show that the subspace constraint
leads to an accelerated convergence rate, especially when the system has approximately low-rank
structure that can be estimated before solving the system. Another natural place for a subspace
constraint appears if only a part of a linear system changes with time or one is solving a sequence
of otherwise connected linear systems. On Gaussian-like random data, we show that the proposed
Subspace Constrained Randomized Kaczmarz method results in a form of dimension reduction that
effectively increases the aspect ratio of the system.

3. Robust linear solvers for the systems with sparse corruptions

Finally, the adaptivity of the considered iterative framework gives another prominent application
to solving linear systems contaminated with sparse corruptions. This setting models applications
where some measurements are corrupted by arbitrarily large errors, which may occur during the
data collection, transmission, and storage process due to malfunctioning sensors or faulty compo-
nents. For sufficiently tall and regular systems A ∈ Rm×n,m ≥ O(n), the iterates of a simple
data-aware method based on the Randomized Kaczmarz algorithm converge to x∗ avoiding a sig-
nificant portion of arbitrary corruptions [HNRS22]. Moreover, the subspace constraining approach
discussed above allows to efficiently utilize external knowledge about corruption-free equations and
achieve convergence in difficult settings, such as not very overdetermined ((1 + α)n × n) linear
systems [LR24].
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Analysis of Stochastic Probing Methods for Estimating the Trace of
Functions of Sparse Symmetric Matrices

Andreas Frommer, Michele Rinelli, Marcel Schweitzer

Abstract

Estimating the trace of an implicitly given matrix B ∈ Rn×n,

tr(B) =

n∑
i=1

[B]ii, (1)

is an important task in many areas of applied mathematics and computer science. In many of these
applications, we have B = f(A), where A ∈ Rn×n is a large and sparse (or structured) matrix. A
common practice is to approximate (1) with an estimator of the form

tr(B) ≈
N∑
k=1

vT
k Bvk, (2)

for suitably crafted vectors v1, . . . , vN . With this approach, approximating (1) relies on matrix-
vector products or quadratic forms with B, which are, e.g., performed by applying a polyomial (or
rational) Krylov subspace method or a Chebyshev expansion for approximating f(A)v or vTf(A)v,
avoiding the often prohibitive tasks of forming B or computing the eigenvalues of A.
Prominent examples are stochastic estimators, including Hutchinson’s method [5], based on choosing
random vectors in (2), and recent variants based on low-rank approximations, Hutch++ [6] and
XTrace [2], which work especially well if a fast decay is present in the singular values of B.
When B = f(A) with sparse, symmetric A, a popular other class of methods are based on probing [4,
7]. This approach requires the computation of a distance-d coloring of the graph G(A) associated
with A, which is a feasible task only under suitable assumptions; see [4]. The probing estimator is
obtained by using probing vectors in (2), i.e., vectors associated with each color whose entries are
0 or 1 depending on the coloring pattern. In [4], the authors show that the error of the probing
approximation is bounded by n · ηd, where ηd decays with a rate that depends on how regular f is
over the spectrum of A. The numerical experiments in [4] prove that O(n) bounds are the best we
can achieve with this method.
We consider a stochastic probing approach, given by the combination of probing techniques with
stochastic estimators. The nonzero entries of the stochastic probing vectors are the same as the de-
terministic counterparts, but filled with ±1 with a uniform distribution (Rademacher entries). This
allows to average more than one vector per color, with an improvement on the convergence related
to Hutchinson’s estimator. Although this combination is algorithmically quite straightforward and
has already been used before by practitioners [1], a detailed analysis was lacking.
In [3], we show for which matrix functions f and matrices A the standard deviation of the stochastic
probing estimator can be bounded by quantities of the form

√
n · ηd, where ηd has the same

asymptotic behavior as the deterministic case. This significantly improves on the linear scaling
with the size of the error in the deterministic case, even if just one stochastic vector is associated
to any color. As a by-product of our analysis, we refined classical results on sign patterns in the
entries of f(A).
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Our theoretical findings are illustrated and confirmed by a variety of numerical experiments, where
we observed the scaling of the error with the size and compared the performance with other known
estimators, indicating when stochastic probing can be the method of choice.
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Preconditioned Low-Rank Riemannian Optimization for Symmetric Positive
Definite Linear Matrix Equations

Ivan Bioli, Daniel Kressner, Leonardo Robol

Abstract

The topic of this work is the solution of multiterm linear matrix equations of the form

L(X) := A1XB1 + . . .+AℓXBℓ = F,

under the assumption that the linear operator L is positive definite. These equations often appear
when discretizing elliptic PDEs, and in control problems. In this setting, it is often the case that
F is either a low-rank matrix, or can be well-approximated in this way, i.e., it has fast decaying
singular values. Throughout this work, we assume that F is a low-rank matrix.
A few special cases are easy to handle, and we can prove that the low-rank structure of F is
inherited by X. If ℓ = 1, X and F have the same rank; if ℓ = 2 we have an elegant theory based
on rational approximation that provides upper bounds for the singular values of X with a weak
dependency on the condition number of the operator L [2].
When ℓ > 2, most theoretical guarantees are lost: except for a few special cases, none of the
arguments used for ℓ = 2 can be extended easily. Nevertheless, it can be experimentally verified
that the structure is often present in X; sometimes, this can be justified via other means (such as
the regularity of the solution of the discretized PDE).
Algorithmically, we face similar challenges: the cases ℓ = 1 and ℓ = 2 are well understood, and
efficient low-rank solvers are available (examples include rational and extended Krylov methods, or
the Alternative Direction Implicit method, known as ADI). When ℓ > 2, fewer and less appealing
options are available, mainly based on Krylov solvers for L with low-rank truncation [5]. A major
issue with this class of methods is that the intermediate iterates often have much higher ranks than
the final solution, and aggressive truncations lead to degraded convergence properties.
We focus on the case ℓ > 2, assuming that X is the discretization of the solution to an elliptic
PDE. Assuming that X is well-approximated by a matrix of rank k, the problem can be recast into
the optimization problem

Find min
X

Φ(X), subject to rank(X) = k, Φ(X) :=
1

2
⟨L(X), X⟩ − ⟨F,X⟩,

for some moderate k, where ⟨·, ·⟩ is the standard scalar product inducing the Frobenius norm. The
matrices of rank k have a Riemannian manifold structure, and thus the problem can be conveniently
solved using Riemannian optimization [1, 4]. This idea has been successfully exploited in the past
to solve positive definite Lyapunov equations, which correspond to ℓ = 2 [6]. This strategy restricts
our search to matrices of rank k, and avoids the rank-growth phenomenon often observed in Krylov
methods. The convergence theory for Riemannian optimization schemes can be used to prove
convergence.
However, a straightforward application of a vanilla Riemannian optimization method presents a
major issue: when L arises from an elliptic PDE, it is often ill-conditioned, and so is the Hessian of
the objective function Φ(X). This leads to poor convergence for first-order optimization schemes.
We discuss how the idea of preconditioning can be extended to this setting, and show that one can
design effective modifications to the problem that drastically improve the convergence. The key
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ingredient is finding a map PX on the tangent space at X which is positive definite and approximates
the Hessian in a suitable sense. Then, the preconditioning can be described in two similar ways,
which are only approximately equivalent:

1. We may take gradients with respect to the inner product induced by PX , instead of the
canonical one; this turns the first-order method to be closer to a quasi-Newton scheme.

2. Alternatively, we may use PX to define a non-standard metric and inner product on the
Riemannian manifold, and then apply the first-order scheme in this new setup.

We discuss differences, advantages, and disadvantages of these strategies; we show that is possible
to employ both at the same time at once to design preconditioners for a large class of PDE problems
discretize with finite element methods.
In the examples that we consider, the multiterm matrix equation is often obtained by non-constant
diffusion coefficients in 2D diffusion problems; in this setting it is natural to choose PX as the
projection of the operator obtained discretizing the same equation, but with constant diffusion
coefficients; this typically is an operator of the same form, but with ℓ = 2. Hence, we consider
preconditioners of the form PX = AXB, PX = AX + XB, and PX = AXB + CXD. Applying
these preconditioners in any of the sense described above require to solve an equation on the tangent
space, which is low-dimensional. This is relatively easy to do in the first two cases, but it proves
challenging in the latter, when A,B,C,D ̸= I. We show how to this effectively by combining the
two viewpoints discussed above, and interpreting this preconditioner as a composition of the first
two options.
The proposed algorithm is competitive or faster than the state-of-the art in most cases, and in
particular when the target rank k is moderate. When k is larger, solving the equations on the
tangent space can become a bottleneck. For these cases, we propose yet another preconditioner,
obtained generalizing the ADI iteration to an iteration on the tangent space of the manifold; our
experiment show that it preserves the good convergence properties of the classical ADI scheme
for matrix equations, while being much cheaper to compute than the previous approaches. A few
steps of this “tangent ADI” iteration will prove to be a very good preconditioner for a large class
of problems.
Time permitting, a few extra details essential to produce a robust implementation will be discussed,
such as rank-adaptivity, and the use of randomized linear algebra to effectively estimate the residual;
the latter helps in detectubg possible stagnation due to wrong estimates for the solution rank, and
is essential for deciding when to perform rank changes inside the rank-adaptive scheme.
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Algorithm NCL for constrained optimization:
Solving the linear systems within interior methods

Michael Saunders, Ding Ma, Alexis Montoison, Dominique Orban

Abstract

1 Constrained optimization

We consider large smooth constrained optimization problems of the form

NC min
x∈ℜn

ϕ(x)

subject to c(x) = 0, ℓ ≤ x ≤ u,

where ϕ(x) is a smooth scalar function and c(x) ∈ ℜm is a vector of smooth linear or nonlinear
functions. We assume that first and second derivatives are available. If the constraints include any
linear or nonlinear inequalities, we assume that slack variables have already been included as part
of x, and appropriate bounds are included in ℓ and u. Problem NC is general in this sense.

2 LANCELOT

LANCELOT [1, 2, 6] is designed to solve large, smooth constrained optimization problems. For
problem NC, LANCELOT solves a sequence of about 10 BCL (Bound-Constrained augmented La-
grangian) subproblems of the form

BCk min
x∈ℜn

ϕ(x)− yTk c(x) +
1
2ρkc(x)

Tc(x)

subject to ℓ ≤ x ≤ u,

where yk is an estimate of the dual variables for the nonlinear constraints c(x) = 0, and ρk > 0 is
a penalty parameter. After BCk is solved (perhaps approximately) to give a subproblem solution
x∗k, the size of ∥c(x∗k)∥ is used to define BCk+1:

• If ∥c(x∗k)∥ is sufficiently small, stop with “Optimal solution found”.

• If ∥c(x∗k)∥ < ∥c(x∗k−1)∥ sufficiently, update yk+1 = yk − ρkc(x
∗
k) and keep ρk+1 = ρk.

• Otherwise, keep yk+1 = yk and increase the penalty (say ρk+1 = 10ρk).

• If the penalty is too large (say ρk+1 > 1010), stop with “The problem is infeasible”.

3 Algorithm NCL

Algorithm NCL [7] mimics LANCELOT with only one change: subproblem BCk is replaced by the
equivalent larger subproblem

NCk min
x∈ℜn, r∈ℜm

ϕ(x) + yTkr +
1
2ρkr

Tr

subject to c(x) + r = 0, ℓ ≤ x ≤ u.
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Given a subproblem solution (x∗k, r
∗
k), the choice between updating yk or increasing ρk is based on

∥r∗k∥. We expect ∥r∗k∥ → 0, so that x∗k is increasingly close to solving NC.
The active-set solvers CONOPT [3], MINOS [8], and SNOPT [13] are nominally applicable to NCk.
Their reduced-gradient algorithms would naturally choose r as basic variables, and the x variables
would be either superbasic (free to move) or nonbasic (fixed at one of the bounds). However, this
is inefficient on large problems unless most bounds are active at the subproblem solution x∗k.
In contrast, interior methods welcome the extra variables r in NCk, as explained in [7]:

• The Jacobian of c(x) + r always has full row rank. NCL can therefore solve problems whose
solution does not satisfy LICQ (the linear independence constraint qualification). It is also
applicable to MPEC problems (Mathematical programming problems with equilibrium con-
straints).

• The sparse-matrix methods used for each iteration of an interior method are affected very
little by the increased matrix size.

4 The linear system in nonlinear interior methods

For simplicity, we assume that the bounds ℓ ≤ x ≤ u are simply x ≥ 0. Let y and z be dual
variables associated with the constraints c(x) = 0 and x ≥ 0 respectively, and let X = diag(x),
Z = diag(z). When a nonlinear primal-dual interior method such as IPOPT [4] or KNITRO [5] is
applied to NCk, each search direction is obtained from a linear system of the form−(H +X−1Z) JT

−ρkI I
J I

∆x
∆r
∆y

 =

r2
r3
r1

 . (K3)

Although this system large, the additional variables δr do not damage the sparsity of the matrix.
IPOPT and KNITRO have performed well on problem NCk as it stands, solving systems (K3).

5 Reducing the size of (K3)

For all NCk, ρk ≥ 1 (and ultimately ρk ≫ 1), and it is stable to eliminate ∆r from (K3) to obtain(
−(H +X−1Z) JT

J 1
ρk
I

)(
∆x
∆y

)
=

(
r2

r1 +
r3
ρk

)
, ∆r =

1

ρk
(∆y − r3). (K2)

If the original problem is convex, H+X−1Z is symmetric positive definite (SPD) and it is possible
to eliminate ∆y:

(H +X−1Z + ρkJ
TJ)∆x = −r2 + JT (r3 + ρkr1), ∆y = r3 + ρk(r1 − J∆x). (K1)

These reductions would require recoding of IPOPT and KNITRO (which is not likely to happen),
but they are practical within the nonlinear interior solver MadNLP [11].
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6 MadNLP, MadNCL, and GPUs

Algorithm NCL has been implemented as MadNCL [10], using MadNLP [11] as the solver for
subproblems NCk. MadNLP has the option of solving (K2) or (K1) rather than (K3).
For convex problems, system (K2) is symmetric quasidefinite (SQD) [14] and it is practical to use
sparse indefinite LDLT factorization. MadNLP implements this option using the cuDSS library
[12, 9] to utilize GPUs. Alternatively (and again for convex problems), (K1) is SPD and MadNLP
can use the cuDSS sparse Cholesky LDLT factorization (unless JTJ is dense).
Thus, for certain large optimization problems, MadNCL is a solver that employs GPUs and in
general is much faster than IPOPT or KNITRO. Numerical results are presented for solving security
constrained optimal power flow (SCOPF) problems on GPUs.
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Symmetric Pseudospectral Shattering and Fast Divide-and-Conquer for the
Definite Generalized Eigenvalue Problem

James Demmel, Ioana Dumitriu, and Ryan Schneider

Abstract

Overview: We adapt the asymptotically fastest-known algorithm for diagonalizing arbitrary ma-
trix pencils – as well as the related phenomenon of pseudospectral shattering – to the definite
generalized eigenvalue problem. Put simply, we obtain significant efficiency gains by preserving
and exploiting structure, in this case symmetry. In doing so, our work provides a general road map
for tailoring fast diagonalization to structured problems.
Recent work in randomized numerical linear algebra produced the first sub-O(n3) algorithms for
diagonalizing any matrix A or matrix pencil (A,B) [3, 5]. The key insight of this work is the
phenomenon of pseudospectral shattering, where a random perturbation to a matrix, or pencil, has
a regularizing effect on its (pseudo)spectrum. A result of smoothed analysis [11], shattering is char-
acterized by a minimum eigenvalue gap and minimally well-conditioned eigenvectors. Moreover,
it implies success for fast divide-and-conquer eigensolvers, which can diagonalize a perturbed ma-
trix/pencil with essentially optimal complexity (that is, complexity equal to matrix multiplication
up to log factors). The name “pseudospectral shattering” is derived from the fact that a ran-
dom grid covering the ϵ-pseudospectra of the perturbed problem separates its disjoint components,
and the eigenvalues they contain, into separate grid boxes for ϵ sufficiently small – i.e., inverse
polynomial in n.
Pseudospectral shattering suggests a simple, high-level approach to eigenvalue problems: apply a
random perturbation and run a fast version of divide-and-conquer, where the shattering grid can
be used to reliably divide the spectrum at each step. The result is an accurate diagonalization, in
the backward-error sense, provided the initial perturbation is small. Prior to [3], which introduced
pseudospectral shattering in the context of the standard eigenvalue problem, no way of leveraging
divide-and-conquer’s natural parallelization to obtain fast diagonalizations of arbitrary matrices (or
pencils) was known. Importantly, [5] established that this approach can be implemented without
relying on matrix inversion, thereby promoting stability while also minimizing associated commu-
nication costs (following Ballard et al. [2]).
These randomized eigensolvers, which we refer to collectively as pseudospectral divide-and-conquer,
are fully general. In particular, both [3] and [5] allow matrices to be arbitrary and apply Ginibre
perturbations to obtain a guarantee of pseudospectral shattering. This begs the question: how can
we adapt these algorithms to better handle symmetric or sparse inputs, for which dense Gaussian
perturbations are structure-destroying? Going further: if we can achieve pseudospectral shattering
while maintaining structure – i.e., via structured perturbations – how can we translate that into
efficiency gains in divide-and-conquer?
We answer these question for the definite generalized eigenvalue problem, which corresponds to
pencils (A,B) in which A and B are Hermitian and the Crawford number γ(A,B) satisfies

γ(A,B) = min
||x||2=1

|xH(A+ iB)x| > 0. (1)

Pencils arising in scientific computing and machine learning are often definite [7, 6]. We note
two important sub-problems in particular: (1) the Hermitian eigenvalue problem, corresponding
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to B = I, and (2) the generalized symmetric definite eigenvalue problem, in which B is positive
definite.
As inputs to divide-and-conquer, definite pencils exhibit a number of properties that can be lever-
aged for improved efficiency. Most notably, the eigenvalues of a definite pencil (A,B) are real
(and in fact any ϵ-pseudospectrum that considers only Hermitian perturbations to A and B will be
constrained to the real axis for ϵ sufficiently small). Additionally, definite pencils are regular and
satisfy stronger eigenvalue/eigenvector perturbation bounds than the generic case (see e.g., [12]).
Finally, where an arbitrary pencil (A,B) is diagonalized by a pair of eigenvector matrices – if it is
diagonalizable at all – a definite pencil can always be diagonalized by a single matrix. That is, for
any definite pencil (A,B) there exists invertible X such that

(XHAX,XHBX) = (ΛA,ΛB) (2)

for ΛA and ΛB diagonal.
Motivated by these observations, we devise a version of pseudospectral divide-and-conquer that
pursues efficiency by maintaining definiteness through both the initial random perturbation and
the subsequent recursive procedure. The main ingredients are the following:

1. We prove shattering for a symmetric pseudospectrum

Λsym
ϵ (A,B) =

{
z :

(A+ E)u = z(B + F )u for u ̸= 0 and
E,F Hermitian with

√
||E||22 + ||F ||22 ≤ ϵ

}
(3)

under random perturbations that are either diagonal or sampled from the Gaussian Unitary
Ensemble (GUE). The diagonal case builds on work of Minami [8] and implies a remark-
ably simple path to structured shattering for (Hermitian) banded matrices. The GUE case,
meanwhile, leverages recent results of Aizenman et al. [1]. In both settings, the key insight
is a bound on the probability that a perturbed Hermitian matrix has a certain number of
eigenvalues in a given interval of the real axis.

2. Next, we demonstrate that (inverse-free) iterative methods for computing spectral projectors
of (A,B) – i.e., projectors onto deflating subspaces corresponding to sets of eigenvalues,
which are the key to the recursive splits of divide-and-conquer – can be optimized for fast
convergence on problems with real eigenvalues [4]. This is the primary advantage we gain
access to by preserving definiteness (and itself generalizes work of Nakatsukasa et al. [10]).

Combining points one and two yields a specialized version of pseudospectral divide-and-conquer that
is significantly more efficient on definite inputs. Ongoing work seeks high performance implemen-
tations of both standard pseudospectral divide-and-conquer and this specialization. Accordingly,
and in parallel with broader efforts to deploy randomized algorithms in numerical linear algebra
[9], our work represents an important step towards bringing fast, randomized diagonalization to
practice.
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Sparse Pseudospectral Shattering

Rikhav Shah, Edward Zeng, Nikhil Srivastava

Abstract
A central question in numerical analysis is the following: how do the eigenvalues and eigenvectors
of a matrix behave under perturbations of its entries? For Hermitian matrices, the eigenvalues
are 1−Lipschitz functions of the entries, and the eigenvectors are stable under perturbations if
the minimum eigenvalue gap is large. This fact is essential to the rapid convergence and rigorous
analysis of algorithms for the Hermitian eigenvalue problem and its cousins.
For non-Hermitian matrices, two related difficulties appear: non-orthogonality of the eigenvectors
and spectral instability, i.e. high sensitivity of the eigenvalues to perturbations of the matrix en-
tries. Non-orthogonality slows down the convergence of iterative algorithms (such as the power
method) and spectral instability makes it difficult to rigorously reason about convergence in the
presence of roundoff error. The main tool used to surmount these difficulties in recent years is
smoothed analysis, i.e., adding a small random perturbation to the input and solving the per-
turbed problem, incurring a small backward error. Specifically it was shown in [BGVKS23] that
adding small i.i.d. complex Gaussian random variables to each entry of a matrix produces a matrix
with well-conditioned eigenvectors and a large eigenvalue gap, a phenomenon termed “pseudospec-
tral shattering”. This was then generalized to other random variables in [BVKS20, JSS20], and
is currently an essential mechanism in all of the known convergence results about diagonalizing
arbitrary dense matrices. Crucially, however, all current work examines the setting where i.i.d.
noise is added to every single entry of a given matrix.

This paper asks if it possible to achieve pseudospectral shattering by adding noise to
only a subset of entries, selected at random. We provide a positive answer.

In fact, we show only O(n log2(n)) entries need to be perturbed to achieve sufficient regularization
for many downstream algorithmic tasks. Our results are phrased in terms of the sparsity ρ = ρ(n) of
the added noise. In our model, each entry of a given matrix M is perturbed by a complex Gaussian
g with probability ρ, and left unchanged otherwise. As one might expect, our guarantee provides
stronger regularization the larger ρ is. We measure regularization in terms of the eigenvector
condition number κV (A) and minimum eigenvalue gap η(A). In the following definitions of these
quantites, A = V DV −1 is any diagonalization of A and λ1(A), . . . , λn(A) are the eigenvalues of A.

κV (A) = inf
A=V DV −1

∥V −1∥ ∥V ∥ and η(A) = min
i ̸=j

|λi(A)− λj(A)|.

Given a matrix M , the perturbation described above has the form M +Ng, where the entries of Ng

are i.i.d. copies of δ · g where δ ∼ Bernoulli(ρ) and g ∼ N (0, 1C). Our main theorem is as follows.

Theorem 1. Set K = 2 log(n)/ log(nρ). For any M ∈ Cn×n, if nρ = Ω(log(n) log(∥M∥+n)) then

Pr
(
κV (M +Ng) ≥ (∥M∥+ n2ρ)10K

)
≤ O

(
n−K

)
, (1)
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and

Pr
(
η(M +Ng) ≤ (∥M∥+ n2ρ)−35K

)
≤ O

(
n−K

)
. (2)

The proof of this theorem consists of three steps. In the first two steps, A can be any random
matrix. In the third step, we need our particular model of sparse perturbations, A = M +Ng.

1. Bootstrapping: An important object related to spectral stability is the ε-pseudospectrum of
A, defined as

Λε(A) = {z ∈ C : σn(z −A) ≤ ε}.

It always contains disks of radius ε around each eigenvalue; equality is achieved if and only if A
is a normal matrix, i.e. κV (A) = 1. For less well conditioned matrices, the ε-pseudospectrum will
be larger. A quantifiable version of this statement relates the area of the pseudospectrum to both
κV (·) and η(·). The bootstrapping argument of [JSS20] turns this observation into a probabilistic
tail bound: a strong upper bound on E vol Λε(A) and a lower tail bound on η(A) establishes an
upper tail bound on κV (A). We adapt their argument and improve it by dramatically lessening
the control on E vol Λε(A) required for the argument to go through. The ideal control would be of
the form

E vol Λε(A) ≤ poly(n) · ε2.

The bootstrapping argument of [JSS20] shows that it suffices to have ε2 log(1/ε) in place of ε2. We
show it suffices to have εc + exp(−n) for any constant c > 0 in place of ε2.

2. Reduction to bottom two singular values: This step relies on known arguments which
were also used in [BKMS21, BGVKS23]. The previous step shows we need control over E vol Λε(A)
and η(A). As may be clear from the definition, E vol Λε(A) is immediately convertible to lower tail
estimates for the least singular value σn(z−A) for z ∈ C. We also show a lower tail bound on η(A)
can be reduced to lower tail bounds on the bottom two singular values σn(z −A), σn−1(z −A).
The strength of the tail bound can be characterized in terms of the power cm of ε on the right-hand
side of a bound of the form

Pr(σn−m(A) ≤ ε) ≤ poly(n)εcm + exp(−n). (3)

The reduction from η(A) described in Lemma ?? goes through when

1

c0
+

1

c1
< 1.

For sufficient control on E vol Λε(A), we just need c0 > 0. Thus the bottleneck is the reduction
from η(A).

3. Control on bottom two singular values: We show the required control over the bottom
two singular values holds with room to spare. Specifically, we show a bound of the form (3) holds
for c0 = 2 and c1 = 4 (in fact, we show it holds for cm = 2m + 2 for any constant m). The
argument is based on an ε-net construction following the compressible/incompressible or rich/poor
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decomposition in [TV07]. That work considers lower tail bounds of σn(M + Nx) where x is a
general sub-Gaussian random variable and the sparsity parameter ρ(n) = nα−1, α > 0 is a fixed
polynomial in n. They show for every polynomial nA, there exists a polynomial nB such that

Pr
(
σn(A) ≤ n−A

)
≤ n−B.

By tracing their argument, one can show there is a linear relationship between A and B so that
their bound more closely resembles the form (3) for an unspecified tiny constant c0 and ε = 1

poly(n) .

By our improvement to the bootstrapping argument, their result gives enough control over E vol Λε(A).
However, it is not enough for η(A). We specialize to the complex Gaussian case x = g (or really the
case of x having bounded density on C) and achieve three advantages over [TV07] in this setting.
Firstly, our argument applies to every m (not just m = 0), and we show the optimal power of
c0 = 2 in the m = 0 case. Secondly, we may take ε to be arbitrarily small. Lastly, we are able to
push the sparsity parameter down to (log n)2/n.
Furthermore, because g has a continuous density, we avoid the additive combinatorics required by
[TV07], resulting in much simpler proofs.

Algorithmic application. As alluded to already, establishing control over the eigenvector con-
dition number of a matrix is essential for rigorous analysis of non-Hermitian eigenvalue problems.
The work of [BKMS21] does this by adding a dense perturbation N . The drawback is that the cost
of computing matrix-vector products goes from O(nnz(M)) to O(nnz(M)+nnz(N)) = O(n2) where
nnz(A) is the number of nonzero entries in the matrix A. The algorithmic content of this paper is
that it suffices to take N to be a sparse perturbation, with E nnz(N) = n2ρ for ρ = Ω(log(n)2/n).
As a simple example of an application of Theorem 1, we show it implies an algorithm for computing
the spectral radius spr(M) of any matrix up to mixed forwards-backwards error ε using just

O

(
log(n)

log(nρ)
· log(n/ε)

ε
·
(
nnz(M) + n2ρ

))
floating point operations.

A full preprint can be found at
https://math.berkeley.edu/~rdshah/files/sparsepseudospectralshattering.pdf
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Randomized small-block Lanczos for null space computations

Daniel Kressner and Nian Shao

Abstract

Computing the null space of a large matrix A, having no particular structure beyond being sparse,
is a challenging computational problem, especially if the nullity N—the dimension of the null
space—is large.
When N = 1, standard choices include the Lanczos method for computing the smallest eigenvalue
and eigenvector of ATA. When N > 1, the Lanczos method (with a single starting vector) becomes
unreliable and prone to miss components of the null space. In fact, in exact arithmetic only a
one-dimensional subspace of the null space can be extracted via Lanczos. Block Lanczos methods
address this issue by utilizing a block of d > 1 starting vectors instead of a single starting vector.
Common wisdom and existing convergence analyses all suggest to choose d not smaller than the
size of the eigenvalue cluster of interest. Applied to null space computation this would require
d ≥ N and in exact arithmetic this condition is indeed necessary. The presence of round-off error
blurs the situation. As an example, consider the 420× 420 diagonal matrix

A = diag(0, . . . , 0, 1, 2, . . . , 399), (1)

that is, the first 21 diagonal entries are zero. When applying block Lanczos to A in order to
compute its null space and choosing a block of d (Gaussian) random starting vectors, one would
expect to obtain no more than d (approximate) zero eigenvalues and corresponding eigenvectors.
However, when executing block Lanczos in double precision arithmetic without breakdown and
declaring eigenvalues less than 10−4 as zero, we obtain the results reported in Table 1.

Table 1: Null space dimension obtained when applying block Lanczos with d random starting
vectors to the matrix from (1).

Block size d 1 2 3 4 5 6 7 10 12 14 15 20 21
Dimension 11 11 16 12 15 15 21 20 21 21 21 21 21

While the null space dimension estimated by block Lanczos for small values of d is erratic and
smaller than 21, it is always larger than d. In fact, already for d = 12, the correct null space
dimension is detected. Experiments with other matrices lead to similar findings, suggesting that
round-off error breaks some of the curse incurred by eigenvalue clusters, but it does not fully address
the convergence issues of single-vector or small-block Lanczos methods either.
The situation described above is reminiscent of recent work [MMM2024] on the single-vector Lanc-
zos method for low-rank approximation. Taking the randomness of the starting vector into account
they establish a convergence result that still requires the (large) singular values to be distinct but the
dependence of the complexity on the gaps between singular values is very mild, in fact logarithmic.
Although single-vector or small-block Krylov subspace methods do not satisfy gap-independent
convergence bounds, small random perturbations of A can easily break the adverse role of repeated
singular values. As we have seen, perturbations due to round-off are not sufficient to achieve this
effect, but (slightly larger) random perturbations will do, thanks to eigenvalue repulsion results.
In this work [KS2024], we propose a randomized small-block Lanczos method for null space cal-
culation, sketched as Algorithm 1. Compared to the task of low-rank approximation, there are
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two major differences. First, in low-rank approximation, the largest few singular values are usually
unknown and, in most applications, they do not form tight large clusters. In the context of null
spaces, the desired singular values form one large cluster of zeros. Second, while convergence to
the relevant invariant subspace is not necessary for low-rank approximation, such convergence is
imperative to obtain a good null space approximation.

Algorithm 1: Randomized small-block Lanczos for null space computations
Input: Matrix A ∈ Rm×n with m ≥ n and N zero singular values. Block size d. Perturbation

parameter ϵ > 0. Number of iterations ℓ.
Output: Orthonormal basis V approximating null space of A.
Set B = ATA+ ϵD, with a diagonal matrix D having diagonal entries uniformly i.i.d. in [0, 1];
Draw a Gaussian random matrix Ω ∈ Rn×d;
Perform block Lanczos to compute the decomposition BZℓ = ZℓTℓ +Qℓ+1Eℓ+1, where Zℓ is an
orthonormal basis of Krylov subspace span{Ω, BΩ, . . . , Bℓ−1Ω} and Tℓ is block tridiagonal;

Compute an orthonormal basis VZ for the invariant space of the N smallest eigenvalues of Tℓ.
return V = ZℓVZ ;

In the theoretical part, we examine the impact of the random perturbation ϵD. In particular, we
present a new eigenvalue repulsion result for the perturbed zero eigenvalues of ATA. At the same
time, the perturbation incurs a limit on the attainable accuracy of the null space approximation,
and we quantify this effect by a perturbation analysis. For the single-vector case (d = 1), we achieve
more refined results by analyzing the convergence of individual Ritz vectors and establish sharp
bounds on the accuracy of the null space approximation.
In the numerical part, we incorporate several practical improvements, including preconditioning,
restarting, and partial reorthogonalization, and provide various numerical results for applications
such as the computation of connected graph components and cohomology. These numerical exper-
iments not only validate our theoretical findings regarding the randomized single-vector Lanczos
method but also highlight the efficiency of the small-block Lanczos method. Notably, it highlights
when our method is preferable compared to other null space solvers, particularly when the nullity
is substantial and memory constraints are a limiting factor.
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DATA-PARALLEL adaptive TENSOR-TRAIN CROSS approximation

Tianyi Shi, Daniel Hayes, Jing-Mei Qiu

Abstract

The tensor-train (TT) format is a low rank tensor representation frequently used for high order
tensors. Traditionally, the TT format is computed directly with all the elements in the tensor. In
this talk, we propose a TT decomposition algorithm that partitions the tensor into subtensors and
performs decomposition individually before merging back together. This factorization routine is
ideal for distributed memory parallelism. In addition, instead of computing the TT format with
singular value decomposition based techniques, our proposed method, parallel adaptive TT cross,
is a data-centric iterative method based on data skeletonization and has a low computational cost.
In particular, our method is based on two innovative iterative formulations for data extraction
and TT format construction, and we provide theoretical guarantees, communication analysis, and
scaling results. For example, strong scaling results on synthetic datasets and discretized solutions
of 2D and 3D Maxwellian equations suggest that this algorithm scales well with the number of
computing cores, with respect to both storage and timing. This talk is based on the preprint
https://arxiv.org/abs/2407.11290

BIO: Tianyi Shi is a postdoctoral fellow in the Scalable Solvers Group in Applied Mathematics
and Computational Research Division at Lawrence Berkeley National Laboratory. He obtained
his PhD from the Center for Applied Mathematics at Cornell University. His research interests
include numerical linear algebra with a focus on sparse and data-sparse matrices and tensors, and
high-performance computing.
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Estimation of Spectral Gaps for Sparse Symmetric Matrices

Michele Benzi, Michele Rinelli, Igor Simunec

Abstract

Identifying the gap between two consecutive eigenvalues of a real symmetric matrix A ∈ Rn×n

is an important task that is often encountered in applications, such as in electronic structure
computations. For instance, in Kohn-Sham Density Functional Theory [5] one has to determine
the spectral projector Pµ associated with the Fermi level (or chemical potential) µ ∈ R, which
corresponds to the occupied states of a system described by a discrete Hamiltonian A. In the case
of insulators at zero electronic temperature, there is a gap separating the first k eigenvalues of
A from the rest of the spectrum, and the Fermi level µ lies inside the gap between the k-th and
(k + 1)-th eigenvalue of A, where k is the number of electrons in the system. In this setting, the
spectral projector Pµ = hµ(A) is often approximated using polynomials or rational functions that
approximate the step function hµ(λ), which takes the value 1 for λ < µ and 0 for λ > µ. In order
to use this approach, one first needs to compute a value of µ that lies in the gap between λk and
λk+1, where we denote the eigenvalues of A as λ1, . . . , λn in nondecreasing order.
Instead of looking for the gap between λk and λk+1 for a specific k, in this talk we tackle this
problem from a different perspective, and aim to find all gaps in the spectrum of A that are larger
than a certain threshold. Since in practical applications the gap between λk and λk+1 is often
relatively large, we expect that this approach will provide useful results even when one needs to
find a single, specific gap.
Let us denote by ne(µ) the number of eigenvalues of A that are strictly smaller than µ. Assuming
that µ does not coincide with an eigenvalue of A, we have ne(µ) = rank(Pµ) = tr(Pµ). Therefore,
ne(µ) can be estimated by estimating tr(Pµ) with Hutchinson’s stochastic trace estimator [4] com-
bined with the Lanczos algorithm [7, Algorithm 6.15]. Given s random Gaussian vectors {xi}si=1,
Hutchinson’s stochastic trace estimator approximates tr(Pµ) with

trHs (Pµ) :=
1

s

s∑
i=1

xT
i Pµxi.

Since Pµ = hµ(A), each quadratic form can be approximated using the Lanczos algorithm. Let
V

(i)
m ∈ Rn×m be an orthonormal basis of the Krylov subspace

Km(A,xi) = span{xi, Axi, . . . ,A
m−1xi},

constructed with the Lanczos algorithm, and let the tridiagonal matrix T
(i)
m := V

(i)T
m AV

(i)
m be the

projection of A onto Km(A,xi). We can approximate xT
i Pµxi with

ψ(i)
m (µ) := ∥x∥22eT1 hµ(T (i)

m )e1, j = 1, . . . , Nf ,

so we obtain the trace approximations

tr(Pµ) ≈
1

s

s∑
i=1

ψ(i)
m (µ).

If we use the same vectors {xi}si=1 for different µ, these trace approximations can be computed
simultaneously for many different µ by using the same Krylov subspaces Km(A,xi), with a cost that
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is only slightly higher than for a single value of µ. This approach has already been used in literature
on related problems, such as the estimation of the number of eigenvalues of A in an interval or the
estimation of spectral densities [3, 6]. In this talk we will focus on thoroughly analyzing this method
for the detection of spectral gaps, with the goal of determining how to choose the parameters s
and m in order to minimize the computational cost and ensure that all gaps with relative width
above a given threshold θ ∈ (0, 1) are found (up to a failure probability δ).
The error of Hutchinson’s estimator can be bounded, for instance, with [2, Theorem 1], which states
that

P
(
|tr(Pµ)− trHs (Pµ)| ≥ ε

)
≤ δ if s ≥ 4

ε2
(
∥Pµ∥2F + ε∥Pµ∥2

)
log(2/δ).

However, we have ∥Pµ∥2F = ne(µ), and ne(µ) = O(n) when µ is near the middle of the spectrum, so
to achieve any fixed absolute accuracy ε we would have to take s = O(n), which becomes unfeasible
as n grows. This means that with this approach it is prohibitively expensive to try and find a value
of µ in the gap between λk and λk+1 by requiring that trHs (Pµ) ≈ ne(µ) = k. Instead, we use a
different point of view.
If we consider tr(Pµ) as a function of µ, it is a nondecreasing and piecewise constant function, with
a jump of height 1 whenever µ coincides with an eigenvalue of A. A similar property holds for
trHs (Pµ), with the difference that the jumps have random heights, each with expected value 1. In
particular, trHs (Pµ) is constant for all µ ∈ [a, b] if the interval [a, b] contains no eigenvalues of A.
This observation can be exploited to find gaps in the spectrum of A, by looking for intervals in
which the Lanczos approximation 1

s

∑s
i=1 ψ

(i)
m (µ) is almost constant in µ and has a small error. For

instance, if for a constant C and a small ε > 0 we can show that

trHs (Pµ) ∈ [C − ε, C + ε] for all µ ∈ [a, b],

then we can conclude that either trHs (Pµ) is constant in the interval [a, b] and hence [a, b] is a gap in
the spectrum of A, or all jumps in trHs (Pµ) associated with eigenvalues in [a, b] have heights smaller
than 2ε. If ε is small enough, the latter event has a small chance of occurring.
In order to make the argument outlined above rigorous, we obtain a bound on the probability of
having small jumps in trHs (Pµ), as well as a posteriori error bounds and estimates for the Lanczos
approximation of the quadratic forms xT

i Pµxi. By combining these bounds, we will show that
for a given budget of matrix-vector products with A, the best way to allocate it is to set s = 1,
i.e., use a single random vector for Hutchinson’s estimator and concentrate all the computational
effort on the Lanczos algorithm. We also obtain an a priori bound on the accuracy of the Lanczos
approximation that depends on the relative gap width θ, which will allow us to predict how many
Lanczos iterations are needed to ensure that all gaps larger than a given width are detected.
The theoretical analysis is complemented by a detailed computational discussion, leading to an
algorithm that is able to detect gaps efficiently and reliably. The effectiveness of the proposed
method will be showcased with several numerical examples. Further details can be found in the
preprint [1].
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Alternating Mahalanobis Distance Minimization for CP Tensor
Decomposition

Navjot Singh, Edgar Solomonik

Abstract

Tensors generalize matrices by representing data in more than two dimensions. Tensor decom-
positions are mathematical constructs used to efficiently represent, approximate, and manipulate
tensors. Tensor decompositions have applications in various fields such as in image analysis [2],
in signal processing [6], in quantum chemistry [5], in chemometrics [4] and many more. Finding
the most accurate low rank tensor decomposition of a tensor is an NP-hard problem [1] in most
cases. Consequently, numerical optimization algorithms are used to compute a low rank approxi-
mation efficiently. In this talk, we present a novel alternating optimization algorithm for CP tensor
decomposition (CPD) [7].

CP Decomposition. The CPD problem, for an order 3 tensor TTT is formulated as following,

min
A,B,C

1

2

∥∥∥TTT − [[A,B,C]]
∥∥∥2
F
,

([[A,B,C]])ijk =
∑
r

airbjrckr.

The most used algorithm to solve the above problem is alternating least squares (ALS). ALS solves
for one factor matrix at a time which results in least squares equation. Solving for factor matrix
A results in the following least squares equation,

A(C ⊙B)T ∼= T(1),

where ⊙ denotes the Khatri-Rao product. ALS solves these equations via normal equations where
the solution is given as

A = T(1)

(
C ⊙B

)†T
= T(1)

(
C ⊙B

)
(BTB ∗CTC)†,

where ∗ denotes the Hadamard product, and † denotes the Moore-Penrose inverse. The normal
equations result in a solution that is optimal in Frobenius norm and matrix 2−norm. We propose
an update that solves the least squares equations for factor A as

A = T(1)(C
†T ⊙B†T ).

We prove that the above update leads to an alternating minimization algorithm which has a local
superlinear convergence rate for exact CP rank problems, when rank is smaller than the di-
mensions. The above update is an optimal solution of the least squares equations in Mahalanobis
norm. The algorithm corresponding to these alternating updates is called alternating Mahalanobis
distance minimization (AMDM) [7]. The update for factor A is derived by minimizing the following
objective function

min
A

1

2
vec(TTT − [[A,B,C]])TMvec(TTT − [[A,B,C]]),
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where M is a Kronecker structured positive definite matrix. M is defined as

M =
(
M (A)

)−1 ⊗
(
M (B)

)−1 ⊗
(
M (C)

)−1
,

M (B) = BBT + (I −BB†),

and similarly defined for M (A) and M (C). Mahalanobis norm [3] is a generalization of Frobenius
norm by using covariance or ground metric matrices. For exact rank problems, the minima for any
Mahalanobis norm corresponds to the minima of Frobenius norm. However, for approximation of
a tensor with low CP rank, the stationary point of the AMDM algorithm may not be optimal in
Frobenius norm metric that is the most used metric for assessing quality of the decomposition.
We empirically show that changing the metric M from I (which corresponds to the ALS update) to
the proposed AMDM metric leads to a well-conditioned decomposition for approximation problems.
A well-conditioned decomposition is useful for separation of components, clustering using CPD
factors, and stability of application of the operator when an operator is approximated via CPD.
We also show that by interpolating between AMDM and ALS updates, we obtain a hybrid algorithm
that leads to better fitness as compared to ALS while maintaining a the quality of decomposition.
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Algorithms for Hermitian eigenproblems and their complexity

Aleksandros Sobczyk

Abstract

Hermitian eigenproblems, and, more broadly, Hermitian-definite pencils, arise naturally in many
real world applications in Machine Learning, Scientific Computing, and Engineering. Given a
Hermitian matrix A and a Hermitian positive-definite matrix B, the goal is to compute (a subset
of) the eigenvalues λ and/or the eigenvectors v, which satisfy

Av = λBv.

In data science and machine learning, for example, they arise in Spectral Clustering [31, 39], Lan-
guage Models [22], Image Processing [36, 1], Principal Components Analysis [11, 24, 37], and many
others [12, 29, 14, 9, 28, 2]. A ubiquitous application in Scientific Computing is the computation
of the density matrices and the electron densities in Density Functional Theory (DFT) [27].
Algorithms for eigenproblems have been studied since at least the nineteenth century, some early
references being attributed to Jacobi [23, 16]. In this work we revisit algorithms from the computa-
tional complexity point of view, targeting (i) eigenvalue problems, which involve the approximation
of eigenvalues, singular values, spectral gaps, and condition numbers, (ii) eigenspace problems,such
as the approximation of eigenvectors, spectral projectors, and invariant subspaces, and (iii) diag-
onalization problems, which refer to the computation of all the eigenvalues and eigenvectors of a
matrix, for example, a full spectral factorization, or the SVD.
This work is a summary of the results in [41, 40] for some variants of the aforementioned problems,
which were part of the corresponding authors’ doctoral dissertation. All of the algorithms and
complexity bounds are in the following three models of computation:

Exact real arithmetic (Real RAM), where a processor can execute the following operations:
{+,−,×, /,

√
·, >}, on real numbers, in constant time, without any rounding errors;

Rational arithmetic, where numbers are represented as rationals consisting of an integral nu-
merator and denominator of finite (but variable bit length, and each arithmetic operation
does not introduce errors but takes time proportional to the number of bits;

Floating point, where any real number α ∈ R is rounded to a floating point number fl(α) =
s× 2e−t ×m, and each arithmetic operation ⊙ ∈ {+,−,×, /,

√
·} introduces also some errors

that satisfy fl(α ⊙ β) = (1 + θ)(α ⊙ β), fl(
√
a) = (1 + θ)

√
a, where |θ| ≤ u. Assuming

a total of b bits for each number, every floating point operation costs F(b) bit operations,
where typically it is assumed that F(b) ∈ Õ(b) [19].

Algorithms in Real RAM. In the Real RAM model, we analyze the following problems:

1. Symmetric arrowhead/tridiagonal diagonalization,

2. Hermitian diagonalization,

3. Singular Value Decomposition.
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We first provide an end-to-end complexity analysis of the divide-and-conquer algorithm of Gu
and Eisenstat [18] for the diagonalization of tridiagonal and arrowhead matrices, when accelerated
with the Fast Multipole Method [35]. By carefully analyzing all of the steps of the algorithm, we
show that it provides provable approximation guarantees with the claimed nearly-O(n2) arithmetic
complexity, which significantly improves classic (dense) eigensovlers such as the QR algorithm.
The tridiagonal diagonalization algorithm can be efficiently combined with the (rather overlooked)
tridiagonal reduction algorithm of Schönhage [38], who proved that a Hermitian matrix can be
reduced to tridiagonal form with unitary similarity transformations in O(nω) arithmetic operations.
Here ω ≲ 2.371 is the current best known upper bound for the matrix multiplication exponent. This
way, we can diagonalize a Hermitian matrix in nearly matrix multiplication time, improving the
O(n3) arithmetic complexity of classic algorithms [30, 17], as well as the more recent O(nω log2(nϵ ))
complexity of the randomized algorithm of [3]. Similar bounds are obtained for the deterministic
complexity of the SVD. Many theoretical works assume the exact computation of an SVD as
“black-box” subroutine; see e.g. [34, 15, 13, 7, 9, 8], to name a few. However, its complexity and
approximation guarantees are often unspecified. Our main results and comparisons with existing
algorithms are outlined in Table 1.

Table 1: Complexities for diagonalization problems in the Real RAM model. The randomized algo-
rithms succeed with high probability (at least 1− 1/ poly(n)). O(nω(a,b,c)) denotes the complexity
of multiplying two matrices with sizes na × nb and nb × nc, respectively.

Arithmetic Complexity Deterministic
Arrowhead/Tridiagonal diagonalization
[10, 32, 18] O(n3) + Õ(n2) 3

Our results O
(
n2 polylog(n

ϵ
)
)

3

Hermitian diagonalization
[3, 25] O

(
nω log2(n

ϵ
)
)

7

[4] Õ
(
nω+1

)
7

[30] O
(
n3

)
3

Our results O
(
nω log(n) + n2 polylog(n

ϵ
)
)

3

SVD
Fast MM + [30] O

(
nω(1,k,1)

)
+ Õ

(
n3

)
3

[3, 25] O
(
nω(1,k,1) + nω log2(n

ϵ
)
)

7

Our results O
(
nω(1,k,1) + nω log(n) + n2 polylog(nκ(A)

ϵ
)
)

3

Algorithms in finite precision. Similar deterministic complexity upper bounds are obtained
for several problems in finite precision. We will present a stability analysis of the tridiagonal
reduction algorithm of Schönhage, and its combination with the tridiagonal eigenvalue solver of
[5, 6] (in rational arithmetic), to compute all the eigenvalues of a Hermitian matrix in nearly O(nω)
bit operations, deterministically.
Our main results, which are summarized in Table 2, improve several existing algorithms in different
aspects. Pan and Chen [33] showed how to achieve additive errors in the eigenvalues in O(nω)
arithmetic operations, but this increases to O(nω+1) boolean operations in rational arithmetic. The
algorithm of [30] achieves Õ(n3) bit operations for all the eigenvalues. In the randomized setting, [3]
also provides forward errors for the approximate eigenvalues in the Hermitian case, by exploiting a
perturbation bound by Kahan [26, 41] in O(nω polylog(n/ϵ)) boolean operations, but the logarithm
power is fairly large. We also provide the analysis for several other useful subroutines related to
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eigenvalue computations, including singular values, condition numbers, Hermitian-definite pencil
eigenvalues, spectral gaps, and spectral projectors.

Table 2: Boolean complexity comparison in finite precision. Here ϵ,∈ (0, 12). FP stands for Floating
Point and RA for Rational Arithmetic.

Boolean Complexity Success probability Model
Tridiagonal Reduction
[21, 20] O

(
n3F

(
log(n

ϵ
)
))

Deterministic FP
Our results O

(
nω log(n)F

(
log(n

ϵ
)
))

Deterministic FP
Hermitian Eigenvalues
[30] O

(
n3F

(
log(n

ϵ
)
))

Deterministic FP

[3]+[26] O
(
nω log2(n

ϵ
)F

(
log4(n

ϵ
) log(n)

))
1−O(1/n) FP

Our results O
(
nωF

(
log(n

ϵ
)
)
+ n2 polylog(n

ϵ
)
)

Deterministic FP+RA
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Filtration of Lanczos vectors in hybrid CG Tikhonov iteration

Kirk M. Soodhalter, Daniel Gerth

Abstract

We consider iterative methods for solving a linear ill-posed problem of the form

Ax ≈ y = yδ − δ · n

wherein A : X → Y is a compact linear operator, and yδ is a version of the right-hand side obtained
by noisy measurements, with ∥n∥ = 1 and 0 < δ ≪ 1. We assume that we only have access to yδ. It
is well known that naïve solution using the pseudoinverse operator A†yδ may lead to amplification
of the measurement noise, unbounded in the infinite-dimensional case and bounded but large in
the finite-dimensional case.
Conjugate gradients applied to the normal equations (CG) A∗Axδ = A∗yδ with an appropriate
stopping rule and CG applied to the system solving for a Tikhonov-regularized solution (CGT)
(A∗A+cIX )x

(δ,c) = A∗yδ (c > 0 is the Tikhonov parameter) are closely related methods. It has been
long observed that they build iterates from the same family of Krylov subspaces, due to the scalar
shift invariance property of Krylov subspaces [4]; i.e., Km(A∗A,A∗yδ) = Km(A∗A + cIX , A

∗yδ).
With this in mind, one can express both CG-based iterates with respect to the same Lanczos basis.
In particular, one can use this to understand how the representation of the CGT iterates change as
a function of c with c → 0 yielding a CG iterate. Let xδm =

∑m
i=1 z

(m)
i vi be the CG iterate where

{vi}mi=1 is the Lanczos basis for Km(A∗A,A∗yδ). Via linear algebraic manipulations, one can show
that the CGT iterate can be expressed as

x(δ,c)m =
m∑
i=1

γ
(m)
i (c)z

(m)
i vi,

where
{
γ
(m)
i (c)

}m

i=1
are functions of the Tikhonov parameter. These coefficient multiplier functions

can be shown to have decay properties as c → ∞ with the speed of decay increasing with i,
asymptotically. This has the effect of filtering out the contribution of the later terms of the CG
iterate. Thus, we call these functions Lanczos filters, as they express the effect of CGT regularization
in terms of the CG expressed in the Lanczos basis rather than in terms of the singular vector basis,
as is the case of classical definition of filter function in regularization theory [3].
Much of this work is explored in the context of infinite dimensional ill-posed problems to present
the analysis as generally as possible. For this, we build upon the work in [1] (which works with
the equivalent Golub-Kahan/LSQR formulation of these methods) to prove some additional con-
vergence results, to help us understand the beahvior of the CG and CGT iterates.
If we restrict our focus on the behavior of these methods when applied to finite-dimensional discrete
ill-posed problems, we can understand these filters as dampening the influence of Lanczos vectors
that are more highly polluted with noise. The mechanics by which noise comes to pollute the
Lanczos vectors has been illuminated by means of Gauss-Radau quadrature in [5, 6], and the
review [2] and references therein discuss how this has been previously used for Tikhonov parameter
selection.
We demonstrate with numerical experiments that good parameter choices correspond to appropriate
damping of the Lanczos vectors corresponding to larger amplifications of the measurement noise.
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Building on this idea, one can consider approaches other than Tikhonov for damping amplified
noise. We conclude by noting that analysis of other hybrid regularization schemes via damping of
(Krylov) subspace basis vectors from the iteration itself may be a useful avenue for understanding
the behavior of these methods for different choice of parameter, etc.
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GMRES with Preconditioning, Weighted norm and Deflation

Nicole Spillane, Daniel B. Szyld

Abstract

We consider the general problem of solving a linear system of the form

Ax = b; A ∈ Cn×n; b ∈ Cn.

The matrices A that we consider are non-singular, sparse and of high order n. For solving these
matrices, GMRES [3, Chapter 6] is a natural choice. We address two fundamental and connected
questions: How can the convergence of GMRES be predicted ? How can the convergence of GMRES
be accelerated ? Our aim is to combine three ways of accelerating GMRES convergence:

• Weighting by a Hermitian positive definite (hpd) matrix W: all inner products and norms in
the GMRES algorithm are replaced by the ones induced by W (see [1]),

• Preconditioning by a non-singular matrix H: GMRES is applied to the preconditioned prob-
lem AHu = b with x = Hu (see [3, Section 9.3]),

• Deflation by a projection operator Π := I−AZ(Y∗AZ)−1Y∗ (with Y,Z ∈ Cn×m): GMRES
is applied to the projected problem ΠAHu = Πb (see [7, 4]). A suitable initialization is also
performed that accounts for the part of the solution that has been projected away.

We refer to W, H and Π as accelerators for GMRES. With words, the strategy is that the pre-
conditioner H should be a good approximation of A−1, the deflation operator should handle the
space where H does not well approximate A−1, and the weighted inner product should facilitate
the analysis. In practice, identifying efficient accelerators requires a GMRES convergence bound
where the influence of H, W and Π is explicit. We prove in [6, Theorem 4.1] that the convergence
rate is bounded by

∥ri+1∥2W
∥ri∥2W

≤ 1− infy∈range(Π)\{0}
|⟨ΠAHy,y⟩W|2

∥ΠAHy∥2W∥y∥2W
·

Further Assumptions  Major simplifications occur in the case where A is positive definite (i.e.,
its Hermitian part is hpd), the preconditioner H is hpd, and the weight equals the preconditioner
W = H. In this case (and with a technical assumption on the deflation operator), it holds that

∥ri+1∥2H
∥ri∥2H

≤ 1− infy∈range(AHΠ)\{0}
|⟨A−1y,y⟩|
⟨y,M−1y⟩

× λmin(HM)

λmax(HM)
,

where M = 1/2(A + A∗) and N = 1/2(A − A∗) are the Hermitian and skew-Hermitian parts of
A, and the spectrum of HM is in the interval [λmin(HM), λmax(HM)].

Convergence without deflation Setting Π = I (no deflation) and with an identity from [2] it
is proved in [5, Theorem 4.3] that

∥ri+1∥2H
∥ri∥2H

≤ 1− 1

1 + ρ(M−1N)2
× λmin(HM)

λmax(HM)
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where ρ(·) denotes the spectral radius of a matrix. The residuals are bounded with respect to
two quantities. The first is the condition number of HM, a measure of whether H is a good
preconditioner for the hpd matrix M. The second is the spectral radius of M−1N, a measure of
how non-Hermitian the problem is. The takeaway is that fast convergence is guaranteed if the
problem is mildly non-Hermitian and H is a good preconditioner for M. The bound also has
important consequences for parallel computing and the analysis of domain decomposition methods.

A new deflation space [6, Theorem 6.3] When the problem is significantly non-Hermitian
(in terms of ρ(M−1N)), we propose to combine Hermitian preconditioning with spectral deflation.
Under the same assumptions as above, we choose the matrices Z and Y in the characterization of
the projection operator Π as follows. First, we denote by (λj , z

(j)) ∈ iR×Cn (for j = 1, . . . , n) the
eigenpairs of the generalized eigenvalue problem Nz(j) = λj Mz(j). Then, with a chosen threshold
τ > 0 we select for the deflation operator, the highest frequency eigenvectors, by setting

span(Z) := span{z(j); |λj | > τ} and Y = HAZ.

Then the convergence of weighted, preconditioned and deflated GMRES is bounded by

∥ri+1∥2H
∥ri∥2H

≤ 1− 1

(1 + τ2)
× λmin(HM)

λmax(HM)
.

Numerical illustrations show that preconditioning the Hermitian part in a way that is scalable leads
to overall scalability and that spectral deflation accelerates convergence when the problems become
more strongly non-Hermitian.

References

[1] A. Essai. Weighted FOM and GMRES for solving nonsymmetric linear systems. Numer.
Algorithms, 18(3-4):277–292, 1998.

[2] C. R. Johnson. Inequalities for a complex matrix whose real part is positive definite. Trans.
Am. Math. Soc., 212:149–154, 1975.

[3] Y. Saad. Iterative methods for sparse linear systems. Philadelphia, PA: SIAM Society for
Industrial and Applied Mathematics, 2nd ed. edition, 2003.

[4] K. M. Soodhalter, E. de Sturler, and M. E. Kilmer. A survey of subspace recycling iterative
methods. GAMM-Mitt., 43(4):29, 2020. Id/No e202000016.

[5] N. Spillane. Hermitian preconditioning for a class of non-Hermitian linear systems. SIAM J.
Sci. Comput., 46(3):a1903–a1922, 2024.

[6] N. Spillane and D. B. Szyld. New convergence analysis of GMRES with weighted norms,
preconditioning, and deflation, leading to a new deflation space. SIAM J. Matrix Anal. Appl.,
45(4):1721–1745, 2024.

[7] J. M. Tang, R. Nabben, C. Vuik, and Y. A. Erlangga. Comparison of two-level preconditioners
derived from deflation, domain decomposition and multigrid methods. J. Sci. Comput., 39:340–
370, 2009.

354



Evaluating and improving streaming methods for large scale SVD problems

Andreas Stathopoulos, Jeremy Myers, Toon Tran

Abstract

Large scale eigenvalue and singular value problems are typically solved using iterative methods
[10, 12]. For extreme scale matrix sizes randomized projection methods can be much faster while
still delivering sufficient accuracy, measured as the distance from the optimal low rank matrix.
The accuracy can be improved by following the projection with subspace iteration [7, 8]. However,
achieving high accuracy for individual singular vectors is generally more challenging.
In this work we address the problem where the matrix is so large that cannot be stored in its entirety
and its re-computation is either too expensive or not possible; hence even iterative methods are
infeasible. This situation is becoming increasingly common in the era of “bigger” data and is
often referred to as streaming, i.e., when the data arrives in some order, is processed, and then
forgotten. In terms of matrices, we assume that a matrix is streamed in m linear updates (see [14]),
A =

∑m
i=1Hi, but we focus our attention to streaming by rows, i.e., Hi is a set of rows of A.

Randomized methods are naturally suited for streaming. When a new Hi arrives, its randomized
projection is recorded, and the method continues until the entire matrix has been streamed, at
which point an approximate SVD can be computed from the projection. A series of improvements
on this basic idea [18, 15, 16, 13] have resulted in an efficient randomized method called SketchySVD
[14].
A different class of deterministic streaming SVD methods has been proposed but has not received
as much attention despite its potential for more accurate approximations. We use Incremental SVD
(iSVD) as a prototype such method. Inductively at step i + 1, iSVD appends the new window
Hi+1 to an existing rank-k approximation B(i), computes the SVD of [B(i);Hi+1], and then updates
B(i+1) based on the rank-k truncation of the SVD. Earlier works [9, 2, 4, 3, 5, 20] compute only
the left or right singular vectors, while the iSVD of Baker et al. [1] generalized these approaches
to track both left and right singular vectors albeit at a higher computational cost.
A notable difference is that iSVD provides a running low-rank approximation at every window,
while SketchySVD can wait till the end of streaming to compute it. Broadly speaking, randomized
sketching methods have low time and space complexity whereas deterministic sketching methods
have higher accuracy. However, the trade-offs have not been carefully studied in the literature. Em-
pirical results with randomized sketching methods do not compare with streaming or use datasets
that are typically small enough to be processed by batch methods [14]. In this work we explore these
missing comparisons and we introduce some new ideas for improving iSVD. Our contributions can
be summarized as follows:

• Traditional iSVD methods update the low rank approximation one row or a small number of
rows at a time. Because iSVD accuracy improves with larger window size (number of rows
in Hi), we instead make the window size as large as memory can hold. Because only a low
rank approximation is needed, iterative methods can be used to solve the partial SVD of the
large rectangular window.

• To evaluate the benefits of these streaming methods we need to address enormous prob-
lem sizes. For this reason, we provide a high-performance C++ implementation of both
SketchySVD and iSVD called Skema (available at https://github.com/jeremy-myers/
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skema). To perform dense and sparse matrix-vector multiplications (matvecs), Skema lever-
ages the Kokkos Performance Portability Ecosystem [6] for hierarchical parallelism on het-
erogeneous architectures, including x86 and accelerators. To compute a few eigenpairs or
singular triplets, Skema uses the PRIMME [11, 19] library. Dense matrix operations inside
PRIMME utilize multithreaded BLAS on CPUs and MAGMA on accelerators.

• We provide a complexity analysis of the “large window” streaming method and compare it
with a similar analysis of SketchySVD. We show that iSVD is more expensive than the same
iterative method applied to the entire matrix for the same number of iterations. The overhead
is proportional to the number of windows, especially for very sparse matrices. Therefore,
choosing larger window size not only improves accuracy but also reduces the time overhead.

• We also perform extensive numerical results on problems with enormous dimensions that are
much larger than those in the literature. Sources of problems include: stock price prediction
(kernel learning), social networks/analysis graphs, and scientific simulation data. We observe
that iSVD approximations are at least as accurate as SketchySVD ones and often several
orders of magnitude more accurate. Comparing runtimes, SketchySVD is typically faster, but
not as much as the complexity analysis suggests. This is because dense Gaussian embeddings
involve too many operations while sparsemaps implementations present a challenging memory
access pattern.

• Using iterative methods as the SVD solver at each window allows the use of initial guesses
which are readily available from the previous window, i.e., B(i) transformed appropriately to
correspond to the [B(i)Hi] matrix. Since the low rank approximations B(i) change relatively
slowly between windows, initial guesses provide a substantial reduction in the number of
iterations, around 30-50%.

• iSVD allows for further optimizations when solving for the largest eigenvalues of a symmet-
ric positive definite (SPD) matrix. Such problems are common in large graph Laplacians,
covariance matrices, and kernel methods in machine learning. Since the SVD and the eigen-
value problem are equivalent for SPD matrices, any right singular vector v of the rectangular
window at any iSVD step is an approximation to an eigenvector of A. Therefore, for any
row m of A we can compute the m-th value of the eigenvalue residual as A(m, :)v − λv(m).
This motivates the following convergence criterion for each iSVD window. Notice that while
the iterative method converges to the SVD of the rectangular window, the corresponding
eigenvalue residuals for A stop making progress after some iterations. If we can estimate the
A residuals we can check for this and stop early. We use reservoir sampling [17] to create and
store a subset of rows of A, AS , for which we can estimate the residual values and extrapolate
the residual norm to the entire matrix. Reservoir sampling is a method to maintain a uniform
sample of elements that have been streamed up to now. Preliminary results on this idea have
been promising for further reducing the number of iterations.

• In some cases, the streaming order of rows can be chosen by the user. An example is when a
row of a covariance or a kernel matrix is computed on demand from the data (data requires
O(n) storage vs O(n2) storage for the entire matrix). Therefore, the question arises of what
is the effect of streaming order in the final accuracy of the low rank space, and whether this
is achieved early or late during streaming. Based on the convergence analysis of [1] we show
that, on average, each window provides a similar additive improvement on accuracy. This
means that iSVD does not see the best accuracy until the last window. We have observed
that if rows are streamed in the order of decreasing row norms of A, the final accuracy is
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achieved very early in streaming. Thus, we explore the idea of using the row norms of the
low rank approximation B(i) as leverage scores to stream first the remaining rows with the
largest norms. This heuristic also achieves a similar behavior where most of the accuracy is
achieved earlier. If combined with our residual norm estimation using reservoir sampling, this
heuristic may suggest stopping the streaming before all windows have been streamed. This
approach is still under investigation.
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Rational Krylov methods for exponential Runge-Kutta integrators on
networks

Martin Stoll,Kai Bergermann

Abstract

We consider the solution of large stiff systems of ordinary differential equations with explicit expo-
nential Runge–Kutta integrators [2] for systems of the form

∂u(t)

∂t
= F (t,u(t)) = −Au(t) + g(t,u(t)), u(0) = u0, (1)

where we view them as being semi-discretized semi-linear parabolic partial differential equations on
continuous domains or on inherently discrete graph domains. This results in A = ∆ (the continuour
case) or A = L the graph case.
We suggest the use computing linear combinations of φ-functions in exponential integrators [1] to
solve the above problem. State-of-the-art computational methods use polynomial Krylov subspaces
of adaptive size for this task. These methods often suffer from that the required number of Krylov
subspace iterations to obtain a desired tolerance increase drastically with the spectral radius of the
system matrix A.
We present an approach that leverages rational Krylov subspace methods for this task (cf. [5]).
The main workhorse are Runge-Kutta schemes. For these, one can now employ the scheme with s
internal stages t + c1hi, . . . , t + cshi with cj ∈ [0, 1] for 1 ≤ j ≤ s into the time interval [t, t + hi]
leading to schemes of the form

ui+1 = χ(−hiA)ui + hi

s∑
j=1

bj(−hiA)Gij . (2)

Uij = χj(−hiA)ui + hi

s∑
k=1

ajk(−hiA)Gik, (3)

Gik = g(ti + ckhi,Uik), (4)

where χ, χj , ajk, and bj are φ-functions (cf. [4]).
Our exponential integrator approach relies on the use of rational Krylov approximations to the
matrix functions via

f(Ã)c̃ ≈ ∥c̃∥2Vmf(HmK−1
m )e1, (5)

where Hm and Km are small matrices coming from the rational Arnoldi method. We then give a
novel a-posteriori error estimate of the rational Krylov approximation to the action of the matrix
exponential on vectors for single time points. This bound allows for an adaptive approach similar
to existing polynomial Krylov techniques. We then briefly discuss the selection of poles and the
need for solving linear systems efficiently. The key to the convincing performance is to construct
preconditioners that lead to approximately constant iteration numbers.
Numerical experiments show that our method outperforms the state of the art for sufficiently large
spectral radii of the discrete linear differential operators [3]. We focus on well-known nonlinear
partial differential equation models allowing the fast simulations of examples including Turing
patterns. Additionally, we show that this approach allows the fast simulation of nonlinear network
dynamical systems.
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Sparsify Latent Factor Matrix by Householder Transformations

Xiaobai Sun

Abstract

In 1958 A. S. Householder (1904-1993) introduced the reflection transformation in his highly influ-
ential paper, Unitary Triangularization of a Nonsymmetric Matrix, published in the Journal of the
ACM. He presented the reflection as a special case of nonsingular transformation matrices in the
form of a rank-1 deviation from the identity matrix. In that same year, H. F. Kaiser (1927-1992)
published the seminal paper the Varimax Criterion for Analytic Rotations in Factor Analysis in
Psychometrika. Both papers have seen increasing citations in recent years, as will be demonstrated.
This work introduces the use of Householder transformations for effective and efficient rotations and
sparsification of latent factors. It has several advantages over the state-of-the-art factor rotation
methods. This appears to be the first connection between these two lines of research. 1

Analytic rotations are central to multiple factor analysis. Factor analysis is a statistical method
to uncover one or more than one latent variables, a.k.a. factors, that explain or interpret the
correlations among observable and observed variables. Latent variable analysis, originated from
the pioneering work of C. Spearman in 1904 in psychology, is indispensible to modern exploratory
analysis of data from various study fields, especially in social sciences and biomedical sciences. In
multi-factor analysis, the relationship between the observable and latent variables is represented by
a factor (loading) matrix. The concept of model simplification by factor rotations was conceived and
developed between 1932 and 1938 by L. L. Thurstone (1887-1955). Factor rotations are preceded
by an initial factor extraction, which can be obtained manually based on expert knowledge or
automatically via principal component analysis, maximal likelihood estimate, or other approaches.
The factor axes are then re-oriented by orthogonal or oblique rotation transformations, to simplify
(i.e. sparsify) the factor matrix pattern. The purpose is to identify salient relationships between
the observed variables and the latent factors and to explain or interpret the correlation in observed
phenomena. The term simplification here refers to reducing the complexity of observed variables
in terms of the underlying factors. Thurstone’s five simplification rules have been notably refined
over time. Kaiser’s varimax criterion and solution methods have a broad and lasting impact.
The factor rotation problem can be generally described as a factor matrix transformation governed
by a constrained nonlinear optimization problem. An objective function specifies a simplification
(or sparsification) criterion based on desired properties of the rotated factor matrix. All existing
criteria, including Kaiser’s criterion, are nonlinear functions with respect to the elements of the
rotated factor matrix. Constraints include equations to ensure the orthogonality in orthogonal
rotations or to preserve the variance per factor and avoid factor collapse in oblique rotations.
Additional constraints may be imposed in confirmatory factor analysis to align with reference or
target factor patterns.
Consider a particular case. Let Bp×m be the initial factor (loading) matrix with p variables and m
factors, where 1 < m < p. Let L(U) = BU be the loading matrix rotated from B by an orthogonal
transformation U . Kaiser’s criterion can then be described as follows,

U∗ = arg max
UTU=I

ϕ(L(U)) =
eT(L.4)e

p
−

∑
j=1:m

(
L(:, j)TL(:, j)

p

)2

, L(U) = BU, (1)

1This abstract is based on a manuscript not yet submitted anywhere to be considered for publication.
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where e denotes the constant-1 vector2. The rotated factor matrix is L(U∗).
Methods for computational solution of a factor rotation problem, such as (1), are inherently iterative
due to the non-linearity of the objective criterion function. Kaiser’s solution method involves
iterative sweeps of plane rotations. Every sweep comprises m(m − 1)/2 plane rotations across all
pairwise factor axes. The single parameter for each plane rotation can be determined by a single
equation derived from (1). Without being confined to the plane rotation sweeps, some methods
take the alternative approach, which determines an m×m orthogonal matrix U , with m(m− 1)/2
equations for the orthogonality. More specifically, one may use the Lagrange approach, with up to
m(m− 1)/2 multipliers, or deploy the gradient ascending method followed by a projection into the
feasible solution space.
The specialized use of Householder transformations for factor matrix sparsification can effectively
mitigate or eliminate certain issues present in existing factor rotation methods. For orthogonal
factor rotations, a Householder reflection is used in place of a plane-rotation sweep as in Kaiser’s
method. In comparison to the alternative approach, this new approach implicitly decomposes a
general orthogonal matrix U into orthogonal factors of a compact form. At each step, there are
(m − 1) parameters to be determined, as opposed to just 1 at one extreme with Kaiser’s method
or m(m − 1)/2 at the other extreme with the alternative approach. For any m > 1, there is only
one Lagrange multiplier. The new factor rotation approach is simple in derivation as well as in im-
plementation. It effectively eliminates the sequencing or scheduling problem within each sweep of
plane rotations and resolves the projection issue encountered in gradient-based iteration methods.
Additionally, numerical experiments, which will be presented, demonstrate that the new approach
is more efficient. For oblique rotations, the use of an oblique Householder transformation is intro-
duced, with similar benefits. Not restricted to Kaiser’s criterion, the new method for sparsifying
the factor matrix is compatible with and applicable to all factor rotation criteria commonly used
in practice.
As a curious application, the simplification criteria and methods are also utilized to sparsify the
base vectors for a multi-dimensional Householder reflection.

2The criterion will be explained in the presentation
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Asynchronous methods meet randomized: Provable convergence rate

Daniel B.Szyld

Abstract

Asynchronous methods refer to parallel iterative procedures where each process performs its task
without waiting for other processes to be completed, i.e., with whatever information it has locally
available and with no synchronizations with other processes. For the numerical solution of a
general partial differential equation on a domain, Schwarz iterative methods use a decomposition
of the domain into two or more (usually overlapping) subdomains. In essence one is introducing
new artificial boundary conditions Thus each process corresponds to a local solve with boundary
conditions from the values in the neighboring subdomains.
Using this method as a solver, avoids the pitfall of synchronization required by the inner prod-
ucts in Krylov subspace methods. A scalable method results with either optimized Schwarz or
when a coarse grid is added. Numerical results are presented on large three-dimensional problems
illustrating the efficiency of asynchronous parallel implementations.
Most theorems show convergence of the asynchronous methods, but not a rate of convergence. In
this talk, using the concepts of randomized linear algebra, we present provable convergence rate
for the methods for a class of nonsymmetric linear systems. A key element in the new results is
the choice of norm for which we can prove convergence of the residual in the expected value sense.
Joint work with Andreas Frommer.
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Preconditioning Weak-Constraint 4D-Var: A Parallelisable Implementation
in Firedrake

Jemima M. Tabeart, David Ham, Josh Hope-Collins

Abstract

Data assimilation refers to a class of methods which seek to find the most likely state of a dynamical
system by combining information from a (numerical) model of the system of interest with measure-
ments of the system [2]. The most mature application of data assimilation is to numerical weather
prediction, where large dimensional problems (109 dimensional states and 107 measurements) need
to be solved in a very short amount of time. Algorithms also need to be highly parallelisable in
order to exploit high performance computing resources available at meteorological centres.
In variational data assimilation methods, a non-linear least squares problem is solved via a Gauss-
Newton approach [5]. One computationally expensive component of this implementation consists of
approximately solving large linear systems. Preconditioners can help to speed up the convergence
of iterative methods, but it can be challenging to design effective and efficient preconditioning
methods. This is particularly true for the weak-constraint 4D-Var problem, which accounts for
the fact that the numerical model itself is imperfect. Relaxing the assumption of a perfect model
increases the size of the state space, but introduces the possibility of using parallel-in-time [3]
methods, compared to the strong constraint method where model evaluations must be performed
in serial.
For a fixed time window [t0, tN ], xt

i ∈ Rs denotes the true state of a dynamical system of interest at
time ti, with observations yi ∈ Rpi made at times ti. Prior information obtained from a numerical
model, xb ∈ Rs, is then combined with the observation information to find xi ∈ Rs, the most likely
state of the system at time ti. The prior, or background state, is valid at initial time t0 and can be
written as an approximation to the true state via xb = xt

0 + ϵb. We assume that the background
errors ϵb ∼ N (0, B). We define a, possibly non-linear, observation operator Hi : Rs → Rpi which
maps from state variable space to observation space at time ti. Observations are written as yi =
Hi[x

t
i] + ϵi ∈ Rpi , for i = 0, 1, . . . , N , where the observation error ϵi ∼ N (0, Ri) for Ri ∈ Rpi×pi .

This weak constraint 4D-Var problem then leads to a non-linear objective function of the form:

J(x) =
1

2
(x− x0)

TB−1(x− x0) +
1

2

N∑
i=0

(yi −Hi[xi])
TR−1

i (yi −Hi[xi])

+
1

2

N∑
i=1

(xi −Mi(xi−1))
⊤Q−1

i (xi −Mi(xi−1)),

Within each outer loop, the inner loop minimises a quadratic objective function to find δx(l) ∈
Rs(N+1), where δx(l) = x(l+1) − x(l). Writing δx = (δx⊤

0 , δx
⊤
1 , . . . , δx

⊤
N )⊤, the full non-linear

observation operator Hi (similarly the model operator Mi) is linearised about the current best
guess x(l)

i to obtain the linearised operator H(l)
i (respectively M

(l)
i ). The updated initial guess δx(l)

0

is propagated forward between observation times by M
(l)
i to obtain δx

(l)
i+1 = M

(l)
i δx

(l)
i .

The aim of the inner loop is to solve the symmetric positive definite system given by

Sδx = LTD−1b+HTR−1d, S = LTD−1L+HTR−1H (1)
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where

D =

B
Q1

. . .
QN

 , L =

 I
−M1 I

. . . . . .
−MN I

 , R =

R0
R1

. . .
RN

 , H =

H0
H1

. . .
HN

 ,

with Mi,Hi being the linearisations of Mi and Hi about the current solution.
However, the primal formulation, (1), has limited potential for acceleration via preconditioning
approaches. In particular, it is difficult to exploit the inherent parallelism in the forward problem
when designing preconditioners. Recent work has focused on a reformulation of the linearised
objective function as a saddle point system [6] which takes the form

D 0 L
0 R H
L⊤ H⊤ 0

δη
δν
δx

 =

b
d
0

 . (2)

A number of approaches to precondition the model term, L, have been proposed (see e.g. [6, 7,
12, 11]), many of which impose parallel-in-time structure on L̂−1 ≈ L−1. However, testing and
comparing these new preconditioners in realistic frameworks is not straightforward. Variational
data assimilation requires access to linearised model and adjoint operators. The time cost of
implementing these for a new problem means that researchers often test their new approaches on a
limited number of toy problems, such as the Lorenz 96 problem [9] or the shallow water equations.
If available (and accessible to the researchers), the next step is a full scale implementation within
an operational code, meaning that even in the best case there is a gap in test problems. Data
assimilation methods are also increasingly being applied to other dynamical systems, and the
properties of the usual toy models that make them appropriate for weather applications may no
longer be desirable or relevant for other applications.
In this project we integrate both weak- and strong-constraint 4D-Var algorithms within the Fire-
drake [8] and PETSc [1] frameworks, for both the primal (1) and saddle point (2) problems. Fire-
drake is an automated system for the solution of partial differential equations using the finite
element method. In particular, this means that tangent linear and adjoint operators are available
automatically, significantly reducing the implementational burden of applying variational data as-
similation methods to new models. For the user, the cost of setting up the 4D-Var system is not
substantially higher than the cost of a single run of the forward model Mi and application of the
observation operators Hi. This implementation is also done in parallel.
In this talk I will present the integration of variational data assimilation problems within Firedrake,
and demonstrate how this ‘plug-and-play’ approach allows users to focus on the numerical linear
algebra aspects of their problem rather than the implementation of test problems. In particular
I will present a theoretical and practical comparison of existing and new preconditioners for the
model term, L, including the block Toeplitz approaches of [6, 11], block diagonal approximations
as studied in [12], and block (α)-circulant preconditioners as used in the all-at-once setting (see
e.g [10, 4]).
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Computing Accurate Eigenvalues of Symmetric Matrices
With a Mixed Precision Jacobi Algorithm

Nicholas J. Higham, Françoise Tisseur, Marcus Webb, Zhengbo Zhou

Abstract

Modern hardware increasingly supports not only single and double precisions, but also half and
quadruple precisions. These precisions provide new opportunities to considerably accelerate linear
algebra computations while maintaining numerical stability and accuracy. Efforts on developing
mixed precision algorithms in the numerical linear algebra and high performance computing com-
munities have mainly focussed on linear systems and least squares problems. Eigenvalue problems
are considerably more challenging to solve and have a larger solution space that cannot be computed
in a finite number of steps [5].
There are two classes of algorithms for symmetric eigenproblems: (i) those that work directly on
the matrix, such as the Jacobi algorithm and the QR-based Dynamically Weighted Halley (QDWH-
eig) algorithm and (ii) those that reduce the matrix to tridiagonal form in a finite number of steps
and then employ an iterative scheme to compute all or just part of the eigenvalues and/or the
eigenvectors, such as bisection and inverse iteration (BI), the QR algorithm, and the divide-and-
conquer algorithm (DC). All these algorithms have pros and cons. DC and the method of multiple
relatively robust representations (MR), which is a sophisticated variant of inverse iteration, are
generally much faster than QR and BI on large matrices, with MR performing the fewest floating
point operations but at a lower MFLOPS rate than DC. The latter and QR are the most accurate
algorithms with observed accuracy O(

√
nu), where u is the working precision, n the size of the

matrix, and accuracy is measured in terms of scaled residual norms and loss of orthogonality for
the eigenvectors [1]. None of these eigensolvers exploits the low precisions available in modern
hardware.
A key question is how can we exploit access to multiple precisions arithmetic to accelerate symmetric
eigensolvers while maintaining numerical stability and accuracy?
In terms of arithmetic cost, solving a symmetric eigenvalue problem is about 27 times more ex-
pensive than solving a symmetric positive definite linear system. Unlike for linear systems for
which the O(n3) part of the computation can be performed at low precision and the n-dimensional
solution refined at working precision in O(n2) operations, it can be shown that for the eigenvalue
problem, some of the O(n3) operations need to be performed in the working precision if one hopes
to maintain numerical stability and achieve accuracy. So to gain any speedup, these should be
BLAS 3 operations, i.e., highly optimized matrix-matrix multiplies. Modern architectures execute
matrix multiplies of large size n at least 18 faster than symmetric eigensolvers on the same size
matrices. Low precision arithmetic can be used to preprocess or to precondition the eigenproblem
to allow for a faster solution.
In this talk we concentrate on symmetric positive definite matrices A ∈ Rn×n and consider a mixed
precision preconditioned Jacobi algorithm that uses three precisions uh < u < uℓ. The precondi-
tioner Q̃ is an approximate eigenvector matrix that is efficiently computed using a combination of
low and working precisions. Zhang and Bai [7] and Zhou [8] suggested to compute an eigenvector
matrix at low precision and then orthogonalize it to working precision so that

∥Q̃T Q̃− I∥2 ≤ p1u < 1, (1)
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where p1 is a low degree polynomial in n. It is essential that the preconditioner Q̃ satisfies (1) to
ensure that the eigenvectors returned by the mixed precision preconditioned Jacobi algorithm are
orthogonal to working precision u. We discuss several alternative efficient ways to construct such
preconditioner and prove it reduces the off-diagonal entries of A to a level determined by the chosen
low precision uℓ so that the initial slow convergence phase of the Jacobi algorithm can be skipped.
Demmel and Veselič [2] showed that the eigenvalues computed by the Jacobi algorithm with stop-
ping criterion |aij | ≤

√
aiiajj for all i, j satisfy

|λi(A)− λ̃i(A)|
|λi(A)|

≤ p(n)uκS2 (A), (2)

where λi(A) and λ̃i(A) denote the ith largest exact and computed eigenvalue of A, p(n) is a low
degree polynomial and u is the working precision. Here κS2 (A) is the scaled condition number of A
defined by

κS2 (A) = κ2(DAD), D = diag(a
−1/2
ii ),

where κ2(B) = λ1(B)/λn(B). For the QR and DC algorithms, the relative error is bounded
by n1/2p(n)uκ2(A) so when κ2(DAD) ≪ κ2(A), the Jacobi algorithm can produce much more
accurate approximations to the smaller eigenvalues than QR or DC algorithms.
Malyshev [6] and Drygalla [3, 4] suggest that preconditioning the matrix at a precision uh higher
than the working precision u improves the accuracy of the spectral decomposition computed by
the preconditioned Jacobi algorithm. However, Malyshev only discuss the backward error and
Drygalla only claims the high accuracy property without proving it. Let us denote by Ã and
Ãcomp the product Q̃TAQ̃ computed in exact and floating point arithmetic, respectively. We prove
under mild assumptions that the relative errors in the computed eigenvalues are proportional to
uκS2 (Ãcomp) and uκS2 (Ã) instead of uκS2 (A) which appears in (2). Moreover, we prove that if Ã is
θ-scaled diagonally dominant, i.e., θ = ∥D̃ÃD̃∥2 < 1 then the scaled condition numbers κS2 (Ã) and
κS2 (Ãcomp) are of order 1. Hence, all the eigenvalues are computed to high relative accuracy. We
remark that any preconditioner Q̃ such that off(Ã)/mini(ãii) < 1, where off(Ã) = (

∑
i ̸=j ã

2
ij)

1/2,
yields an Ã that is scaled diagonally dominant. For a preconditioned matrix Ã that is not scaled
diagonally dominant, we use a result by Demmel and Veselič [2, Prop. 6.2] to argue that if off(Ã) is
sufficiently small so that we can treat the diagonals of Ã as its approximate eigenvalues, the scaled
condition numbers κS2 (Ãcomp) and κS2 (Ã) are significantly smaller than κS2 (A).
Finally, we present numerical results to support our theoretical analysis.
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Quantum Computing in MATLAB

Matt Bowring, Steve Grikschat, Paul Kerr-Delworth, Patrick Quillen, Christine Tobler

Abstract

We present the new MATLAB Support Package for Quantum Computing, which provides utilities to
build, simulate, and visualize quantum circuits. Additionally, it is possible to connect to hardware
providers and run circuits on their quantum computers.
The capabilities of this software package include

• Constructing a circuit from a set of quantum gates, which are applied to specific qubits. In
addition to a set of standard simple gates, more complex gates are available: mcxGate [1];
initGate, unitaryGate, ucrxGate, ucryGate, and ucrzGate [2, 3].

• Verifying the quantum algorithm by simulating it on the local computer or sending it to a
remote simulator through cloud services.

• Executing the circuit by connecting to quantum computing hardware through cloud services
(specifically, IBM Qiskit Runtime Services and Amazon Web Services). This involves sending
hardware-specific quantum assembly (OpenQASM) code to these services.

• Creating quadratic unconstrained binary optimization (QUBO) problems and solving them
on the local computer using Tabu search [4].

This package enables the prototyping of quantum algorithms that have applications in optimization,
scenario simulation, machine learning, as well as chemistry and material simulations.
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The Quest for a Numerically Stable Multivariate Polynomial Rootfinder

Alex Townsend, Emil Graf

Abstract

Introduction. The search for a robust, global, and numerically stable algorithm for solving
multivariate polynomial systems has persisted for decades [2, 3, 5, 6, 7, 8, 9]. The goal is to
compute all the solutions to zero-dimensional polynomial systems of the form:p1(x1, . . . , xd)

...
pd(x1, . . . , xd)

 = 0, (1)

where d ≥ 2 and p1, . . . , pd are polynomials in x1, . . . , xd with complex coefficients. All the promising
solvers are based on an elegant approach of converting the multivariate rootfinding problem in (1)
into one or more eigenproblems At first this approach appears to be a practitioner’s dream as a
difficult rootfinding problem can be solved by the robust QR or QZ algorithm. For this reason, these
methods have received considerable research attention from the scientific computing community.
However, we are currently stuck waiting for new ideas to emerge from algebraic geometry or hoping
for novel structured eigensolvers from numerical linear algebra.
A popular class of techniques known as hidden variable resultant methods are notoriously difficult—
and maybe impossible—to make numerically robust [6]. Naive implementations are plagued with
unwanted spurious solutions, inaccurate roots, and miss zeros. In this talk, we will discuss the
ongoing quest for a numerically stable rootfinder using Sylvester resultants, Gröbner bases, Möller–
Stetter matrices, and Macaulay resultants. Our focus will be on understanding the sources of the
instability in these approaches, in the hope that they can be circumvented.
Motivation for Eigenvalue-Based Approaches. Given a well-conditioned rootfinding prob-
lem, we would like to derive a stable algorithm to solve it. Roughly speaking, an algorithm is
stable if it computes an accurate solution to well-conditioned problems. The search for a stable
algorithm for multivariate polynomial rootfinding is motivated by the existence of stable algorithms
for many related problems. All the univariate problems, such as eigenproblems, univariate poly-
nomial rootfinding, and matrix polynomial eigenproblems, have stable algorithms. Likewise, there
are stable algorithms to solve linear systems of the form Ax = b, which are multivariate.
For univariate rootfinding, instead of solving a rootfinding problem directly, one can first construct
an eigenproblem whose eigenvalues match the desired roots. The companion matrix of a polynomial
p(x) is an example of this, as its characteristic polynomial is p, so its eigenvalues are the roots of p.
One can solve the companion eigenproblem using an eigensolver, which is one of the most reliable
algorithms in numerical linear algebra. For roots in [−1, 1], a provably stable algorithm for uni-
variate polynomial rootfinding is based on the colleague matrix [4]. For multivariable rootfinding,
we attempt the same conversion, i.e., we try to convert (1) into one or more generalized eigenvalue
problems (GEPs). For polynomial systems in (1) in d variables, one usually constructs d GEPs,
the eigenvalues of which give the coordinates of each root. The Macaulay resultant method is an
exception as it constructs a single GEP and extracts the roots from the eigenvectors, not eigenval-
ues. Analogously to the univariate case, one hopes that the eigenproblems are as well-conditioned
as the original rootfinding problem. Unfortunately, this is not always the case.
Gröbner bases, Möller–Stetter matrices, rational univariate reductions, multiparameter eigenvalue
problems, and Macaulay resultants all convert (1) into one or more GEPs, either directly or by
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way of a univariate rootfinding problem. For each method, we show that either a constructed
eigenproblem or an intermediate univariate rootfinding problem can be more ill-conditioned than
the original rootfinding problem by a factor that is exponentially large in d.
A devastating example. The analysis of the instability of Sylvester and Cayley resultant method
appears in [5, 6] and studied the following “devastating” polynomial rootfinding problem.

Example 1 Let Q be a d× d orthogonal matrix, σ > 0, and consider (1) with

pi(x1, . . . , xd) = x2i + σ

d∑
j=1

qijxj , 1 ≤ i ≤ d,

where qij is the (i, j) entry of Q. The system has a root at (0, . . . , 0).

By a conditioning analysis, one should expect to find the root at (0, . . . , 0) to within ≈ σu, where u
is the unit roundoff on a computer. However, it has been shown that Sylvester resultants can only
achieve ≈ σ−2u when d = 2 and Cayley can only achieve ≈ σ−du [6]. The eigenproblems constructed
by these methods can be far more sensitive to perturbations than the original rootfinding problem,
which is a hallmark of an unstable algorithm. Similar examples show that Gröbner bases, Möller–
Stetter matrices, rational univariate reductions, multiparameter eigenvalue problems, and Macaulay
resultants can also generate highly ill-conditioned eigenproblems.
Theoretical results supported by numerical experiments. One might be hopeful that these
worst-case examples are rarely and never realized in practice. Unfortunately, this is not the case
in practice. We regularly observe the ill-conditioning in numerical experiments, causing solvers to
generate spurious solutions, miss roots, or compute them inaccurately. There is a small glimmer
of hope in some new approaches that construct structured eigenproblems and solve them with
eigensolvers that respective that structure [1].
We hope that our work inspires new approaches that circumvent the limitations of current tech-
niques and provide robust solutions to the fundamental multivariate polynomial roofinding problem.
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From Zolotarev Problems in Linear Algebra to a New Approach to
Quadrature

Lloyd N. Trefethen

Abstract

Beckermann, Townsend, Wilber, and Rubin have recently drawn attention to the importance of the
classical Zolotarev rational approximation problems, in their generalized forms as analyzed among
others by Gonchar, Starke, Istace, Thiran, Druskin, Knizhnerman, and Simoncini, to large-scale
linear algebra problems including ADI iteration, Lyapunov and Sylvester equations, and low-rank
approximation [2, 3, 5, 12, 13, 18]. The paper by Beckermann and Townsend on this topic was
selected for SIGEST as an exceptional contribution of recent years in the SIAM Journal on Matrix
Analysis and its Applications.
Specifically, at issue here are what are traditionally called the third and fourth Zolotarev problems,
for which the following names are perhaps more memorable. The Zolotarev Ratio Problem is the
problem of finding a rational function of prescribed degree n with a smallest possible ratio of its
maximal size on one set E in the complex plane to its minimal size on another set F . The Zolotarev
Sign Problem is the problem of finding a rational function with r ≈ −1 on E and r ≈ 1 on F . In
linear algebra applications, E and F are related to the spectra of large matrices.
Istace and Thiran showed that these two problems are mathematically equivalent [7], but no reliable
method has been available for solving either of them numerically. In the first half of this talk I will
present such a method, developed jointly with Heather Wilber [17]. In a fraction of a second on a
laptop for typical examples, we can now compute numerical solutions to both Zolotarev problems to
several digits of accuracy. Fourteen examples are displayed graphically in [17], which can be found
online at https://people.maths.ox.ac.uk/trefethen/trefethen_wilber.pdf. These compu-
tations are based on the AAA and AAA-Lawson algorithms for best rational approximation [9, 10],
but until 2024, these algorithms were not successful for Zolotarev problems. Wilber and I found
we had to modify them for this study, and we acknowledge a crucial contribution here from Yuji
Nakatsukasa.
All this falls within a familiar frame of numerical linear algebra problems of current interest.
However, investigating these new algorithms has led to something new that may eventually be of
deeper importance in numerical analysis, and this will be the subject of the second half of my talk.
It has long been known that there are connections between rational approximation and quadrature,
and these connections have been exploited in various ways, for example in the FEAST eigensolver [1,
5, 11]. Building on the new Zolotarev algorithms, we have found a general framework of this kind
that appears to encompass many problems. (It may also ultimately lead to a fulfillment of a dream
a few of us have had of achieving a truly numerical realization of the theory of hyperfunctions.)
I very much regret that Householder abstracts do not permit the inclusion of graphics, for a few
pictures show strikingly the new connections that are emerging. (This work is being developed
in unpublished memos of mine, which are not yet in a form for public circulation.) Here are four
instances where rational approximation gives new insight into old methods and an easy route to
methods for quadrature:
1. Trapezoidal rule on the unit circle. It has been known since Lyness and Delves in 1967 that the
trapezoidal rule applied in roots of unity gives exponential accuracy for functions analytic on the
unit circle. Unexpectedly, this morphs into a Zolotarev sign problem if we consider the function
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ϕ(z) defined by ϕ(z) = 0 for |z| > 1 and ϕ(z) = −1 for |z| < 1. Rational approximations to ϕ put a
string of poles along the unit circle, and via residue calculus, these can be converted to trapezoidal-
style quadrature rules. (The nodes are the poles, and the weights are the residues.) Exponential
convergence of the rational approximations becomes equivalent to exponential convergence of the
quadrature formulas.
2. Inverse Laplace transforms and Hankel contours. Another established topic is Bromwich or
Fourier-Mellin or inverse-Laplace-transform quadrature involving an exponential kernel over Hankel
contours in the complex plane. Here, following [16], we consider rational approximations to ex for
x ∈ (−∞, 0]. The poles of near-best approximations line up along Hankel contours curving around
(−∞, 0], leading to near-optimal quadrature formulas.
3. Computing functions of matrices like Aα and log(A). The “three Nicks paper” [6] applied
conformal maps to derive exponentially accurate quadrature formulas for computing functions of
matrices, which have had impact for example in electronic structure calculations [8]. The methods
required tricky derivation via elliptic functions, but it turns out that on-the-fly Zolotarev approx-
imation can achieve the same results. This time, the approximation problem consists of finding a
rational function r with r(x) ≈ 1 for x ∈ [m,M ] (an interval containing the spectrum of A) and
r(x) ≈ 0 for x ∈ (−∞, 0]. In the rational approximation framework, it is an easy matter to drive
variant formulas for cases where, say, A is a nonsymmetric matrix with spectrum in a complex
domain rather than an interval.
4. Gauss-Legendre and other quadrature formulas on [−1, 1]. Ordinary Gauss-Legendre quadrature
and other formulas for integration over [−1, 1] can be given the same kind of derivation, which is
related to how Gauss originally derived his method in 1814 and was later exploited by Takahasi
and Mori [14, 15]. Now the rational approximation problem is to find a function r(z) that closely
approximates log((z + 1)/(z − 1)) on a Bernstein ellipse enclosing [−1, 1].
In summary, these are the connections that are emerging:

Poles of Zolotarev rational approximations (computable by AAA-Lawson)
↕

Approximate branch cuts
↕

Quadrature formulas
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On the Unitary Block-Diagonalisation of General Matrices and Applications

Frank Uhlig

Abstract

Abstract

We study new matrix based computations for a recent cluster of extraordinary results
in six distinct branches of mathematics that are inter–connected in multiple multi-
dimensional ways. The first quoted paper deals with fractional ordinary differential
equations and the proportional secting method for accelerating terminal value problems
therein by a factor of around 8. Then we study how a century old and previously unsolved
quantum physics problem can be solved by using the hermitean Johnson F(t) function of
field of values computations. In quantum physics terms, this solution makes an assessment
of our Chemical Element Tables finally possible after 100 + years of not knowing. Then
we study accurate and fast computations of field of values boundary curves, even for
decomposable matrices. This was impossible before and has been abandoned for several
years now. To solve the unitary block decomposition problem for general square matrices
we use a discretized predictive Zhang Neural Network method for the resulting Johnson
block Fj(t) field of values functions. Overall the computational methods in this cluster
are all conditionally stable and none is just backward stable. They all give us highly
accurate results such as adapted ZNN methods for matrix flow A(t) problems that find
nonsingular static matrix A symmetrizers with small condition numbers for the first time.
A detailed survey of Zhang Neural Networks details their seven step set-up process for
the first time, giving ten matrix flow example derivations of this new process. B O X

Keywords: math history, numerical analysis, fractional ODEs, shooting methods, proportional
secting, Linear algebra, unitary block-decomposition, invariant subspace theory, quantum physics,
time-varying matrix problem, conditionally stable algorithm, Johnson matrix flow, neural network,
zeroing neural network, discretized ZNN algorithm, field of values, matrix flows, time-varying nu-
merical algorithm, ZNN set-up, predictive numerical method, matrix symmetrizer
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81Q10

An Introduction – of sorts
For general complex or real 1-parameter matrix flows A(t)n,n or for static
matrices Athis paper considers ways to decompose matrix flows A(t) or sin-
gle matrices An,n globally via one constant hermitean matrix similarity Cn,n as

A(t) = C−1 · diag(A1(t), ..., Aℓ(t)) · C
or

A = C−1 · diag(A1, ..., Aℓ) · C.

Here each diagonal block Ak(t) or Ak is square and their number ℓ exceeds 1
– if this is possible.
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The theory behind our proposed algorithm is elementary and uses the con-
cept of invariant subspaces for the MATLAB eig computed ‘eigenvectors’ of
another associated flow matrix B(ta) to find the coarsest simultaneous block
structure for all flow matrices B(tb) and consequently block-diagonalizes the
given matrix flow A(t) or the given static matrix A itself.
The method works in O(n2) time for all matrices An,n and all matrix flows
A(t), be they real or complex, normal, with Jordan structures or repeated
eigenvalues, and differentiable, continuous, or discontinuous.
We aim to discover unitarily diagonal-block decomposable matrices
and flows from sensor given data. For unitarily block-diagonalisable A or
A(t), the complexity of their numerical treatment decreases swiftly for O(n3)
matrix processes when working on each of their diagonal blocks separately.

The proof : The Unitary Block-Decompositions and
Fast and Accurate Field of Values Boundary Computations
of all Square Matrices
The unitary block decomposition of matrix flows or single square matrices
has never been resolved by algebraic means in 100 + years. Our new way of
testing and establishing unitary decomposability of a matrix flow or a static
matrix hinges on a numerical algorithm that decides the lay of the near zero
entries and of the sizable ones in the hermitean Johnson matrix flow

F(t) = cos(t)H+ sin(t)K
for 0 ≤ t ≤ 2π.
[ We assume today that all matrices and matrix flows are real in this talk. ]
The algorithm starts from two linear independent Johnson flow matrices F(t1)
and F(t2). We form the 0-1 logic matrices Flogic(t1) and Flogic(t2) in Mat-
lab’s spy function and assemble the normalized eigenvectors of F(t1) in V ′(t1)
so that adjacent rows in Flogic(t1) have equal 0 and 1 patterned blocks.
We reorder the rows of Flogic(t2) so that they have the same 0-1 pattern as
Flogic(t1) by using a combinatorial algorithm that establishes a joint proper
unitary block decomposition of both logic 0-1 spy pattern matrices.
Going down from the top block leads to a joint unitary block diagonal struc-
ture for all F (t) with t ∈ [0, 2π]. Since F (0) = H and F (π/2) = K, the
matrix A or the flow A(t) have the same unitary block structure as the her-
mitean matrices F (t1) and F (t2) do, and our algorithm is complete.
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This algorithm depends on the magnitude relations between the non-zero en-
tries and the near zero entries in F (ti). To distinguish between computed
entries as being ’zero’ or definitely ’nonzero’ is a an uncharted question. We
have set the ’zero’ threshold heuristically to ∥A∥fro · 10−13 ≈ ∥A∥fro · eps
when working in double precision in Matlab.

To prove the main Unitary Diagonability Theorem, we assume that
the hermitean Johnson flow F (t) contains two linearly independent matri-
ces F (ta) ̸= F (tb) where F (t) = cos(t)H + sin(t)K for the hermitean and
skew parts H = (A+ A∗)/2 = H∗ and K = (A− A∗)/(2i) = K∗ of A.
We know of no way to prove the unitary block-diagonalization theorem al-
gebraically; an algebraic proof of our result was never attempted. An al-
gorithmic proof was nearly impossible before the advent of computers and
the understanding of matrix flows such as the Johnson flow F(t) and of the
predictive qualities and accuracy of Zhang Neural Networks.
The ability to construct the field of values F (A) boundary curve of some uni-
tarily decomposable matrices quickly and accurately via shooting methods led
to recent further studies of matrix eigencurve behavior by many who tried to
locate their crossings or hyperbolic avoidances that had first appeared in orig-
inal Quantum Physics studies in Copenhagen, Berlin and Göttingen in the
1920s. Albert Einstein shunned this fundamental Quantum Theory problem
and rather worked on relativity. Bohr’s group wanted to understand eigen-
curve crossings and their relation to the unitary matrix block-decomposability
of matrices, but neither succeeded.
Eigencurve crossing studies for the unsolved unitary block-diagonalization
problem began anew with Charlie Johnson’s work on the field of values in the
1970s and advanced in the 1990s in Luca Dieci et al’s, Loisel and Maxwell’s,
and my eigencurve papers. By 2020 several small sub-results of the unitary
block-decomposition problem had been solved, but no complete classification
had been found and the century old problem was still open in 2023.
Our final classification of unitary block-decompositions for both, general ma-
trix flows and static matrices, was inspired by Yunong Zhang’s parameter-
varying Neural Networks that date back to his doctoral thesis of 2001.
These recent developments are inter-woven and all have contributed to each
other’s solution and to the author’s understanding of this cluster’s new fun-
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damental computational results. Each of the new results has advanced its
area tremendously where no math methods had been found for decades, by re-
searchers that relied on standard mathematical or computational approaches.
The mathematical process and its results were never predictable – until ev-
erything fell into place in 2023/24, was mathematically sound, proved, and
their papers quickly accepted.
The conditionally stable Matrix Computational algorithms of this research
cluster deliver highly accurate results at high speed and they do not suf-
fer from the inaccuracies of our the traditional ’backward stable’ methods

This is the end of my math talk with selections from
the new extraordinary mathematical research cluster.
What is our most urgent task today, in Lin-
ear Algebra and Matrix Theory, teaching and
research wise ?
What needs to be done immediately ?
We must modernize our early College teachings in Linear Algebra and
enliven this area of Mathematics that helps us all so extraordinarily
in our daily cell-phone and internet based lives and in our AI and
engineering advances.
How do we, how do you mostly teach beginners’ linear algebra
classes today?
Which subjects do we, you, and I teach?
Using modern Matrix Theory based ideas or from a classical and algebraic
standpoint ?
Top-down taught or taught interactively ? That is the question

Math Education : the Necessity of Moderniz-
ing the First Linear Algebra Course via coher-
ent Matrix Theory Based Lesson Plans
This is the subject of a serious Math Education session, some time late at
night, in Ithaka. All are welcome
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Estimating the Numerical Range with a Krylov Subspace

John Urschel, Cecilia Chen

Abstract

Moment-based methods are ubiquitous in applied mathematics, and numerical linear algebra is no
exception. Krylov subspace methods are an incredibly popular family of algorithms that approxi-
mate the solution to some problem involving a matrix A using the Krylov subspace

Km(A, b) = span{b, Ab,A2b, . . . , Am−1b}.

This includes methods for approximating linear systems (conjugate gradient method, GMRES,
MINRES, etc.), extremal eigenvalue problems (Arnoldi iteration, Lanczos method, etc.), and matrix
functions. In many applications, m is much smaller than n, and a key benefit of this framework is
that only matrix-vector products are involved, allowing for fast computation.
In this talk, we focus on the quality of estimate on the numerical range

W (A) =

{
x∗Ax

x∗x

∣∣∣∣x ∈ Cn×n

}
of a matrix A provided by the numerical range of the orthogonal projection of A onto the Krylov
subspace Km(A, b) for some vector b, denoted by Hm. Estimates on W (A) are important not only
in the computation of extremal eigenvalues, but for error estimates for other methods. For instance,
standard error bounds for the residual in the GMRES algorithm for Ax = b after m steps depend
on the quantity

min
p∈Pm s.t. p(0)=1

max
λ∈Λ(A)

|p(λ)|, (1)

where Pm is the set of complex polynomials of degree at most m and Λ(A) is the spectrum of A.
If W (Hm) provides a good estimate of W (A), or even conv{Λ(A)}, then computing W (Hm) and
estimating the separation from zero can produce guarantees for the convergence rate.
Typically, estimates for approximating an extreme eigenvalue λ with a Krylov subspace Km+1(A, b)
depend on the quality of the initial guess b in relation to the eigenspace of λ, the eigenvector
condition number, and the quantity

min
p∈Pm s.t. p(λ)=1

max
µ∈Λ(A)\λ

|p(µ)|. (2)

The latter quantity is small when there is separation between λ and Λ(A)\λ in the complex plane,
but can become arbitrarily close to one in many cases, producing unnecessarily pessimistic bounds.
These issues can persist even when A is Hermitian. For instance, consider the tridiagonal matrix A
resulting from the discretization of the Laplacian operator on an interval with Dirichlet boundary
conditions (i.e., Aii = 2, Ai,i+1 = Ai+1,i = −1). This matrix has no small eigenvalue gaps, and so
standard gap-dependent error estimates significantly over estimate the error in approximation for
extreme eigenvalues.
In practice, Krylov subspace methods perform well at estimating extreme eigenvalues, even when
eigenvalue gaps are small. In their 2015 paper, Musco and Musco argue that bounds on distances to
any particular eigenvector are not necessarily needed in situations where the goal is only to estimate
the eigenvalues. While a good estimate of an eigenvector naturally implies a good estimate of its
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corresponding eigenvalue, the converse is simply not true. For instance, while having two extreme
eigenvalues λ and µ very close together significantly hinders eigenvector approximation, it can
actually improve eigenvalue estimation, as a good approximation to any vector in the direct sum
of the eigenspaces of λ and µ (assuming the matrix is well-conditioned) implies a good estimate to
both eigenvalues, since they are both close together.
Kuczynski and Wozniakowski were arguably the first to fully recognize this phenomenon in a
quantitative way, producing a probabilistic upper bound of the form

λmax(A)− λ
(m)
max

λmax(A)− λmin(A)
≲ ln2 n

m2
(3)

for a real symmetric matrix A ∈ Rn×n, where λ
(m)
max is the largest eigenvalue of Hm, the orthogonal

projection of A onto Km(A, b), for an initial guess b sampled uniformly from the hypersphere.
In this talk, we consider the extension of this type of gap-independent result to general matrices. In
particular, we consider the approximation that the numerical range of Hm provides to the numerical
range of A and to the convex hull of the eigenvalues of A. This is quantified by the Hausdorff
distance dH(W (Hm),W (A)) between W (Hm) and W (A), and the one-sided Hausdorff distance
supµ∈conv(Λ(A)) d(µ,W (Hm)) between conv(Λ(A)) and W (Hm). We will consider three distinct
cases: normal matrices, normal matrices with their spectrum on a circle (e.g., unitary matrices),
and non-normal matrices. Time permitting, we may also discuss bounds for the behavior of the
quantities (1) and (2), depending on the structure of the eigenvalues of A.
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Accelerating Operator Sinkhorn Iteration with Overrelaxation

André Uschmajew, Tasuku Soma

Abstract

In operator scaling, we are given matrices A1, . . . , Ak ∈ Rm×n and the goal is to find a joint
transformation Āi = LAiR

⊤ by square invertible matrices L and R such that
k∑

i=1

ĀiĀ
⊤
i = L

(
k∑

i=1

AiR
⊤RA⊤

i

)
L⊤ =

1

m
Im

and

k∑
i=1

Ā⊤
i Āi = R

(
k∑

i=1

A⊤
i L

⊤LAi

)
R⊤ =

1

n
In,

where Im and In denote identity matrices. In several respects, this problem naturally generalizes the
famous matrix scaling problem, where one is given a nonnegative matrix and looks for a scaling of
the columns and rows such that the matrix becomes doubly stochastic. While introduced by Gurvits
in a quantum complexity context [1], operator scaling actually has found various applications,
including non-commutative polynomial identity testing, computational invariant theory, functional
analysis, scatter estimation, and signal processing.
The operator Sinkhorn iteration (OSI) is an iterative algorithm for finding a solution to the scaling
problem. It is based on the observation that each single condition can be easily satisfied when
ignoring the other. For instance, when fixing R, it is easy to find L in the first equation using
a Cholesky decomposition of the term in brackets, and similar vice versa. Updating L and R in
an alternating way yields OSI. It admits a natural interpretation as an alternating minimization
method on cones of symmetric positive definite matrices. Indeed, substituting X = L⊤L and
Y = R⊤R, the operator scaling problem can be rewritten as a coupled fixed point equation

X =
1

m
Φ(Y )−1, Y =

1

n
Φ∗(X)−1

where Φ(Y ) =
∑k

i=1AiY A⊤
i Φ is a completely positive map, and Φ∗ is its adjoint. As it turns out,

these equations are the first-order optimiality conditions for the function

f(X,Y ) = tr(XΦ(Y ))− 1

m
log det(X)− 1

n
log det(Y ),

which is known to be geodesically convex with respect to the so called affine invariant metric
on symmetric positive definite matrices. As a result, OSI can be interpreted as an alternating
minimization method for finding the global minimum of f . Its global convergence (under some
additional conditions) is well known and can be established using nonlinear Perron–Frobenius
theory, which implies that the underlying fixed point iteration is a contraction in the Hilbert metric
on positive definite matrices. However, in certain applications the convergence rate is observed to
be slow. The goal of this work is to accelerate OSI using overrelaxation.
Conceptually, an OSI including relaxation could be an iteration of the form

Xt+1 = ω
1

m
Φ(Yt)

−1 + (1− ω)Xt, Yt+1 = ω
1

n
Φ∗(Xt+1)

−1 + (1− ω)Yt,
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that is, combining old and new iterates with a relaxation parameter ω > 0. While this particular
version can work in certain instances, it is not well defined in general when ω > 1 (which is the case
of interest), since it is not guaranteed that positive definite matrices are produced. Among other
variants, we therefore propose a more natural way of combining iterates along geodesics with respect
to the Hilbert metric. For two such matrices X and X̃, the geodesic connecting them is known to
be X#ωX̃ = X1/2(X−1/2X̃X−1/2)ωX1/2 with ω ≥ 0. Importantly, here ω can be larger than one.
By replacing the above affine linear combinations with this operation, we obtain a geodesic version
of overrelaxation. This version in fact is a natural generalization of the overrelaxation methods
proposed in [4] and [2] for the matrix Sinkhorn iteration based on log-coordinates.
The mathematical contributions of this work include a rigorous local convergence analysis for the
proposed overrelaxation methods based on linearization, which allows to determine the asymptot-
ically optimal relaxation parameter ω (which is larger than one) using a variant of Young’s linear
SOR theorem. This analysis follows an established pattern as in [4, 2], but executing it for OSI
requires several nontrivial steps that provide additional insight into the problem and the geometry
of positive definite matrices. For the version based on geodesic relaxation we can establish its
global convergence at least in a limited range of ω which contains values larger than one. As for
practical results, we demonstrate with an instance of frame scaling that OSI with overrelaxation
can significantly accelerate the standard variant in certain applications.
The talk is based on the preprint [3].
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Quantum Krylov Methods for Eigenvalue Calculations

Roel Van Beeumen, Daan Camps, Katherine Klymko, Yizhi Shen, Niel Van Buggenhout

Abstract

We consider the problem of computing a few of the smallest eigenvalues of the Hermitian eigenvalue
problem

Hx = λx, (1)

where H is a Hermitian matrix of exponential dimension N = 2n. This problem is of critical
importance in fields such as condensed matter physics, quantum chemistry, and materials science,
where solving such eigenvalue problems yields ground and excited state energies of quantum many-
body Hamiltonians.
Classical numerical methods based on Krylov subspaces rank among the most successful techniques
in numerical linear algebra. In this talk, we introduce various quantum Krylov methods for solving
the Hermitian eigenvalue problem (1). These quantum subspace techniques present promising
tools within the growing field of hybrid quantum-classical algorithms. Hybrid strategies deploy a
quantum computer for the tasks where it excels, for example evolving a wavefunction with unitary
operators, while offloading other parts of the computation to a classical computer. The hybrid
quantum-classical paradigm allows to bridge the gap between the current noisy intermediate-scale
quantum (NISQ) devices with all their limitations and the era of large-scale fault-tolerant quantum
computers. We focus on quantum eigenvalue algorithms that are particularly well-suited for near-
term applications on NISQ hardware.
The first and oldest class of hybrid quantum-classical methods for solving (1) are variational quan-
tum algorithms [1]. In these algorithms, we employ a parameterized ansatz eigenvector x(θ) and
optimize the Rayleigh quotient

R(H,x(θ)) = x(θ)∗Hx(θ), (2)

which can be measured on a quantum computer as the expectation value of the observable cor-
responding to H when the system is in state x(θ). A classical optimizer iteratively updates the
parameters θ based on the expectation values measured on the quantum computer. However, vari-
ational quantum algorithms face challenges, notably the phenomenon of barren plateaus, where
the gradient of the optimization landscape vanishes exponentially, making it difficult for classical
optimizers to converge [7].
Recently, quantum subspace methods have emerged as a robust alternative class of hybrid eigenvalue
algorithms [2, 3, 5]. These methods operate within subspaces, rather than iteratively optimizing a
single vector, and often achieve faster convergence than variational quantum algorithms. We focus
on quantum Krylov subspaces constructed via real-time evolution

v0 → e−iHtv0, (3)

a unitary operation native to quantum hardware and well-suited for NISQ implementations, via,
for example, Trotterization using Lie product formulas [4]. The corresponding Krylov subspace is
constructed as follows

Km(U, v0) =
[
v0, Uv0, U

2v0, . . . , U
m−1v0

]
, (4)

where Uk = e−iHk∆t is the unitary obtained from evolving H over time t = k∆t.
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Unlike classical Krylov subspace methods, we do not construct the subspace explicitly on the
quantum computer. Instead, we obtain the projected eigenvalue problem through quantum mea-
surements and solve this small projected problem classically. To compute the matrix elements of
the projected Hamiltonian Ĥ, we start by preparing the initial quantum state v0 and evolving it
over time k∆t, resulting in vk = e−iHk∆tv0. We then measure the matrix elements

Ĥj,k = v∗jHvk. (5)

Because orthogonalizing vectors on a quantum computer is challenging and definitely impossible
in the NISQ era, quantum subspace methods utilize non-orthogonal bases. Consequently, we also
need to measure the inner products

Ŝj,k = v∗j vk, (6)
leading to the projected generalized eigenvalue problem

Ĥx = λŜx. (7)

However, solving for the Ritz values of this generalized eigenvalue problem (7) is often challenging
due to the ill-conditioning of the problem. To address this issue, we present a dynamic mode
decomposition approach, a method designed to circumvent this ill-conditioning and capable of
robustly obtaining eigenvalue estimations from noise quantum observables [5]. In this talk, we
present a numerical linear algebra perspective on quantum subspace algorithms, discuss strategies
to avoid ill-conditioned eigenvalue problems, and provide both theoretical and numerical evidence
of convergence. Additionally, we introduce strategies to enhance robustness, particularly in noisy
quantum environments.
A third class of hybrid quantum-classical eigenvalue methods leverages rational functions, which of-
fer rapid convergence in scientific computing but remain underexplored in quantum algorithms. We
present efficient implementations of rational transformations on quantum hardware [6]. By using
integral representations of the resolvent, we can efficiently perform quantum rational transforma-
tions through Hamiltonian simulations and the linear-combination-of-unitaries (LCU) method. We
introduce two complementary LCU-based strategies—discrete-time and continuous-time—offering
flexible approaches for quantum rational transformations. We also illustrate these novel methods
through numerical simulations on spin systems, achieving precise calculations of low-lying eigen-
values.
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Numerically generating Sobolev orthogonal polynomials

Niel Van Buggenhout, Francisco Marcellán, Nicola Mastronardi

Abstract

Based on structured matrix techniques, we propose new numerical algorithms to generate a se-
quence {S0(x), S1(x), . . . , SK−1(x)} of Sobolev orthogonal polynomials (SOPs). In this sequence,
the polynomial Sk(x) of degree k satisfies orthogonality conditions with respect to a Sobolev inner
product (., .), namely

(Sk, Sℓ)

{
= 0 if k ̸= ℓ,
̸= 0 if k = ℓ.

A Sobolev inner product is a linear functional where the functions themselves and their derivatives,
up to order M , appear with (possibly different) weight functions wm(x), i.e.,

(p, q) =
M∑

m=0

∫
Ω
p(m)(x)q(m)(x)wm(x)dx.

Sobolev orthogonal polynomials were first studied in approximation theory, when solving interpo-
lation problems where values of the function and its derivatives are known [1]. The study of their
analytical properties, e.g., the behavior of zeros, is an active area of research [4]. Moreover, since
the weak form of differential equations gives rise to a Sobolev inner product, SOPs can be used to
develop spectral methods [2]. The generation of sequences of SOPs is central to these applications.

Main problem:
Given a Sobolev inner product (., .), generate the sequence {S0(x), S1(x), . . . , SK−1(x)} such that

• Sk(x) is a polynomial of exact degree k,

• (Sk, Sℓ) = 0, for k ̸= ℓ, and (Sk, Sℓ) ̸= 0, for k = ℓ.

Our proposed algorithms can be used for general Sobolev inner products, in this presentation we
focus on a particular, interesting family of SOPs. Gegenbauer-Sobolev polynomials are orthogonal
with respect to the continuous Sobolev inner product

(p, q)µ =

∫ 1

−1
p(x)q(x)(1− x2)µdx+ λ

∫ 1

−1
p′(x)q′(x)(1− x2)µdx.

A finite sequence of SOPs {S0(x), S1(x), . . . , SK−1(x)} is also orthogonal to a discrete Sobolev
inner product. For Gegenbauer-Sobolev polynomials this discrete inner product can be obtained
by applying the Gauss-Jacobi quadrature rule with weights {αn}Kn=1 and nodes {xn}Kn=1 to (., .)µ:

(Sk, Sℓ)µ ≈ ⟨Sk, Sℓ⟩µ =
K∑

n=1

αnSk(xn)Sℓ(xn) + λ
K∑

n=1

αnS
′
k(xn)S

′
ℓ(xn).

For ⟨., .⟩µ, a Hessenberg matrix HK of size K ×K represents the recurrence relation of the SOPs,

x
[
S0(x) S1(x) S2(x) . . . SK−1(x)

]
=

[
S0(x) S1(x) S2(x) . . . SK−1(x)

]
HK .

We show that the matrix HK can be computed by solving the following inverse eigenvalue prob-
lem [5], where HK appears as the K ×K leading principal submatrix of the solution H̃.
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Inverse eigenvalue problem:
Given a discrete Sobolev inner product ⟨., .⟩, construct the 2K × 2K matrices H̃, Q̃ such that

• H̃ is a Hessenberg matrix and Q̃ is unitary, Q̃∗Q̃ = I.

• The first entries of the unitary matrix Q̃ are determined by the weights {αn}Kn=1 in the discrete
inner product, i.e., Q̃e1 = w/∥w∥2, where the vector w contains the weights αn.

• The matrix H̃ satisfies the decomposition H̃ = Q̃∗JQ̃, for a Jordan-like matrix J determined
by the nodes {xn}Kn=1 and their multiplicity, as they appear in the discrete inner product.

For the Gegenbauer-Sobolev polynomials, the vector of weights w and Jordan-like matrix J are

w =


0√
α1
...
0√
αK

 and J =


x1

√
λ

x1
. . .

xK
√
λ

xK

 .

Thanks to this reformulation as a Hessenberg inverse eigenvalue problem, we can use structured
matrix techniques to compute HK . Our proposed numerical algorithm is based on plane rotations
and constructs HK by employing unitary similarity transformations to the Jordan-like matrix J .
It does not require the storage of the whole matrix Qk, only its first column and is, therefore, more
efficient than the state-of-the-art algorithms [3]. Under mild assumptions on the Sobolev inner
product, our numerical algorithm can be applied to any sequence of SOPs.
For certain families of SOPs, specialized algorithms can be developed that exploit their properties.
For Gegenbauer-Sobolev polynomials we exploit the fact that the Gegenbauer measure forms a
symmetrical coherent pair with itself and use properties of (classical) Gegenbauer polynomials to
obtain a factorization of HK as the product of three structured matrices. The entries of all three
matrices are given analytically by closed form expressions, which could reduce the accumulation of
rounding error in HK . We discuss numerical experiments in which we compare the general purpose,
specialized, and state-of-the-art algorithms [3] for Gegenbauer-Sobolev polynomials.
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Spectral problems through the lens of optimization:
new ideas and improved algorithms?

Bart Vandereycken

Abstract

Thanks to influential works like [8, 1], many classical problems in numerical linear algebra (NLA)
can be formulated as optimization problems on smooth and differentiable manifolds. The link
with optimization on manifolds allows us to approach these problems from the world of numerical
optimization. The archetypical example is the symmetric eigenvalue problem (EVP): the dominant
k-dimensional eigenspaces of A correspond to extrema of the partial trace function

f(X) = −Trace(XTAX), (1)

where X ∈ Rn×k is an orthonormal matrix (that is, XTX = Ik). Due to the partial trace being
invariant by orthogonal transformation on the right (that is, X ⇝ XQ with orthogonal Q), this
problem is naturally stated on Gr(n, k), the Grassmann manifold of k-dimensional subspaces in
Rn. Minimizing f by the Riemannian steepest descent method is, in specific cases, equivalent to
the power method.
It is well known that the steepest descent method converges exponentially fast, in distance to the
optimizer and in function value, when the objective function is locally strongly convex. Applied to
spectral problems in NLA, a nonzero spectral gap is required to ensure uniqueness and the initial
estimate has to be sufficiently close to the optimal subspace. Unfortunately, the latter condition is
usually very stringent. For a symmetric matrix A with eigenvalues λ1 ≥ · · · ≥ λn, for example, we
have shown in [5] that (1) is geodesically convex in

N =

{
span(X) ∈ Gr(n, k) : sin2(θk) ≤

λk − λk−1

λ1 + λk

}
.

Here, θk is the kth principal angle between span(X) and the dominant eigenspace span(V ). While
this is an improvement over more direct estimates that require θk = O(δ), the condition θk = O(

√
δ)

is still small.
Fortunately, classical (geodesic) convexity is not needed to have gradient descent converge expo-
nentially fast. In the Euclidean case, an old result by [11] proves that the Polyak–Łojasiewicz (PL)
condition,

∃µ > 0 s.t. ∥∇f(x)∥2 ≥ 2µ(f(x)− f∗), ∀x ∈ Rn, (2)
is sufficient to guarantee fast (exponential) convergence in function value. The PL condition with
constant µ is weaker than µ strong convexity
More recently, an even weaker notion of strong convexity that relates to convergence with respect
to distance to the optimum, has been studied [7, 10, 5]. The property is called weak-quasi-strong-
convexity (WQSC) and is defined in the Euclidean case as follows:

∃a > 0, µ > 0 s.t. f(x)− f∗ ≤ 1

a
⟨∇f(x), x− xp⟩ −

µ

2
∥x− xp∥2, ∀x ∈ Rn,

with xp the projection of x onto the solution set of minimizers of f .
We have shown in [5, 2] that the manifold version of the WQSC property applies to the following
spectral problems:

388



• Symmetric EVP of A: the objective function f in (1) is WQSC with parameters a(span(X)) =
θk/ tan θk and µ = 8δ/π2.

• Symmetric generalized EVP of (A,B) with B ≻ 0: the objective function

f(span(X)) = −Trace((XTBX)−1XTAX)

is WQSC with parameters a(span(X)) = σmin(V
TBX(XTBX)−1/2) and µ = 8δ/π2.

Once WQSC is shown to hold, it can be used to analyse accelerated versions of gradient descent
[7, 6]. For the symmetric EVP, the Riemannian conjugate gradient method from [4] also leads to
practical improvements when comparing to other accelerated gradient methods, like the LOBPCG
method of [9].
Would it be possible to relax these generalized convexity properties even more? In other words,
suppose gradient descent converges exponentially fast when started in any point in a set around the
optimum, then which property does f satisfy? As shown in [3], the objective needs to be WQSC
when measuring convergence in distance to the optimum. Recently, we have also shown that only
the PL condition is required for convergence in function value. Hence, PL and WQSC are in some
sense necessary and sufficient for a fast gradient method.
An added bonus of the optimization viewpoint is that gapless problems can be treated and analysed
fairly easily. The convergence of gradient descent is no longer exponential but only algebraic.
This talk will present a general overview of these properties and highlight algorithmic and analytical
applications from NLA. The contents are based on joint work with Pierre-Antoine Absil, Foivos
Alimisis, and Yousef Saad.
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Subspace methods with asymptotic Krylov convergence for bounded
variable problems.

Wim Vanroose, Bas Symoens

Abstract

Introduction. Krylov subspace methods are highly effective in solving problems with sparse ma-
trices at scale. Many large-scale problems in mechanics and fluid dynamics can be addressed using
preconditioned Krylov solvers, and numerous specialized algorithms based on subspace methods
have been developed that scale to the largest supercomputers. However, many scientific and engi-
neering problems impose bounds on variables. Examples include nonnegative matrix factorization,
contact problems in mechanics, and planning problems with resource and capacity constraints.
Data science problems often have ∥ · ∥∞- or ∥ · ∥1-norms. In these cases, active bounds manifest as
boundary conditions, but it is often unknown in advance which bounds will be active.
Each bound on a variable is expressed as an inequality. In the optimality conditions, each inequality
leads to a nonlinear complementarity condition that couples the variable and the corresponding
Lagrange multiplier. The traditional approach is to linearize the system of optimality conditions
and solve the resulting saddle point system. Each linearization is solved within a subspace with
a iterative method for the saddle point problems [1]. However, this subspace is not reused in the
next linearization; a new subspace is built in the subsequent outer iteration. This is inefficient.
We propose using a single subspace that is kept over all the iterations. Let us summarize how
subspace methods reduce the problem and how we can generalize this.
A Krylov subspace for a square matrix A ∈ Rn×n and a vector v ∈ Rn is defined as Kk(A, v) :=
span{v,Av,A2v, . . . , Ak−1v}. Equivalently, this subspace can be written span{r0, r1, r2, . . . , rk−1},
where ri are the residuals, which are mutually orthogonal.
The conjugate gradients methods (CG) minimizes the error in the A-norm over the Krylov subspace
for a symmetric and positive definite matrix A. Specifically, it solves minx∈x0+Kk(A,r0) ∥x − x∗∥2A.
Expanding the solution as xk = x0 + Vkyk and writing down the optimality conditions leads to
a small linear system: (V T

k AVk)yk = ∥r0∥2e1. Since A is symmetric, the matrix V T
k AVk is a

tridiagonal. If we have found the solution for a basis Vk, the solution for the next iteration can be
warm-started from the previous solution.
In the generalized minimal residual (GMRES), we minimize the 2-norm of the residual over the
Krylov subspace. It is minx∈x0+K(A,r0) ∥b − Ax∥2, for a general square matrix A. The optimality
conditions correspond to a small least-squares problem: miny∈Rk

∥∥∥r0∥2 e1 − (V T
k+1AVk)yk

∥∥
2
.

Here, the matrix V T
k+1AVk has a Hessenberg structure. Again, if we have found the solution for

iteration k, the next solution is easily found using warm-starting.
In this talk, we generalize this approach to a bounded variable least squares problem:

min ∥Ax− b∥2 subject to ℓ ≤ x ≤ u, (1)

where A ∈ Rm×n, b ∈ Rm and ℓ, u ∈ Rn, lower and upper bounds.
We will restrict the solution of (1) to a subspace, leading to a small projected problem. Instead
of a small linear system as in CG or a small least-squares problem as in GMRES, this
will now result in a small quadratic programming (QP) problem. This system will solve
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for the optimal coefficients of the solution and for the Lagrange multipliers. With these, we will
calculate a residual that will be added to the basis.

Optimality conditions. Let us start with the optimality conditions for problem (1). These are

AT (Ax− b)− λ+ µ = 0,

λi(xi − ℓi) = 0, i ∈ {1, . . . ,m}
µi(ui − xi) = 0, i ∈ {1, . . . ,m}

ℓi ≤ xi ≤ ui, i ∈ {1, . . . ,m}
λ ≥ 0 µ ≥ 0.

(2)

We now expand the solution in a orthogonal basis Vk as xk = Vkyk. The problem (1) then becomes

min ∥AVkyk − b∥22 subject to l ≤ Vky ≤ u. (3)

The corresponding optimality conditions are now:

V T
k

(
AT (AVkyk − b)− λk + µk

)
= 0,

λi([Vkyk]i − ℓi) = 0, i ∈ {1, . . . ,m}
µi(ui − [Vkyk]i) = 0, i ∈ {1, . . . ,m}

ℓi ≤ [Vkyk]i ≤ ui, i ∈ {1, . . . ,m}
λ ≥ 0 µ ≥ 0.

(4)

These are very similar to (2) but now the first equation is a projection of the residual onto the basis
Vk. The number of complementarity conditions is the same as in the original problem.

Residual Quadratic Programming Active Set Subspace (ResQPASS)). We are now in
a position to define the ResQPASS iteration. It solves a series of small projected optimalisation
problems that can be warm-started with the previous solution.

Definition 1. The residual quadratic programming active-set subspace (ResQPASS) [2] iteration
for A ∈ Rm×n, b ∈ Rm and ℓ, u ∈ Rn, lower and upper bounds such that ℓ ≤ 0 ≤ u with associated
Lagrange multipliers λk, µk ∈ Rn, generates a series of approximations {xk}k∈N that solve

xk = argmin
x∈span{r0,...,rk−1}

∥Ax− b∥22 subject to ℓ ≤ x ≤ u, (5)

where
rk := AT (Axk − b)− λk + µk. (6)

The feasible initial guess is x0 = 0, with λ0 = µ0 = 0 and r0 := −AT b.

The definition of the residual, (6), includes the current guess for the Lagrange multiplier λk and µk.
A non-zero Lagrange multiplier indicates where the solution in the subspace touches the bounds.
Note that the residual, as defined in Eq. (6), also appears in the first equation of the optimality
conditions, (2) and (4).
The restriction ℓ ≤ 0 ≤ u does not limit the applicability, we can use an initial guess x0 to shift to
problem such that this is satisfied.
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Algorithm 1 Residual quadratic programming active-set subspace (ResQPASS)
Require: A ∈ Rm×n, b ∈ Rm, ℓ, u ∈ Rn, tol > 0

1: r0 = AT b
2: V1 = r0/∥r0∥
3: y1 = 0
4: W1 = ∅
5: for k = 1, 2, . . . ,m do
6: y∗k,W∗

k , λk, µk ← Solve Eq. (4) using qpas, with initial guess yk and initial working set Wk

7: rk = AT (AVky
∗
k − b)− λk + µk

8: if ∥rk∥2 ≤ tol then
9: x = Vkyk, break;

10: end if
11: Vk+1 ←

[
Vk rk/∥rk∥

]
12: yk+1 ←

[
(y∗k)

T 0
]T

13: Wk+1 ←W∗
k

14: end for

This definition is translated in the algorithm described in Algorithm 1, which has a very similar
structure as Krylov subspace methods.
If we solve the system of the projected optimality conditions (4) only to feasibility (i.e., not all
Lagrange multipliers are positive), we obtain an orthogonal series of residuals rk. Indeed, the first
equation of (4) shows the current residual projected on the previous residuals. Thus, achieving
feasibility means that the current residual will be orthogonal to all previous residuals.
Another observation is that when the bounds, ℓ and u, do not restrict the problem (i.e none of
the bounds are active), the corresponding Lagrange multipliers µ and λ will be zero, due to the
complementarity conditions. In this case, the residual simplifies to the classical form AT (AVkyk−b),
as in LSQR or CG. The method ResQPASS will then corresponds to a classical Krylov method.
However, when there are active bounds, the residuals will differ — but not significantly. When
only a few bounds are active, the vectors of Lagrange multipliers are sparse, meaning that only a
few of the elements λi and µj are non-zero.
In figure 1, we studied model problems where the number of active constraints in the solution can
be adjusted. What we observe is that, in the initial iterations, progress is slow because the bounds
prevent a full step. However, once the limiting bounds are discovered, regular Krylov convergence
sets in due to the orthogonality of the residuals.
This observation is explained by a convergence analysis [2], which reveals that after a certain
number of iterations, the residuals can be expressed as polynomials of the normal matrix on some
subspace, p(ATA)V0. At this point, regular Krylov convergence occurs. This connection to Krylov
subspaces suggests superlinear convergence for problems with a small number of active constraints.

Numerical implementation. In the numerical implementation, we solve a series of QP problems
that grow in size. Similar to CG and GMRES, solving the next problem becomes easier if the
previous problem has already been solved. We can warm-start with the previous solution as the
initial guess, along with the working set from the previous problem. Additionally, the factorisation
of the saddle point system can be reused, as the active set changes one element at a time, and the
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Figure 1: This figure illustrates the convergence behavior for different number of active constraints.
The residual and objective behave similar to the unbounded (imax = 0, Krylov convergence) case,
with a delay that is roughly equal to imax, the number of active constraints in the problem. x̃ is
an ‘exact’ solution found by applying MATLAB’s quadprog with a tolerance of 10−15.

matrices only change by a rank-1 update.
We use a Cholesky factorization of the projected Hessian V T

k ATAVk or a orthogonalisation AVk = UkBk,
which gives asymptocally the bidiagonalisation. These factorisations ar efficiently updated as the
subspace expands. Similarly, in the inner QP iterations, we use a QR factorization of the Cholesky
factors applied to the active constraints, which further improves the efficiency.
By limiting the inner iterations we can choose to solve only for feasibility. In the early iterations,
it is beneficial to prioritize subspace expansion over achieving full optimality within each subspace.
This control over the number of inner iterations balances solution accuracy and speed. We also
incorporate additional recurrence relations to avoid redundant computations, similar to techniques
used in the CG method.
This results in an algorithm that performs very well in problems with a limited number of active
constraints such as contact problems, offering significantly faster convergence compared to tradi-
tional methods like interior-point methods. However, the performance degrades as the number of
active constraints becomes too large.
It is important to note that ResQPASS is a matrix-free method, as it primarily relies on matrix-
vector products, making it suitable for problems where explicit matrix storage is impractical.
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When does the randomized SVD actually compute an SVD?
Randomized subspace approximation beyond singular value gaps

Christopher Wang, Alex Townsend

Abstract

The randomized SVD (rSVD) is excellent at constructing a low-rank approximation to a matrix
with rapidly decaying singular values, and its theoretical behavior as such was thoroughly explained
in [6]. However, the singular values and singular subspaces of a good low-rank approximation may
not accurately approximate the true singular values and singular subspaces, even with oversampling.
The following example illustrates the problem.
Let A be a 1000×1000 matrix, where five of its eigenvalues are 1 and the remaining 995 eigenvalues
are 0.05. We aim to estimate the 5-dimensional dominant eigenspace corresponding to the 1’s
using the rSVD with standard Gaussian test vectors and oversampling by 10. A simple numerical
experiment returns the following results, over 1000 iterations of the rSVD:

1. Average relative low-rank error in the Frobenius norm ∥A−Ã∥F
∥A−A5∥F : 1.176969

2. Average relative low-rank error in the spectral norm ∥A−Ã∥2
∥A−A5∥2 : 12.152447

3. Average maximum relative error for eigenvalues max
j=1,...,5

|σj−σ̃j |
|σj | : 0.209691

4. Average principal angle error for dominant eigenspace ∥Θ(U5, Ũ5)∥2: 0.654832

Here, Ã is the rank-5 truncated approximant generated by the rSVD, A5 is the best rank-5 approxi-
mant to A (that is, the diagonal matrix with five 1’s in the top left corner), σj , σ̃j are the eigenvalues
of A, Ã respectively, and U5, Ũ5 are the 5-dimensional dominant eigenspaces of A, Ã respectively.
Observe that Ã is only a small factor away from being the optimal rank-5 approximant to A in
the Frobenius norm, but it is much further from optimality in the spectral norm. Additionally,
the rSVD has a hard time distinguishing between the eigenvalue 1 and the eigenvalue 0.1, and the
rSVD’s estimate for the dominant eigenspace is off by nearly 40 degrees, for the largest principal
angle between the subspaces, on average. In short, the rSVD fails to be an SVD, even though it
gives a good low-rank approximation in the Frobenius norm.
Therefore, we ask: for what matrices A does the rSVD actually compute an accurate SVD? We
approach the question by considering how well the rSVD approximates the kth dominant singular
subspaces (indeed, if the rSVD manages to accurately capture the dominant singular subspaces,
then it must be accurate in the singular values as well [7]). This problem has received considerable
attention over the past decade, especially through the lens of perturbation theory. The Davis–
Kahan theorem, and its generalization by Wedin to nonsymmetric matrices, provides bounds,
dependent on the size of the singular value gap between σk and σk+1, on the angular change of
eigenvectors under a deterministic perturbation of a matrix. Building on these two early results,
gap-dependent bounds on the accuracy of singular subspace approximations by projection-based
methods, such as the rSVD, were derived for both deterministic and random settings by [5, 13, 14,
15]. Gap-independent bounds have also appeared in the works of [2, 9, 12]. While such bounds tell
us when we expect to have a hard time determining the singular subspaces of a given matrix, they
may fail to tell us whether a matrix is in fact conducive to singular subspace approximation. In
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fact, we observe in practice matrices with small or nonexistent singular value gaps whose singular
subspaces are nevertheless well-approximated by the rSVD with high probability.
Our contribution is an exact, relatively straightforward formula for the cumulative distribution
function of the largest principal angle between the true and the approximate dominant singular
subspace, when using the rSVD with Gaussian test vectors. Our formula encapsulates the advan-
tages of previous works in that (a) it is computable, interpretable, and a priori in the sense that it
is space-agnostic, meaning it does not depend on prior knowledge of the singular subspaces; (b) it
applies for any power of subspace iteration, with any amount of oversampling (including none at
all); and (c) it can be used to derive existing bounds for the largest principal angle. Since our result
is exact, it is certainly gap-independent. More importantly, it helps explain why a large singular
value gap improves subspace estimates, but it also explains when and why the rSVD succeeds at
singular subspace approximation even when the singular value gap is small. We show that the
gap-dependent bounds of [15] assume the worst-case scenario given a gap, and we show that that
worst-case scenario is when the singular values of A are σ1 = · · · = σk > σk+1 = · · · = σn—the
dominant singular values are as small as possible, while the tail is as large as possible.
To be precise, let N ≥ n and fix the target rank k ≥ 1 and oversampling p ≥ 0 such that k+p < n

2 .
Let M ∈ RN×n and let Σ1,Σ2 be k × k and (n − k) × (n − k) diagonal matrices of the dominant
and tail singular values of M , respectively. If θ1 denotes the largest principal angle between the
kth dominant left singular subspace of M and the (k+ p)-dimensional column space of MΩ, where
Ω is an n × (k + p) standard Gaussian matrix, then the cumulative distribution function of θ1 is
given, for 0 ≤ θ ≤ π

2 , by

P(θ1 < θ) = E
[
det(S(θ,Σ, Q,H1, Q1))

n−k−p
2 2F1(

−p+1
2 , n−k−p

2 ; −p+1
2 ; Ik − S(θ,Σ, Q,H1, Q1))

]
where

1. S(θ,Σ, Q,H1, Q1) is the k × k matrix

sin2(θ)Σ1

(
sin2(θ)Σ2

1 + cos2(θ)QQ′
1(H

′
1Σ

−2
2 H1)

−1Q1Q
′)−1

Σ1;

2. Q, H1, and Q1 are random matrices which are respectively the Q factors in the QR decom-
position of a k× k standard Gaussian matrix, an (n− k)× (k+ p) matrix whose columns are
independently sampled from the multivariate Gaussian N (0,Σ2

2), and a (k + p) × k matrix
whose columns are independently sampled from N (0,H⊤

1 Σ−2
2 H1); and

3. 2F1(a, b; c;X) is the Gaussian hypergeometric function of matrix argument.

All of these quantities are computable given the singular values of M ; the expectation can be com-
puted by Monte–Carlo simulation, while the hypergeometric function can be evaluated extremely
quickly via [8]. Numerical experiments demonstrate excellent agreement between our formula and
empirical observations.
The primary tools used to derive our formula for the cumulative distribution function come from
the statistical side of random matrix theory [4, 11]. Our result and proof generalizes those of [1, 3],
the latter of which plays a major role in the theoretical guarantees of [6, 15]. We expect that our
formula and techniques can be used to explain, in more detail, empirically observed phenomena in
randomized methods for computing SVDs, including randomized Krylov iteration. We also expect
that our formula can be used to analyze the possibility of using the rSVD as a test for low-rank
structure, which has come up in [10, 16], or as a rank revealer. Finally, we hope to use our result
to distinguish the classes of matrices for which randomized subspace methods succeed or fail at
different tasks, including singular value and singular subspace approximation.
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Bulge Chasing is Pole Swapping

David S. Watkins

Abstract

For at least fifty years, the dominant work-horse algorithms for solving small to medium-sized
eigenvalue problems have been variants of Francis’s implicitly-shifted QR algorithm, including the
Moler-Stewart QZ algorithm and refinements. These are bulge-chasing algorithms. They create
bulges at one end of the (Hessenberg) matrix or pencil and chase them to the other end. A few years
ago a new class of algorithms, pole-swapping algorithms, was introduced by Camps, Meerbergen,
Vandebril, and others. It turns out that pole swapping is a generalization of bulge chasing. It
might happen that new pole-swapping codes will supplant the current QR and QZ codes in the
major software packages. Whether this turns out to be true or not, the pole-swapping viewpoint is
extremely valuable for a detailed understanding of what makes this class of algorithms, both bulge-
chasing and pole-swapping, work. The purpose of this talk is to describe pole-swapping algorithms
briefly and explain what makes them tick. Every expert in the field of eigensystem computations
should be in possession of this information.
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Structured Representations of Rational Functions for Learning Mechanical
Dynamical Systems: A Barycentric Approach

Steffen W. R. Werner, Michael S. Ackermann, Ion Victor Gosea, Serkan Gugercin

Abstract

In recent years, the importance of learning dynamical systems from data has emerged as a pivotal
area of research, bridging the realms of mathematics, engineering, and data science. Dynamical
systems, which describe how states evolve over time based on underlying mathematical relations,
are fundamental to understanding a wide range of time-dependent phenomena—from physics and
biology to economics and social sciences. For the use of these systems in practical applications like
predictive simulations and control, high modeling accuracy as well as interpretability and explain-
ability are essential. While high accuracy of models can usually be achieved by the incorporation
of data from simulations or real-world measurements, the interpretability and explainability are
typically not given in most blackbox and unstructured modeling approaches. In this work, we
propose a new framework of data-driven modeling algorithms based on a novel representation of
rational functions leading that allows us in the case of mechanical applications the modeling of
accurate dynamical systems from given data while providing a structured system representation,
which gives physical meaning to the terms describing the dynamical system.
The dynamical systems that we are interested in are given via second-order ordinary differential
equations of the form

Mẍ(t) +Dẋ(t) +Kx(t) = bu(t), y(t) = cTx(t), (1)

with M,D,K ∈ Rn×n and b, cT ∈ Rn. Thereby, the function u : R → R models the external inputs
that allow us to interfere with the internal system behavior given by the states x : R → Rn. Typi-
cally, one cannot observe the complete state behavior but has access to a low-dimensional output
y : R → R modeling quantities of interest of the system. The unique format of (1) usually appears
in applications with mechanical structures, acoustic phenomena or electro-mechanical components.
Consequently, the matrices in (1) can be associated with a certain physical meaning: M is describ-
ing the distribution of mass in the system, D yields the dissipation or preservation of energy, and
K explains the forces between the different components of the system. An equivalent description
of (1) is given in the complex frequency domain by taking the Laplace transformation of (1) leading
to the system’s transfer function

H(s) = cT (s2M + sD +K)−1b, (2)

with s ∈ C. The function H : C → C in (2) is at its core a complex rational function with a
structured representation. In the case of the aforementioned applications, data is typically given
in form of transfer function measurements

H(µ1) = h1, H(µ2) = h2, . . . , H(µN ) = hN . (3)

With all these components, the structured data-driven modeling problem that we consider in this
work reads as follows: Find a transfer function Ĥ that has the same structure as (2) and that
approximates the given data (3) like

Ĥ(µ1) ≈ h1, Ĥ(µ2) ≈ h2, . . . , Ĥ(µN ) ≈ hN . (4)
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To solve the structured data-driven modeling problem, we have extended key tools from numer-
ical linear algebra that have been used for the unstructured modeling problem before. In the
unstructured case, linear dynamical systems are given in the form

Eẋ(t) = Ax(t) + bu(t), y(t) = cTx(t), (5)

with E,A ∈ Rn×n and b, cT ∈ Rn, and the corresponding transfer function

G(s) = cT (sE −A)−1b. (6)

Many efficient and effective methods for the modeling of transfer functions Ĝ of the form (6) from
data (3), utilize a reformulation of (6) into its barycentric form

G(s) =

n∑
k=1

hkωk
(s−λk)

1 +
n∑

k=1

ωk
(s−λk)

, (7)

where λk ∈ C are the support points, hk ∈ C function values and ωk ∈ C the barycentric weights.
This representation (7) eases the problem of fitting data significantly as it allows interpolation
by construction and provides desired numerical properties in least squares problems which become
linear systems with Loewner matrices. Consequently, popular data-driven modeling approaches are
based on (7). Enforcing interpolation in all given data leads to the Loewner framework [1], matching
the data in a least-squares sense results in the vector fitting method [3], and mixing interpolation
conditions for parts of the data with a least square fit for the rest yields the AAA algorithm [4].
Due to the classical barycentric form (7) corresponding to unstructured systems (5), the models
obtained via these approaches typically cannot be rewritten into the second-order form (1) even
when the data was coming from a mechanical application.
With the barycentric form (7) being the key component in the data-driven modeling approaches
above, we developed a new structured variant of the barycentric form corresponding to the second-
order transfer function (2). The structured transfer function (2) can be written in the form

H(s) =

n∑
k=1

hkωk
(s−λk)(s−σk)

1 +
n∑

k=1

ωk
(s−λk)(s−σk)

, (8)

where λk ∈ C are support points, hk ∈ C are function values and ωk ∈ C are barycentric weights as
in the classical variant (7); see [2]. In contrast to (7), the new structured form has an additional set
of parameters σk ∈ C that we denote as quasi-support points. The structured barycentric form (8)
shares important properties with the classical variant (7), in particular the interpolation of the
data (λk, hk)

n
k=1 by construction, such that it can be similarly used as the backbone of data-driven

modeling algorithms. Additionally, second-order systems of the form (1) can easily be recovered
from (8) via

M = In, D = −Λ− Σ, K = b1T
n + ΛΣ, b =

[
w1 . . . wn

]T
, c =

[
h1 . . . hn

]T
,

where Λ = diag(λ1, . . . , λn) and Σ = diag(σ1, . . . , σn) are diagonal matrices containing the support
and quasi-support points, and In and 1n denote the n-dimensional identity matrix and the vector
of all ones of length n, respectively; see [2] for more details.
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Based on the structured barycentric form (8), we can now develop new approaches that solve the
structured data fitting problem (4). Previously, we introduced a new structured version of the
Loewner framework based on (8) in [2], in which the use of (8) leads to linear systems of Loewner-
like matrices to be solved to match additional interpolation conditions. In this work, we will provide
an extension of the AAA algorithm for the structured second-order case. To this end, we consider
a similar step-by-step construction of a lower dimensional model in barycentric form, interpolating
in the most important data points and approximating the rest of the data (3) effectively in a
least-squares sense for which we need to solve nonlinear least-squares problems with Loewner-like
matrices. We will provide a variety of numerical examples including the vibrational response of a
plate and the sound behavior of an acoustic cavity to show that the proposed approach is capable of
efficiently constructing low-dimensional high-fidelity models from given data that are interpretable
and explainable as second-order systems (1).
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A Time-Trequency Method for Acoustic Scattering in Unfriendly Domains

Heather Wilber, Abi Gopal, Gunnar Martinsson, Wietse Vaes

Abstract

The acoustic scattering problem asks for the recovery of a scattered wavefield that is produced
when an incoming incident wavefield strikes a scattering object. If sound-soft boundary conditions
are imposed and the incident wavefield uinc is pulse-like and away from the scatterer at t = 0, then
the scattered field u satisfies the following:

∂2u

∂t2
(x, t)− c2∆u(x, t) = 0, (x, t) ∈ Ω× [0, T ], (1)

u(x, 0) =
∂u

∂t
(x, 0) = 0, x ∈ Ω, (2)

u(x, t) = −uinc(x, t), (x, t) ∈ ∂Ω× [0, T ]. (3)

Here, c is the wave speed associated with the domain, Ω is an exterior domain, and [0, T ] is some
relevant time period over which the scattered waves are observable. This problem is challenging
to solve for a number of reasons. Domain discretization schemes must manage the fact that the
exterior domain is unbounded as |x| → ∞ and impose artificial absorbing boundary layers that
appropriately handle outgoing waves. Traditional direct-in-time methods must combat pervasive
issues related to accumulating dispersive error and potentially prohibitive restrictions on time step
sizes. When the domain includes corners, cusps, or trapping regions where the scattered waves can
get stuck and decay very slowly, these issues become severely exacerbated.
Under the condition that the incident wavefield is enveloped by a Gaussian or is otherwise approx-
imately bandlimited, some of the complications of direct-in-time methods can be avoided by using
hybrid time-frequency solvers [1, 8]. This class of methods considers an equivalent problem in the
frequency domain. If Û(x, ω) is the Fourier transform of u(x, t) with respect to time, then it follows
that Û satisfies the Helmholtz equation with a continously parametrized wavenumber:

∆Û(x, ω) +
ω2

c2
Û(x, ω) = 0, x ∈ Ω, (4)

Û(x, ω) = −Ûinc(x, ω), x ∈ ∂Ω, (5)

The Sommerfeld radiation condition is additionally imposed at all ω. Now u(x, t) can be expressed
in terms of an inverse Fourier transform. If Û(x, ω) is sufficiently small for all x whenever ω is
outside the band [W1,W2], then

u(x, t) =
1

2π

ˆ ∞

−∞
Û(x, ω)e−iωtdω ≈ 1

2π

ˆ W2

W1

Û(x, ω)e−iωtdω. (6)

The primary task in these methods is the evaluation of the integral in (6) via quadrature, which in
turn requires the solving of the Helmholtz equation at quadrature points {ω1, ω2, · · · , ωN}, and then
the evaluation of the solutions over all domain points of interest. There are major advantages to this
formulation, including the ability to compute solutions that are virtually free of dispersive error,
and the ability to evaluate u(x, t) at arbitrary points in time (time-skipping). Moreover, solutions
to the Helmholtz equation can be expresesd via boundary integral equations that nicely handle
the exterior domain by reducing it to a contour integral around the boundary of the scatterer [7].
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However, there is no free lunch! These methods become prohibitively expensive or intractable
when the domain involves corners, trapping regions, or both. We introduce developments that
overcome these challenges so that hybrid time-frequency methods are effective in domains with
these “unfriendly” features. Example domains where our methods work well include multiply–
connected regions (e.g., whisper galleries or panel sets), as well as keyhole regions with severe
trapping, multiple corners, and long channels.
Our work involves two major developments that make hybrid time-frequency methods effective in
unfriendly domains:

For trapping regions: A damping+correction fast quadrature scheme for the inverse Fourier
transform that combines contour integration with fast transforms (the FFT and the fast sinc
transform) to make evaluation of the integral in (6) tractable even when there is trapping.

For domains with corners: State-of-the-art hierarchical linear algebra routines based on re-
cursive skeletonization and the balanced use of “universal skeletions” for solving and eval-
uating the broadband Helmholtz equation. Excellent efficiency makes it possible to handle
discretizations with many points (e.g., induced by refinement into corners).

We briefly discuss these two developments, starting with a method to make evaluation feasible in
domains with trapping.
There are two reasons that the integral in (6) can be challenging to discretize efficiently. First, if
t is large, the integral becomes highly oscillatory and naive discretizations (e.g., Gauss-Legendre
quadrature) require many points to capture the oscillations. Coupled to this problem is the fact
that when u(x, t) is in a trapping region and thus decays slowly over time, Û(x, ω) has poles in the
complex plane very near to the interval [W1,W2]. These poles are associated with near-resonant
modes of the Helmholtz operator. Since Û(x, ω) has only a very small region of analyticity that
encloses [W1,W2], it is inherently difficult to approximate with polynomials.
To improve upon the analyticity properties, we note that the poles of Û(x, ω) always lie below the
real line. This suggests the consideration of the perturbed function Û(x, ω+ iδ), where δ > 0. One
can view this perturbation as the introduction of mild damping into the solution. Since Û(x, z) is
analytic with respect to z in the upper half plane, we can apply Cauchy’s integral theorem on a
rectangular contour in the upper half plane and represent the undamped solution as

ˆ W2

W1

Û(x, ω)e−iωtdω = −
ˆ W2

W1

Û(x, ω + δi)e−i(ω+δi)tdω︸ ︷︷ ︸
Iδ

−IcL − IcR, (7)

where the correction terms IcL and IcR are integrals along the vertical sides of the rectangle. There
is an inherent upper limit on δ. We show that if it is taken too large, the correction terms cannot
be stably evaluated. However, the room afforded by δ is generous enough that when paired with a
fast evaluation scheme for the integral Iδ, we are able to solve the acoustic scattering problem even
with severe trapping over long time horizons.
The integral Iδ is still problematic in that it can be highly oscillatory when t is large. To manage
this, we follow an idea originally presented in [1] that is also related to sampling schemes for
bandlimited functions [6]. We approximate the periodization of Û(x, ω + δi) with a trigonometric
polynomial. Critically, this is possible because of the improved analyticity afforded by damping.
Substituting this approximation into the integral Iδ results in a simplification of the integral so
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that for each fixed x,

Iδ ≈
W2 −W1

2π(2m+ 1)
e−it((W2−W1)/2+W1+iδ)

m∑
j=−m

(−1)jcjsinc
(
(W2−W1)t

2π − j
)
, (8)

where sinc(x) = sin(πx)/(πx). The set of coefficients {cj}mj=−m is x-dependent and can be found
using the FFT on equally spaced samples of Û(x, ω + δi) over the band [W1,W2]. Rather than
naively evaluating the sum, we apply the fast sinc transform [5] (via the nonuniform FFT of type-
III [2]) to evaluate the weighted sum of sincs at locations {t1, t2, · · · , tN} in only O(m logm+N)
operations. Note that the complexity of this method no longer depends linearly on t, as would
be true with a naive discretization. Instead, it depends on m, which has an implicit but much
weaker dependence on t since the size of t for which u(x, t) is relevant is correlated to the distance
of [W1,W2] + δi from the poles associated with near-resonant modes.
Even with damping, the discretization of Iδ still requires 2m+ 1 solves of the Helmholtz equation,
and then evaluations of each of these solutions at every point x of interest in the domain. Corners
induced by singularities in the solutions require special care. They can be handled with highly
specialized quadrature that requires precise knowledge about the geometry [3, 9], or they can be
handled with refinement strategies in the Nyström discretization of the integral. The latter is
practical, but makes the solve and evaluation steps much more expensive. To handle the expense,
we employ so-called universal skeletons in a fast solver based on recursive skeletonization. Evalu-
ations are then handled with the fast multipole method. Universal skeletons were first introduced
in [4]. They supply a way to reuse low rank approximation factors in hierarchical discretizations
of boundary integral equations as the wavenumber parameter changes. We discuss how they can
be adapted and applied in balanced and effective ways in the context of the acoustic scattering
problem.
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Data-driven Numerical Methods for Kernel Matrices

Yuanzhe Xi, Difeng Cai, Tianshi Xu, Hua Huang, Edmond Chow

Abstract

Kernel matrices play a pivotal role in various machine learning and scientific applications, with
their structure critically influenced by both the parameters of the kernel function and the data dis-
tribution [2]. This talk will begin with a geometric analysis of the Schur complement of the kernel
matrix, examining the effects of kernel bandwidth and data distribution on its structure. Building
on these geometric insights, we design the Adaptive Factorized Nyström (AFN) preconditioner [1]
for solving linear systems associated with the regularized kernel matrix. The AFN preconditioner
enhances the Nyström approximation by constructing a sparse approximate inverse for the Schur
complement, significantly improving robustness and efficiency across a wide range of parameters.
Finally, we will introduce HiGP [4], a high-performance Python package designed for Gaussian
Process Regression (GPR) and Classification (GPC). HiGP integrates AFN and some precondi-
tioned iterative methods [3] to boost the efficiency and scalability of model training and inference
across various datasets.
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Matrix Analysis and Fast Solvers for Neural Network Computations

Jianlin Xia

Abstract

Neural networks provide a powerful tool for machine learning and other data science techniques.
They can also serve as new ways for mathematical and numerical tasks such as function approxi-
mations and PDE solutions. Although there have been significant developments in neural network
methods, the analysis of relevant matrices and the design of relevant fast and stable matrix com-
putation techniques are typically overlooked.
In fact, neural network methods provide highly interesting new opportunities to perform matrix
analysis and design matrix algorithms that can benefit modern data analysis and machine learning.
Examples of scenarios where large and challenging matrices arise include the following.

• In neural network least-squares approximations of functions, large mass matrices and Hes-
sian matrices may be constructed from activation functions such as ReLU functions as basis
functions.

• Sparse structured matrices have been often used in the design of effective neural networks
and efficient training algorithms (and a simple example is the use of sparse Toeplitz matrices
as weight matrices in some neural networks).

• In optimization and training algorithms such as ADAM and BFGS, the underlying matrices
are often closely related to certain preconditioners.

In this talk, we aim to bridge the gap between some neural network methods and fast and reliable
matrix computations. We present rigorous analysis for some of these matrices and show two aspects.

• Why some of these matrices pose significant challenges (say, in the conditioning, spectrum
distribution, and frequency modes) for matrix computations.

• Why it is feasible to design new fast and reliable solvers for these problems based on certain
underlying structures.

In particular, consider the approximation of a function u : Ω(⊂ Rd) → R by

v =
n∑

i=1

ciσ(w
T
i x+ bi), x ∈ Ω,

where wi’s are weight vectors, bi’s are biases, ci’s are scalar coefficients, and σ(t) = max{t, 0} is the
ReLU function. Let W = (w1, . . . ,wn), b = (b1, . . . , bn)

T , and c = (c1, . . . , cn). The least-squares
approximation of u by v solves the following optimization problem:

min
W,b,c

J with J := ⟨v − u, v − u⟩ = 1

2

∫
Ω
(v − u)2dx.

By viewing c as a set of linear parameters and {W,b} as nonlinear parameters, we can look at the
gradient of J with respect to one of the two sets of parameters with the other set fixed [1]. Setting
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the gradients to be 0 leads to a linear system for the linear parameters and a nonlinear system
for the nonlinear parameters. The former system has a mass matrix Ã as the coefficient matrix.
The solution of the latter system with Newton or Gauss-Newton methods lead to linear systems
involving a Hessian or Gauss-Newton matrix H̃. In a highly simplified setting, Ã and H̃ may be
related to the following matrix forms, respectively:

A = (Aij)n×n, Aij =
⟨
σ(wT

i x+ bi), σ(w
T
j x+ bj

⟩
,

H = (Hij)n×n, Hij =
⟨
h(wT

i x+ bi), h(w
T
j x+ bj

⟩
,

where h(t) = σ′(t) =

{
1, t > 0,

0, t < 0.

Some interesting matrix analysis may be performed for A and H. For example, we can show the
following aspects.

• A and H are positive definite (with modest assumptions) but are highly ill conditioned due to
the fast decay of the eigenvalues. For instance, even in the 1D case with uniform breakpoints
that define the ReLU basis functions, A has 2-norm condition number proportional to 1

n4 .

• The behaviors of the low and high frequency modes further make them challenging for iterative
solvers.

• Some preconditioning strategies may be designed based on basis function modifications, but
the effectiveness is limited.

• On the other hand, the matrices have nice inherent structures. In particular, relevant off-
diagonal blocks of the matrices are low rank (the 1D case) or numerically low rank (with
appropriate conditions). These structures make it feasible to design fast and stable direct
solvers for the relevant linear systems.

These problems thus give a nice opportunity to apply structured matrix methods. This also shows
how advanced matrix analysis may benefit modern neural network methods. The talk includes
joint with Z. Cai, T. Ding, M. Liu, and X. Liu.
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A block conjugate gradient method with polynomial filters for symmetric
eigenvalue problems: practice and global quasi-optimality

Fei Xue, Tianqi Zhang

Abstract

We propose a new block variant of the preconditioned conjugate gradient (PCG) method for
computing the lowest eigenvalues of standard symmetric (Av = λv) and product eigenvalue prob-
lems (KMv = λ2v) [1] that arise, for example, from the Bethe-Salpeter equation. The algorithm
combines the well-known strengths of locally optimal PCG [4] and Chebyshev polynomial filter
methods [2, 3] to exhibit robust and rapid convergence for computing potentially many lowest
eigenvalues. The convergence of the new method is not very sensitive to the quality of the pre-
conditioner or the parameters of the polynomial filter, which is usually critical for achieving good
performance of PCG methods and polynomial-based algorithms. Numerical experiments show its
improved robustness and runtime compared to several other algorithms, such as the M -LOBPCG
[6], Chebyshev-Davidson [2, 3] and LOBP4DCG [5].

On the theoretical side, we show that the ideal version of this algorithm (and similar others)
exhibits a global quasi-optimality if the starting vector is not far from the eigenvector associated
with the lowest eigenvalue: the Rayleigh quotient of the iterates computed by this locally optimal
algorithm is close to the one computed by the corresponding globally optimal algorithm in early
iterations, until the latter eventually outperforms. Such a behavior is similar to the global optimality
of the conjugate gradient method for solving a symmetric positive definite system of linear equations
[8, Section 5.1]. This theory provides insight into the competitiveness of the family of locally optimal
methods with search directions, such as LOBPCG and thick-restarted Lanczos + k methods [7].
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Randomized Algorithms for the Simultaneous Compression
and LU Factorization of Hierarchical Matrices

Anna Yesypenko, Per-Gunnar Martinsson

Abstract

Dense matrices related to solving elliptic PDEs often have internal structure that allows for the
linear system Ax = b to be solved in linear or near-linear time. The hierarchical matrix (H2-
matrix) formalism [1] partitions A into blocks, with each block small enough to be stored densely
or of numerically low rank k, where k controls the accuracy of the approximation. This format
enables matrix-vector products to be computed to a desired accuracy in linear or near-linear time,
allowing for the rapid solution of dense linear systems using iterative methods when A is well-
conditioned. However, in many situations, the matrix A is ill-conditioned, and iterative methods
do not offer satisfactory performance.
The objective of this work is to compute an H2 approximation to the inverse A−1, enabling the
fast solution of ill-conditioned dense linear systems. Previously, the use of invertible factorizations
of H2 matrices has been limited due to two challenges:

1. Compression. Although a fast matrix vector product for A is often available, individual
entries may be challenging to access, which leads to challenges in compressing A.

2. Invertible Factorization. While invertible factorization algorithms are efficient for special-
ized formats like HBS/HSS matrices [2, 4, 7], inversion algorithms for general H2-matrices
typically involve nested recursions and recompressions, making efficient implementation chal-
lenging.

This work [8] describes a novel algorithm for simultaneously compressing and inverting an H2-matrix
and extends the applicability of H2 inversion algorithms [5, 6] to a generic class of dense matrices
for which there is a means of applying the matrix and its adjoint to vectors. The method leverages
the randomized SVD (RSVD) and novel sketching techniques [3] to efficiently recover numerically
low-rank sub-blocks of the matrix A within a hierarchical framework by reusing random sketches
of the matrix. The precise problem formulation is:
Suppose that A ∈ RN×N is an H2-matrix, and that you are given a fast method for applying A and
its adjoint A∗ to vectors. We are also given geometric information corresponding to the matrix A,
e.g. entry Aij corresponds to interactions between points xi and xj in 2 or 3-dimensional space.
Using test matrices Ω and Ψ and the set of matrices {Y,Z,Ω,Ψ}, where

Y
N×s

= A
N×N

Ω
N×s

and Z
N×s

= A
N×N

∗ Ψ
N×s

,

the framework constructs an invertible H2 factorization K such that K−1 ≈ A−1.
The number of samples s needed to construct an H2 approximation of the inverse A−1 is independent
of N and depends only on the chosen rank parameter k as well as properties of the geometry.
The numerical results demonstrate the effectiveness of the algorithm across a range of problems,
including the discretization of partial differential equations (PDEs) and boundary integral equations
(BIEs) in both 2D and 3D. The results demonstrate the algorithm’s performance in terms of
speed, memory efficiency, and precision, as well as its robustness in handling indefiniteness and
ill-conditioning.
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Efficient Classical-Quantum Algorithms for Matrix Encoding

Liron Mor Yosef, Haim Avron

Abstract

We introduce an efficient classical-quantum algorithm for encoding arbitrary dense Hermitian
matrices as Block Encoding circuits (UA ∈ BEα,θ (A)). Our work is motivated by Block Encoding’s
fundamental role as the leading paradigm for quantum linear algebra, providing a unified framework
for leveraging quantum computing to accelerate numerical linear algebra operations. Our algorithms,
accepts four distinct input representations: (1) classical matrix description A ∈ Cn×n, (2) an
4 × 4 × · · · × 4 (log n times) Pauli coefficients tensor AP , (3) matrix state preparation circuit
UA, or (4) matrix state preparation circuit for the Pauli tensor UAP

. This flexibility optimizes
performance across different data availability scenarios, with the classical matrix input achieving
O(n2 log n) run-time complexity in the worst case. Moreover, the third input model demonstrates
a significant breakthrough: the first known method to construct a Block Encoding circuit directly
from a matrix state preparation circuit without requiring additional classical information (such as
row norms) or additional quantum hardware (such as QRAM). This establishes a new bidirectional
equivalence between block encoding and matrix state preparation input models, providing a unified
framework for matrix encoding in quantum algorithms.

1 Introduction

1.1 Motivation and problem statement

Quantum computers hold hope for significant speedups in scientific computing and machine learning
due to their ability to handle matrix operations efficiently [3]. However, unlocking this potential
hinges the algorithm’s ability to efficiently access classical data within the quantum system. The
mechanism in which classical input is fed into a quantum algorithm is known as the algorithm’s
input model.
Leveraging breakthroughs in quantum linear algebra, researchers have proposed many quantum
algorithms for scientific computing and machine learning. However, the feasibility of their input
model assumptions remains critical to their effectiveness. As shown by Chakraborty et al. [4], these
assumptions often significantly impact the performance and efficiency of such algorithms. Prime
examples of quantum linear algebra algorithms include the HHL algorithm [8], and others [5, 7, 14,
2, 11].
Given the essential role of the input model in defining how classical data interacts with the quantum
system, researchers have explored various approaches. Two noteworthy examples include the sparse-
data access model [1, 5] and various quantum data structure based models [9, 10].
In this work, we study the use of Pauli decomposition in developing efficient algorithms to encode
arbitrary dense or sparse Hermitian matrices into Block Encoding circuits, either provided as
classical data or as quantum circuits, into Block Encoding circuits.
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1.2 Brief overview of Block Encoding and State preparation

Chakraborty et al. [4] showed that a variety of the aforementioned widely used input models can
be reduced to an input model in which matrices are inputed using block encodings and vectors are
inputed as state preparation circuits:

Definition 1 (State preparation Circuit). We say that a log2 n-qubit circuit U is a state preparation
circuit for a vector x ∈ Cn if applying U to the state |0⟩log2 n results in the state |x⟩log2 n.

Definition 2 (Block encoding of a matrix). For α ≥ 0 and θ ∈ [0, 2π), a circuit U is a (α, θ)-Block
Encoding of A ∈ Cm×n, denoted as U ∈ BEα,θ (A), if

αeiθM(U) =
[
A ∗
∗ ∗

]
where ∗ denotes arbitrary entries, and M(U) denote the unique unitary matrix of the circuit U .
We refer to α as the scale and θ as the phase.

We refer to the input model in which matrices are accessed using block encodings and vectors
are accessed as state preparation circuits as the block encoding input model. There are powerful
algorithms that operate under the block encoding model. In particular, in the block encoding model
we can perform Quantum Singular Value Transformation [7], a powerful technique that leads to
efficient algorithms for solving linear equations, amplitude amplification, quantum simulation, and
more [12].
Another relevant input model is the state preparation input model. In this model, matrices accessed
via matrix state preparation circuit and vectors are accessed via state preparation circuits. Mor-
Yosef et al. [15] recently introduced an algorithm for multivariate trace estimation and spectral
sums estimation under this model.

Definition 3 (Matrix state preparation circuit). We say that a (log2 n + log2m)-qubit circuit U
is a matrix state preparation circuit for a matrix A ∈ Cm×n if applying U to the state |0⟩log2 mn

results in the state ||A⟩⟩ := |vec (A)⟩. Equivalently, the first column of M(U) is vec (A).
For convenience, where appropriate, we add the matrix as sub-index when denoting state preparation
circuits, e.g. UA. In such cases, with an abuse of notation, the number of gates in UA is denoted
by gA, and the depth by dA.

1.3 Statement of main results

While existing block encoding methods typically exploit specific matrix properties like structure,
sparsity, or rank, we introduces an efficient general-purpose technique for arbitrary matrices (dense
and sparse) through Pauli decomposition. These techniques will utilize the principles of Pauli
decomposition, and the use of a quantum multiplexer.
The Pauli decomposition represents matrices as a sum of tensor products of Pauli matrices. Formally,
let Σ = {I = 0,X = 1,Y = 2,Z = 3} represent a set of indices corresponding to the four
2 × 2 Pauli matrices: σI , σX , σY , σZ . Assume that n = 2q. Given a word (i.e., sequence) W =
(w1, w2, . . . , wq) ∈ Σq, we define the corresponding q-wise Pauli matrix as σW := σw1 ⊗ σw2 ⊗ · · · ⊗
σwq . Then, the Pauli decomposition of matrix A can be expressed mathematically as:

A =
∑

W∈Σq

αWσW
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where αW ∈ R are real coefficients.
The quantum multiplexer [13] acts like a switch within a quantum circuit. It uses control qubits
to selectively apply different unitary operations to a target qubit. Given a set of quantum circuits
U0, . . . ,Uk−1 the log k-qubit multiplexer is defined as:

MX log k :=
k−1∑
i=0

|i⟩ ⟨i| ⊗ Ui.

Importantly, MX log k acts as a multiplexer. In other words:

MX log k( |i⟩︸︷︷︸
control

|ψ⟩︸︷︷︸
input

) = |i⟩︸︷︷︸
control

Ui |ψ⟩︸ ︷︷ ︸
output

.

The matrix that represents the multiplexer is a block diagonal matrix of the corresponding operators:

M(MX log k) = diag (M(U0), . . . ,M(Uk−1))

Once we have obtained the Pauli coefficients of the matrix, we can utilize a multiplexer to construct
a block-diagonal matrix composed of the corresponding q-wise Pauli matrices. By employing a
state preparation circuit for the coefficients, we can efficiently implement linear combinations of
coefficients multiplied by matrices, effectively creating a block encoding of the matrix A.
To efficiently determine the Pauli coefficients classically, we require some theoretical groundwork.

1.4 Contribution

This work makes three key contributions: (a) the first bidirectional equivalence between block
encoding and matrix state preparation input models, (b) a novel classical Pauli decomposition
algorithm withO(n2 log n) run-time complexity, and (c) an efficient quantum circuit implementation
for multiplexed Pauli tensor products with O(n2) gate complexity. This general-purpose approach
improves upon existing techniques for arbitrary matrix encoding, achieving particular efficiency
when the Pauli decomposition is sparse.

2 Block encoding equivalence

Given a matrix state preparation circuit for A and a state preparation circuit for a vector w whose
entries are the row norms of A, it is possible to construct a block encoding of A [6, Section I.D].
We are unaware of any efficient algorithm that given only a matrix state preparation circuit for A
constructs a block encoding of A. In this section we will show a way to create block encoding from
state preparation circuits and vise versa.

2.1 Block encoding → matrix state preparation circuit

Mor-Yosef et al. [15] show that given a circuit U we can construct a matrix state preparation of
M(U). Thus, given a block encoding of A we can immediately construct a matrix state preparation
circuit for a matrix that contains A.
The following provides a proof for creating a state preparation circuit, including auxiliary (garbage)
quantum states, from Block Encoding.
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Proposition 4. Suppose that U ∈ BEα,θ (A). Applying the ′qml.matrix′ results UM(U) s.t UM(U) ∈
MSα,θ (A)

Proof. We have that,

UM(U) =
[
vec (M(U)) ∗

]
= α−1e−iθ

[
vec

([
A ∗
∗ ∗

])
∗
]

= α−1e−iθ

[
vec (A) ∗

ψ ∗

]

2.2 Matrix state preparation circuit → block encoding

We introduce a method to create block encoding solely from a matrix state preparation circuit.
Preliminary examples are provided to illustrate this approach, with the full methodology detailed
in the paper. At a high level, we construct UAp from UA, and then apply the technique from the
previous section to block encode A.
In high level, we construct UAp from UA, then use the technique from the previous section to block
encode A. We will now demonstrate how to compute UAp in the following section.

2.2.1 Construct UAp from UA( Warm-up: q = 1 and Real A)

As a warm-up, let us first consider the case of q = 1, i.e. the A ∈ Rn×n a 2 by 2 real and Hermitian
matrices. To keep notation simple, we use the 1 base index, i.e.

A =

[
a11 a12
a21 a22

]
a12 = a21

Note that we can write A as a linear combination of the following matrices,

E11 =

[
1 0
0 0

]
, E12 =

[
0 1
0 0

]
, E21 =

[
0 0
1 0

]
, E22 =

[
0 0
0 1

]
Indeed we have that

A =
∑
i,j

aijEi,j = a11E11 + a12E12 + a21E21 + a22E22

From linearity of (·)pwe have that

Ap =

∑
i,j

aijEij


p

= A =
∑
i,j

aij (Eij)p

Note that we can create state preparation circuits {U(Eij)p
}i,j , using the standard state prepartion

operation ([13]). Now we can create the UAp as follow:
This observation can easily be used to implement, via qMSLA operations, an algorithm that takes
UA and outputs UAp .
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Adaptive data-driven reduced-order models of port-Hamiltonian dynamical
systems for nonlinear inverse scattering applications

Mikhail Zaslavskiy, Vladimir Druskin, Shari Moskow

Abstract

1 Problem formulation

The inverse scattering problem formulated for the Schrödinger operators arises in various fields,
including quantum mechanics, radars, viscoelasticity, Biot problems, remote sensing, geophysical,
and medical imaging. The goal of imaging is to find medium properties in the domain using near-
field measured data. The model based nonlinear optimization which is the method of choice for the
solution of the inverse problems can be unreliable and particularly expensive for such problems.
Data driven nonlinear transforms can be an opening, however it was recently shown that the
ReLU networks are intractable for reliable solution of the inverse problems in continuum using
conventional digital computers. In the present work, following the success of data-driven reduced-
order models (ROMs) developed in recent years, we propose a robust direct method for solving
inverse scattering problems for the Schrödinger equation. Our approach is based on a Lippmann-
Schwinger algorithm with a crucial component composed of adaptive data-driven ROMs in the
frequency domain and efficient learning the internal solutions. Below we discuss the details of the
algorithms as well as some bottlenecks.
We consider first-order formulation of frequency-domain wave problem in lossy medium

∇ · v + 1

2
∇(ln(σ)) · v + ru+ iωu = f (1)

∇u− 1

2
∇(ln(σ)))u+ iωv = 0 (2)

in a bounded domain Ω for m sources f ∈ R∞×m. Here u, v ∈ C∞×m with columns being solutions
for the corresponding sources. We assume that the measured data is given by fTu where columns
of f and u are multiplied with respect to L2 nner product (g;h)L2 =

∫
Ω ghdV . After spatial dis-

cretization we obtain MIMO port-Hamiltonian LTI dynamical system [2] in the frequency-domain

(A+ P )w + iωw = F (3)

with skew-symmetric matrix A = −AT ∈ RN×N , symmetric matrix P = P T ∈ RN×N , F ∈ RN×m.
The measured data is given by D(ω) = F Tw. We note that the obtained system (3) is symmetric
with respect to indefinite (pseudo-)inner product (x; y)J = xHJx where H denotes Hermitian
conjugate and

J =

(
I 0
0 −I

)
(4)

In the inverse scattering problem in lossy medium the goal is to recover unknown damping term r
and reflectivity ln(σ) under known data D(ω)). In the LTI system (3) the discrete counterparts of
both unknowns compose matrix P .
Lippmann-Schwinger approach has been proven to be a powerful tool for solving inverse scattering
problem [3]. It can be formulated in terms of integral equation involving solution (u; v) for unknown
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medium as well as solution (u0; v0) for background with some a priori known parameters (say,
r = ln(σ) = 0):

∇ · v0 + iωu0 = f (5)
∇u0 + iωv0 = 0. (6)

After spatial discretization we obtain

Aw0 + iωw0 = F (7)

with background data given by D0(ω) = F Tw0. The discrete counterpart of Lippmann-Schwinger
equation can be formulated then as

(w0)H(ω)JPw(ω) = D0(ω)−D(ω). (8)

This is a system of nonlinear equations with respect to unknown parameter matrix P because w(ω)
itself depends on P . Tradional way to linearize this problem is so-called Born approximation, i.e.
w(ω) ≈ w0(ω), however it is known to work for small P only. Below we will show how to exploit
the measured data D(ω) to construct a better approximant of w(ω) for further linearizarion of
Lippmann-Schwinger equation (8).

2 Adaptive data-driven ROMs

Consider Galerkin projection of (3) onto the rational Krylov subspace spanned on columns of
V = {w1 = w(ω1), . . . , wn = w(ωn)} with respect to (; )J inner product. Here w(ωi), i = 1, . . . , n
are solutions of (3) for ω = ω1, . . . , ωn, respectively. The projected system (3) has a form

SW + iωMW = B (9)

where w ≈ VW, S is Hermitian indefinite stiffness matrix with block elements

Spq = wH
q J(A+ P )wp ∈ Cm×m, q, p = 1, . . . , n (10)

, M is Hermitian indefinite mass matrix with block elements

Mpq = wH
q Jwp ∈ Cm×m, q, p = 1, . . . , n (11)

and blocks of B are given by

Bq = wH
q F = D̄q = D̄(ωq) ∈ Cm×m q = 1, . . . , n. (12)

The measured data in Galerkin formulation is given by

F = BHW (13)

We note that although internal solutions wp, p = 1, . . . n are not accessible because P in (3) is
unknown, blocks of mass and stiffness matrices can still be obtained directly from the data via
Loewner framework:

wH
q Jwp =

Dp − D̄q

iωq + iωp
(14)
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and
wH
q J(A+ P )wp =

ωqD̄q +Dpωp

ωq + ωp
(15)

(with derivatives of the data D and ωD for mass and stiffness matrices when ωp = −ωq, respec-
tively).
To improve the efficiency of the constructed ROM we employ greedy algorithms for adaptive choice
of interpolation frequencies ω1, . . . , ωn which is similar to AAA algorithm [4]:

Algorithm 1 1. For the given frequency range of interest ω ∈ [ωmin, ωmax] set ω1 =
√
ωminωmax,

n = 1

2. Compute matrix pencil (S;M) via Loewner approach (14) and (15) for interpolation points
ω1, . . . , ωn

3. Compute ROM data F for ω ∈ [ωmin, ωmax] via (9) and (13)

4. Evaluate error F −D and set ωn+1 = argmax(∥F −D∥) If there are several frequencies for
which the maximum is attained, it suffices to select any one of the corresponding frequencies.

5. Set n = n+ 1.

6. Repeat steps 2–5 until convergence to the desired accuracy.

We note that the obtained ROM is not structure-preserving, i.e. it may not inherit passivity and
even stability of the original full-scale system (3).

3 Lippmann-Schwinger-Lanczos approach

In this section we show how to exploit the constructed data-driven ROMs to construct an approxi-
mant of internal solution w in (8). Similar to the unknown medium, we can construct background
matrix pencil (S0;M0) for the selected set of frequencies ω1, . . . , ωn. Note that it can be performed
in model-driven way because all the internal solutions for known background P = 0 are accessible.
Background counterpart of ROM (9) has a form

S0W0 + iωM0W0 = B0 (16)

where w0 ≈ V 0W0 and V 0 = {w0
1 = w0(ω1), . . . , w

0
n = w0(ωn)}. Let’s perform Lanczos orthog-

onalization for matrix (M)−1S with respect to indefinite inner product (; )M and starting vector
(M)−1B/∥(M)−1B∥M and do the same for background part (M0)−1S0 with respect to (; )M0 and
starting vector (M0)−1B0/∥(M0)−1B0∥:

(M)−1SQ = QT, QHMQ = I (17)
(M0)−1S0Q0 = Q0T 0, (Q0)hM0Q0 = I. (18)

As has been noted in [1], although V is totally different from V0, we have V Q ≈ V0Q0. It has been
explained in that paper for lossless case via drawing an analogy with causal time-domain solutions,
however similar reasoning is applicable for lossy scenario and ROM we developed. Therefore, we
can construct an approximant of internal solution as

w ≈ V (S + iωM)−1B = V Q(T + iωI)−1E1|(M)−1B∥M ≈ V 0Q0(T + iωI)−1E1|(M)−1B∥M = w
(19)
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Once plugged in into the Lippmann-Schwinger equation (8), we obtain a linear equation with
respect to P :

(w0)H(ω)JPw(ω) = D0(ω)−D(ω). (20)

We call this algorithm Lippmann–Schwinger–Lanczos to emphasize the crucial component of con-
structing internal solution that is based Lanczos orthogonalization. There are multiple parts of our
approach that need to be addressed to improve its performance:

• Efficient handling of overfitting that results in rank-deficient matrix M and may breakdown
Lanczos algorithm

• Fast and robust solution of (20) that is typically underdetermined

• Data completion approach to handle missing data in square MIMO transfer function D(ω)

• Construction of passive ROMs

• Convergence estimates
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Iterative Methods for Sylvester-like Variational Inequality Problems

Ning Zheng

Abstract

We consider the solution of Sylvester-like variational inequality problem (SVIP), or linear matrix
equation complementarity problem (LMECP),

X ≥ 0, W = AX +XB − F ≥ 0 and ⟨X,W ⟩ = 0 (1)

where A ∈ Rm×m, B ∈ Rn×n and F ∈ Rm×n are large, sparse and structured discretization
matrices from partial differential operators, and X ∈ Rm×n is an unknown matrix. Here, ⟨X,W ⟩ =
Tr(X⊤W ) denotes the Frobenius inner product of two matrices, where X⊤ denotes the transpose
of the matrix X. If B = A⊤ and F is symmetric, we refer (1) as the Lyapunov-like linear matrix
equation complementarity problem. LMECP (1) generally arises from the finite discretization of
free boundary problems

v(x) ≥ g(x), w(x) = Lv(x)− f(x) ≥ 0 and (v(x)− g(x))w(x) = 0, (2)

where L is a given partial differential operator, and x ∈ D ⊆ Rn where D is a given domain with
boundary ∂D. The boundary condition of (2) is v(x) = g(x), x ∈ ∂D. Well known examples of free
boundary problems which can be written in the form (2) include American option pricing, porous
flow through dams, journal bearing lubrication, and elastic-plastic torsion, etc.
The vectorization of the LMECP (1) gives a mathematically equivalent linear complementarity
problem (LCP),

x ≥ 0, Ax− f ≥ 0 and x⊤(Ax− f) = 0, (3)

where A = In ⊗ A + B⊤ ⊗ Im ∈ Rmn×mn, f = vec(F ) ∈ Rmn×1 and x = vec(X) ∈ Rmn×1.
Here, the symbol ⊗ denotes the Kronecker product, and vec(·) denotes the vectorization operator
that converts a matrix into a vector by stacking the columns of the matrix on top of one another.
There are few numerical methods specifically designed for solving LMECP (1). Numerical methods
[6, 4, 2, 3, 7] for LCP (3) are generally not efficient for directly solving LMECP (1) due to the large
storage and complexity.
When the matrix A arises from the finite difference discretization of elliptic and parabolic partial
differential equations, it has structure that contains discretization components from different spa-
tial derivatives. Hence, the idea of alternating direction implicit (ADI) method is to split the finite
difference operator into separate operators, where each operator corresponds to the discretization
of one-dimensional spatial derivative term, so that the solution of discretized system can be trans-
formed to the alternative solutions of discretized sub-systems, which have a simpler structure that
requires fewer storage and computational costs. Let A = H + V be the matrix splitting of A,
where H = In ⊗ A and V = B⊤ ⊗ Im are respectively generated from discrete central difference
approximations to the particular one-dimensional equation. The Peaceman-Rachford ADI for LCP
(3) proposed by Lin and Cryer [5], and the matricization of ADI is described as follows.
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Algorithm 1 Peaceman-Rachford ADI for LMECP (1)
1: Input an initial guess X(0) and positive parameters rk
2: for k = 0, 1, 2, · · · until convergence do
3: Compute X(k+ 1

2) by solving the LCP subproblem{
W (k+ 1

2) = (A+ rkIm)X(k+ 1
2) +X(k)(B − rkIn)− F ≥ 0,

X(k+ 1
2) ≥ 0,

⟨
X(k+ 1

2),W (k+ 1
2)
⟩
= 0

(4)

4: Compute X(k+1) by solving the LCP subproblem{
W (k+1) = X(k+1)(B + rkIn) + (A− rkIm)X(k+ 1

2) − F ≥ 0,

X(k+1) ≥ 0,
⟨
W (k+1), X(k+1)

⟩
= 0.

(5)

5: end for

First, we propose a projection method for solving LMECP (1) by transforming the matrix equation
into LCP (3) with a vector form by means of the Kronecker product. We can reformulate LCP (3)
to an equivalent fixed-point equation

x = Proj(x− α[Ax− f ]),

where α > 0 is a scalar and Proj(·) = max(·, 0) denotes the orthogonal projection of vector or
matrix onto nonnegative cone. The matricization form gives

X = Proj(X − α(AX +XB − F )).

The gradient projection method for LMECP (1) is listed in Algorithm 2.

Algorithm 2 Projection method for LMECP (1)
1: Input an initial guess X(0) and positive parameter α
2: for k = 0, 1, 2, · · · until convergence do
3: Compute the residual R(k) = F −AX(k) −X(k)B
4: Compute

X(k+1) = Proj(X(k) + αR(k)). (6)

5: end for

Next, we discuss the convergence of Peaceman-Rachford ADI algorithm Algorithm 1 for the non-
Hermitian case. Unlike the symmetric case [1, 5], convergence properties for nonsymmetric sit-
uations cannot be established relying on the descent function of the quadratic form. Rather, as
with most iterative methods for solving systems of equations, the recursive relation between two
successive iterations will be utilized here. We first equivalently reformulate the LCP (1) as an
implicit fixed-point equation by variable transformation, and thus the ADI Algorithm 1 can be
correspondingly reformulated. Then the recursive error relations are constructed based on the
fixed-point equations. In addition, we consider the case when H and V are H+-matrices. We study
the convergence analysis of ADI algorithm for LMECP when HV = VH does not necessary hold.
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Denote

Lα(H) = |(αI +H+ rkI)
−1(αI −H− rkI)|,

Lβ(V) = |(βI + V + rkI)
−1(βI − V − rkI)|,

Kα(H,V) = 2|(αI +H+ rkI)
−1(V − rkI)|

Kβ(V,H) = 2|(βI + V + rkI)
−1(H− rkI)|

We have the following convergence theorem.

Theorem 1 Peaceman-Rachford ADI algorithm converges to the unique solution for any initial
vector if ρ(Lα(H)) < 1, ρ(Lβ(V)) < 1 and ρ(G) < 1, where ρ(·) denotes for the spectral radius of
the matrix and

G = [I − Lβ(V)]−1Kβ(V,H)[I − Lα(H)]−1Kα(H,V).

Consider the case when both H and V are H+-matrices. Let H = DH + BH and V = DV + BV ,
where DH and BH are the diagonal and off-diagonal parts of H, respectively, and DV and BV are
the diagonal and off-diagonal parts of V , respectively.

Theorem 2 Peaceman-Rachford ADI algorithm converges to the unique solution for any initial
vector, provided that H and V are H+-matrices and

(α− rk)I −DH ≥ 0 and DV − rkI ≤ 0,

(β − rk)I −DV ≥ 0 and DH − rkI ≤ 0,

In the following analysis, we assume that H and V are commute, that is to say, HV = VH. Remark
that for H and V arising from the finite difference discretization of a separable second-order elliptic
operator in a rectangular region, it can be shown that HV = VH holds.
Instead of taking the absolute value, we give another general convergence result based on the matrix
norm as follows. Denote

δα(H) = ∥(αI +H+ rkI)
−1(αI −H− rkI)∥,

δβ(V) = ∥(βI + V + rkI)
−1(βI − V − rkI)∥,

τα(H) = 2∥(αI +H+ rkI)
−1(V − rkI)∥,

τβ(V) = 2∥(βI + V + rkI)
−1(H− rkI)∥,

where ∥ · ∥ denotes for matrix norm.

Theorem 3 Peaceman-Rachford ADI algorithm converges to the unique solution for any initial
vector if

δα(H) < 1, δβ(V) < 1 and τα(H)τβ(V)
[1− δα(H)][1− δβ(V)]

< 1. (7)

Consider the case when both H and V are Hermitian positive definite matrices, and thus A = H+V
is Hermitian positive definite.

425



Theorem 4 Suppose that H and V are Hermitian positive definite matrices, and H and V are
commute. If

rk ≥ 1

2
max(λ1 + λn, σ1 + σn),

then Peaceman-Rachford ADI algorithm for LCP converges to the unique solution for any initial
vector.

Finally, we present numerical experiments to show the convergence of proposed methods. We
consider the free boundary problem arises from fractional Black-Scholes American option pricing.
Assume that the asset prices S1 and S2 satisfy independent Lévy stochastic processes

Lu = −∂u

∂t
+ a1

∂u

∂x
+ a2

∂u

∂y
− b1

[
−∞Dα

xu
]
− b2

[
−∞Dβ

yu
]
+ ru

where x = lnS1 and y = lnS2. Here, −∞Dα
xu and −∞Dβ

yu represents Caputo derivatives of u on x
and y, and α, β ∈ (1, 2).

a1 = −r − 1
2σ

α
1 sec

(
απ
2

)
, b1 = −1

2σ
α
1 sec

(
απ
2

)
a2 = −r − 1

2σ
β
2 sec

(
βπ
2

)
, b2 = −1

2σ
β
2 sec

(
βπ
2

)
σ1, σ2 are volatilities of asset prices. By finite difference discretization of the model, we apply the
projection method and ADI algorithm to solve the resulting LMECP, and the numerical results
further confirm our convergence analysis.
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Monotonicity, Bounds, and Averaging of Block-Gauss and Gauss-Radau
Quadrature for Computing BTϕ(A)B

Jörn Zimmerling, Vladimir Druskin, Valeria Simoncini

Abstract

We explore quadratures for F(s) = BTϕ(A, s)B where A is a symmetric, nonnegative-definite
matrix in Rn×n, B is a tall matrix in Rn×p, and ϕ(·, s) is a matrix function with parameter s [1, 2].
These formulations commonly arise in the computation of multiple-input, multiple-output transfer
functions for diffusion PDEs.
We derive bounds and averaging schemes for quadrature rules for BTϕ(A, s)B computed via the
block-Lanczos algorithm, which are particularly efficient for discretizations of PDE operators with
continuous spectra. Additionally, we demonstrate that these bounds and averaging schemes are
applicable to parametric model reduction of dynamical systems via Galerkin projections.

1 Block-Lanczos Approximations to BTϕ(A, s)B

We propose an approximation scheme for F(s) = BTϕ(A, s)B leveraging the block-Lanczos algo-
rithm [3] and its representation via Stieltjes matrix continued fractions.
The block-Lanczos recursion for the block-Lanczos vectors Qi ∈ Rn×p reads

AQi = Qi+1βi+1 +Qiαi +Qi−1(βi)
T , (1)

with block coefficients αi,βi ∈ Rp×p. Using Stieltjes matrix continued fractions, we show that
this block-Lanczos algorithm defines a block-Gauss quadrature approximation Fm(s) and converges
monotonically for ϕ(A, s) = (A+sI)−1 with s ∈ R+ and I the identity matrix. We further show that
a monotonically convergent block Gauss-Radau quadrature F̃m(s) can be readily defined through
this Stieltjes continued fraction representation. In the literature, Gauss-Radau quadratures for
symmetric matrices are often defined via rank-one updates of the Lanczos matrix in the non-block
case [4, 5] or rank p updates in the block case [6].
Here we define Gauss-Radau quadrature through Stieltjes matrix continued fractions which can be
written via the recursion

Cj(s) =
1

sγ̂j +
1

γj + Cj+1(s)

,

where γ̂j ,γj ∈ Rp×p are symmetric positive definite matrices directly related to the block-Lanczos
coefficients αj and βj . We show that the Gauss quadrature approximation to BT (A+sI)−1B after
m iterations of block-Lanczos corresponds to C1(s), defined through the above recursion, terminated
with Cm+1 = 0, whereas the Gauss-Radau quadrature corresponds to truncation with Cm+1 = ∞.
Through Stieltjes matrix continued fractions, we demonstrate that Gauss quadrature provides a
lower bound, while Gauss-Radau quadrature provides an upper bound to the matrix function.
Combined with the monotonicity result, this yields an ordering of the Gauss and Gauss-Radau
quadrature approximations to F . Given m, the quadrature order, we obtain

0 < Fm−1(s) < Fm(s) < F(s) < F̃m(s) < F̃m−1(s) ∀s ∈ R+,

427



where, for two symmetric matrices G1, G2, the notation G1 < G2 indicates that G2−G1 is positive
definite.
This ordering further enables derivation of easily computable error bounds of the form

∥F − Fm∥ < ∥F̃m −Fm∥.

In this contribution, we discuss averaging schemes of Gauss and Gauss-Radau quadrature motivated
by potential theory for Padé approximations. We show numerical examples for various ϕ(A, s),
where A is a graph Laplacian or discretization of an operator with a continuous spectrum (e.g.,
PDE operators in unbounded domains). These examples demonstrate that the derived error bound
is tight in important applications, and that the averaging schemes reduce the approximation error
by an order of magnitude for discretizations of operators with continuous spectra, as shown in [7].
In the next section we discuss the applicability of such Gauss-Radau bounds to parametric model
reduction, a subsequent result not covered in [7].

2 Parametric Model Reduction via Galerkin Projection

The first iteration of the block-Lanczos procedure can be interpreted as a Galerkin projection of a
symmetric positive definite matrix on a general basis. This insight allows us to directly apply the
Gauss-Radau bound and averaging schemes to, for instance, projection-based parametric model
reduction [8].
Consider the parametric dynamical system

(A(ρ) + sI)X(s, ρ) = B, with transfer function F(s) = BTX(s, ρ),

where A(ρ) ∈ Rn×n is symmetric positive definite for all parameters ρ of interest, B ∈ Rn×p, and
the Laplace frequency s ∈ R+. This formulation arises in inverse problems where A(ρ) represents
a discretized PDE operator with PDE coefficients parametrized by ρ.
Assuming for simplicity, that the Galerkin projection basis U ∈ Rn×k contains B as U = [B,U0]
and is orthogonalized UTU = Ik (e.g. a rational Krylov subspace with a shift at ∞). Then the
Galerkin approximation of F is

FGal(s) = (UTB)T (UTA(ρ)U + sIk)
−1(UTB)

=

[
Ip
0

]T
(HROM(ρ) + sIk)

−1

[
Ip
0

]
.

We can interpret U as the first Lanczos vector Q1 in equation (1) for i = 1 with Q0 = 0 and HROM(ρ)
as the α1 block-Lanczos coefficents. Then we can further define the β2 coefficent according to the
block-Lanczos recursion

(β2)
Tβ2 = UTA2U − (HROM(ρ))2.

Then the Gauss-Radau quadrature approximation to the k × k transfer function FU = UT (A(ρ) +
sI)U as defined in [7] reads

F̃U (s) =

[
Ik
0

]T ([
HROM(ρ) βT

2

β2 β2(H
ROM(ρ))−1βT

2

]
+ sI2k

)−1 [
Ik
0

]
.
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Since the Gauss Radau approximation F̃U is an upper bound to FU their difference F̃U − FU is
s.p.d. and any subspace projection of a s.p.d. matrix is s.p.d. Hence the leading p× p block of F̃U

provides an easy-to-compute error bound for the leading block of FU which coincides with FGal and
holds for any U and ρ. In this contribution, we will show that such a bound provides a meaningful
tool for applications in inverse problems and greedy selection of interpolation points in parametric
model reduction.

References
[1] Gene H. Golub and Gérard Meurant. Matrices, Moments and Quadrature with Applications. Princeton

University Press, 2010.
[2] C. Fenu, D. Martin, L. Reichel, and G. Rodriguez. Block Gauss and anti-Gauss quadrature with appli-

cation to networks. SIAM Journal on Matrix Analysis and Applications, 34(4):1655–1684, 2013.
[3] G.H. Golub and R. Underwood. The block Lanczos method for computing eigenvalues. In John R. Rice,

editor, Mathematical Software, pages 361–377. Academic Press, 1977.
[4] G. López Lagomasino, L. Reichel, and L. Wunderlich. Matrices, moments, and rational quadrature.

Linear Algebra and its Applications, 429(10):2540–2554, 2008. Special Issue in honor of Richard S.
Varga.

[5] Andreas Frommer, Kathryn Lund, Marcel Schweitzer, and Daniel B. Szyld. The Radau–Lanczos method
for matrix functions. SIAM Journal on Matrix Analysis and Applications, 38(3):710–732, 2017.

[6] Kathryn Lund. A New Block Krylov Subspace Framework with Applications to Functions of Matrices
Acting on Multiple Vectors. Phd thesis, Department of Mathematics, Temple University and Fakultät
Mathematik und Naturwissenschaften der Bergischen Universität Wuppertal, Philadelphia, Pennsylvania,
USA, May 2018.

[7] Jörn Zimmerling, Vladimir Druskin and Valeria Simoncini. Monotonicity, bounds and extrapolation of
Block-Gauss and Gauss-Radau quadrature for computing BTϕ(A)B, 2024; arXiv:2407.21505.

[8] Benner, P., Gugercin, S. & Willcox, K. A Survey of Projection-Based Model Reduction Methods for
Parametric Dynamical Systems. SIAM Review. 57, 483-531 (2015),

429


	Cover
	M. Ackermann
	A. Antoulas
	R. Armstrong
	H. Avron
	Z. Bai
	G. Ballard
	C. Ballew
	G. Barbarino
	J. Barlow
	P. Benner
	R. Bhattacharjee
	D. Bindel
	M. Bolten
	E. Boman
	N. Boulle
	J. Brust
	A. Bucci
	L. Burke
	J. Cape
	E. Carson
	A. Casulli
	F. Chen
	T. Chen
	Y. Cho
	E. Chow
	J. Chung
	M. Chung
	A. Cortinovis
	A. Damle
	J. Demmel
	M. Derezinski
	E. Desturler
	I. Dhillon
	G. Dinh
	Y. Dong
	F. Dopico
	Z. Drmac
	V. Druskin
	A. Edelman
	S. Ekstrom
	M. Embree
	E. Epperly
	M. Espanol
	S. Eswar
	M. Fasi
	P. Ferrari
	D. Fortunato
	I. Furci
	J. Garzavargas
	S. Gazolla
	M. Gnazzo
	I. Gosea
	N. Govindarajan
	A. Greenbaum
	L. Grigori
	L. Grubisic
	S. Gugercin
	D. Halikias
	Y. He
	B. Heinzelreiter
	A. Higgins
	S. Hon
	A. Horning
	I. Ipsen
	Y. Jang
	S. Jeong
	H. Kapadia
	S. Keip
	M. Kilmer
	D. Kressner
	Z. Lai
	H. Lam
	M. Landman
	J. Langou
	R. Lehoucq
	M. Lepilov
	S. Leveque
	R. Li
	X. Li
	X. Liang
	X. Liu
	D. Lu
	R. Luce
	H. Luo
	A. Ma
	L. Ma
	Y. Ma
	S. Mackey
	M. Manucci
	R. Marcia
	S. Massei
	K. Meerbergen
	V. Mehrmann
	M. Meier
	A. Miedlar
	T. Mitchell
	C. Moler
	A. Montoison
	U. Mor
	R. Morgan
	K. Morikuni
	J. Nagy
	Y. Nakatsukasa
	E. Newman
	E. Ng
	V. Noferini
	E. Oktay
	L. Onisk
	M. Outrata
	J. Papez
	T. Park
	M. Pasha
	J. Pearson
	J. Pecamedlin
	C. Penke
	V. Perovic
	D. Persson
	B. Plestenjak
	S. Pozza
	A. Prajapati
	E. Qian
	E. Rebrova
	M. Rinelli
	L. Robol
	M. Saunders
	R. Schneider
	R. Shah
	N. Shao
	T. Shi
	I. Simunec
	N. Singh
	A. Sobczyk
	K. Soodhalter
	N. Spillane
	A. Stathopoulos
	M. Stoll
	X. Sun
	D. Szyld
	J. Tabeart
	F. Tisseur
	C. Tobler
	A. Townsend
	N. Trefethen
	F. Uhlig
	J. Urschel
	A. Uschmajew
	R. Vanbeeumen
	N. Vanbuggenhout
	B. Vandereycken
	W. Vanroose
	C. Wang
	D. Watkins
	S. Werner
	H. Wilber
	Y. Xi
	J. Xia
	F. Xue
	A. Yesypenko
	L. Yosef
	M. Zaslavskiy
	N. Zheng
	J. Zimmerling

